
Diffusion in Liquids

Equilibrium Molecular Simulations and
Predictive Engineering Models

Xin Liu



2



Diffusion in Liquids
Equilibrium Molecular Simulations and Predictive Engineering

Models

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir.K.C.A.M. Luyben
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 21 January 2013 om 12.30 uur

door

Xin Liu

Master of Science in Biochemical Engineering, Delft University of Technology
geboren te Daqing, China.



Dit proefschrift is goedgekeurd door de promotoren:

Prof.Dr.Ir. T.J.H. Vlugt
Prof.Dr.-Ing. A. Bardow

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.Dr.Ir. T.J.H. Vlugt Technische Universiteit Delft, Promotor
Prof.Dr.-Ing. A. Bardow RWTH Aachen University, Promotor
Prof.Dr.-Ing. J. Vrabec University of Paderborn
Prof.Dr. P. Bolhuis University of Amsterdam
Prof.Dr. P.L.J. Zitha Technische Universiteit Delft
Prof.Dr. H.W. Zandbergen Technische Universiteit Delft
Ir. G. Krooshof DSM

This thesis was performed as part of the Cluster of Excellence “Tailor-Made Fuels
from Biomass”, which is funded by the Excellence Initiative by the German federal
and state governments. This thesis was also sponsored by the Stichting Nationale
Computerfaciliteiten (National Computing Facilities Foundation, NCF) for the use
of supercomputing facilities, with financial support from the Nederlandse Organisatie
voor Wetenschappelijk onderzoek (Netherlands Organization for Scientific Research,
NWO).

Copyright © 2012 by X. Liu
ISBN 978-94-6186-091-0
Printed by Ipskamp Drukkers

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording or by any information storage and retrieval system,
without the prior permission of the author.



Contents

1 Introduction 1
1.1 Diffusion 2

1.2 Molecular Dynamics simulation 6

1.3 Scope of this thesis 8

2 Maxwell-Stefan Diffusivities in Liquid Mixtures: Using Molecular
Dynamics for Testing Model Predictions 11
2.1 Introduction 12

2.2 Prediction of diffusion coefficients 13

2.2.1 Determination of MS diffusivities from Fick diffusivities 13

2.2.2 Predicting MS diffusivities using the Darken equation 14

2.2.3 Predicting MS diffusivity using the Vignes equation 15

2.3 Equilibrium Molecular Dynamics simulation 17

2.4 Evaluation approaches for diffusion models 20

2.4.1 Model validation 20

2.4.2 Indirect comparison 20

2.4.3 Validation of the generalized Vignes equation 23

2.4.4 Direct comparison 24

2.5 Results and discussion 24

2.5.1 Model validation 24

2.5.2 Indirect comparison 26

2.5.3 Validation of the generalized Vignes equation 26

2.5.4 Direct comparison 27

2.6 Conclusions 29



3 Multicomponent Maxwell-Stefan Diffusivities at Infinite Dilution 31
3.1 Introduction 32
3.2 Obtaining Maxwell-Stefan Diffusivities from MD simulations 33

3.2.1 Deriving an expression for Ðxk→1
i j 34

3.2.2 Obtaining a physically-based model for Ðxk→1
i j 36

3.3 Details of Molecular Dynamics simulations 37
3.3.1 WCA system 37
3.3.2 n-hexane - cyclohexane - toluene 37
3.3.3 Ethanol - methanol - water 38

3.4 Results and discussion 38
3.4.1 WCA system 38
3.4.2 n-hexane - cyclohexane - toluene 40
3.4.3 Ethanol - methanol - water 41

3.5 Conclusions 41

4 A Predictive Darken Equation for Maxwell-Stefan Diffusivities in
Multicomponent Mixtures 49
4.1 Introduction 50
4.2 The predictive Darken-LBV equation 53
4.3 Molecular Dynamics simulation 55

4.3.1 WCA system 55
4.3.2 n-hexane - cyclohexane - toluene 56

4.4 Results and discussion 56
4.4.1 Ternary WCA systems 56
4.4.2 Quaternary WCA systems 62
4.4.3 n-hexane - cyclohexane - toluene 62

4.5 Conclusions 65

5 Maxwell-Stefan Diffusivities in Binary Mixtures of Ionic Liquids with
DMSO and H2O 67
5.1 Introduction 68
5.2 Molecular Dynamics simulation 70

5.2.1 Obtaining diffusivities from MD simulation 70
5.2.2 Details of equilibrium MD simulation 70



5.3 Predictive models for diffusion coefficients 71
5.3.1 Maxwell-Stefan diffusivities 71
5.3.2 Maxwell-Stefan diffusivities at infinite dilution 74
5.3.3 Salt diffusivity 75

5.4 Results and Discussion 75
5.4.1 Model validation via self-diffusivities 75
5.4.2 Maxwell-Stefan diffusivities and radial distribution functions 81
5.4.3 Diffusivity of IL molecules 84

5.5 Conclusions 85

6 Fick Diffusion Coefficients of Liquid Mixtures Directly Obtained from
Equilibrium Molecular Dynamics 93
6.1 Introduction 94
6.2 Diffusion coefficients and the thermodynamic factor 98

6.2.1 Obtaining diffusion coefficients from MD simulations 98
6.2.2 Predictive models for diffusion 98
6.2.3 Obtaining the thermodynamic factor from MD simulations 100

6.3 Simulation details 101
6.4 Results and discussion 103

6.4.1 Model validation for pure component systems 103
6.4.2 Diffusion in acetone - methanol 104
6.4.3 Diffusion in acetone - tetrachloromethane 109

6.5 Conclusions 114

7 Fick Diffusion Coefficients in Ternary Liquid Systems from Equilibrium
Molecular Dynamics Simulation 115
7.1 Introduction 116
7.2 Computation of diffusion coefficients and thermodynamic factors 116

7.2.1 Obtaining diffusion coefficients from MD simulations 116
7.2.2 Obtaining thermodynamic factors from MD simulations 117
7.2.3 Obtaining thermodynamic factors from COSMO-SAC 119

7.3 Simulations details 119
7.4 Results and discussion 121

7.4.1 Chloroform - acetone 122



7.4.2 Chloroform - methanol 123
7.4.3 Chloroform - acetone - methanol 126

7.5 Conclusions 136

A Obtaining Maxwell-Stefan Diffusivities from Molecular Dynamics
Trajectories 137
A.1 Binary systems 138
A.2 Ternary systems 138
A.3 Quaternary systems 140

B Obtaining a Darken Equation for Multicomponent Systems 143
B.1 Binary systems 144
B.2 Ternary systems 145
B.3 Quaternary systems 147

C Additional Data for Chapter 3 149

D Additional Data for Chapter 4 157

E Additional Data for Chapter 5 175

F Kirkwood-Buff Coefficients from Sampling Fluctuations in
Subvolumes 181

Summary 203

Samenvatting 207

Curriculum Vitae 211

Published Work 212

Acknowledgments 214



1

Introduction
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1.1 Diffusion

If a bulb is filled with hydrogen and connected to another bulb filled with nitrogen at
the same pressure and temperature via a capillary tube, hydrogen and nitrogen will
spread through the capillary. After some time, the concentration of hydrogen and
nitrogen in the two bulbs will become identical. The process responsible for this is
called diffusion. Diffusion is the transport of mass that occurs due to a gradient in
chemical potential of a component in the system. Equivalently, the gradient in con-
centration can also be used as driving force. Diffusion can be a slow process. In
gases, diffusion coefficients are typically around 10−5 m2·s−1. In liquids, diffusion
coefficients are about 10−9 m2·s−1. In solids, diffusion is usually even slower1–3.
In many processes, diffusion occurs simultaneously with other phenomena, such as
chemical reactions. When diffusion is the slowest phenomena, it limits the overall
rate of the process4–6. Accurate models for mass transport are therefore a prereq-
uisite for the design of many industrial processes and the interpretation of diffusion
experiments.

It is important to distinguish self-diffusion and transport (mutual) diffusion. Self-
diffusion describes the motion of individual molecules. Mutual diffusion can be re-
lated to collective motion of one component and is responsible for mass transport.
Therefore, mutual diffusion is the relevant phenomena in practice. Diffusion coef-
ficients are a function of concentration, temperature and pressure7–11. They do not
depend on the magnitude of the concentration gradient or chemical potential gradi-
ent12. The concentration dependence of diffusivities in liquids is often overlooked in
chemical engineering applications13–15. To investigate the concentration dependence
of diffusion coefficients, the required experimental effort is large3;16. As experiments
on multicomponent diffusion are difficult and time consuming3;16, a detailed under-
standing of the concentration dependence of diffusion is currently lacking, especially
for multicomponent systems. Therefore, it is worthwhile to explore the route of the-
ory and simulation. Molecular Dynamics (MD)17–20 simulations are a useful method
in this respect as one can directly study the effect of molecular interactions on diffu-
sion coefficients.

There are two theories commonly used for the description of diffusion, i.e. gen-
eralized Fick’s law and Maxwell-Stefan (MS) theory. Both can be derived from the
theory of irreversible thermodynamics1;12;21;22. Their connection is illustrated in Fig-
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Figure 1.1: Schematic overview of computational schemes for diffusion coefficients. Fick’s
law and the Maxwell-Stefan (MS) theory are often used to describe mass transport by diffu-
sion. The two formalisms are related via the matrix of thermodynamic factors [Γ]. Fick diffu-
sivities can be obtained from inhomogeneous nonequilibrium Molecular Dynamics (NEMD)
simulations. MS diffusivities can be obtained from equilibrium MD and homogeneous
NEMD simulations. The matrix of thermodynamic factors can be predicted using grand-
canonical Monte Carlo (GCMC) simulations. Our recent study shows that it is possible to
obtain the thermodynamic factors from equilibrium MD simulations (chapters 6 and 7 of this
thesis).

ure 1.1. Generalized Fick’s law uses the concentration gradient as the driving force
for diffusion while the MS theory uses a gradient in chemical potential as driving
force. As two theories describe the same physical process, Fick and MS diffusion dif-
fusivities can be related via the so-called matrix of thermodynamic factors1;2;21;23–29.
In Figure 1.1, we present an overview of several computational methods for com-
puting the diffusivities and thermodynamic factors. Diffusion coefficients can be
obtained from both nonequilibrium Molecular Dynamics (NEMD) simulations30–32

and equilibrium Molecular Dynamics (MD) simulations17;33–35 (more details of MD
simulations are addressed in section 1.2)17:
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• In NEMD simulations, a driving force for mass transport is added to a system.
The system will be responding to this driving force. By measuring the response
of the system, diffusion coefficients can be calculated.

• In equilibrium MD simulations, concentration gradients and other perturba-
tions do not appear in the system. Systems are thus at equilibrium. Diffusion
coefficients follow from the motion of the molecules at equilibrium.

NEMD algorithms can be categorized according to the used method of perturba-
tion: inhomogeneous NEMD18;36;37 and homogeneous NEMD38–40. A concentration
gradient is established for inhomogeneous NEMD. By monitoring the relaxation of
the concentration as a function of time, Fick diffusivities can be obtained by applica-
tion of Fick’s second law. The difficulty of this method is that significant simulation
efforts are required for generating many initial concentration gradients30. This is
essential for determining the linear regime where Fick’s law is applicable. In homo-
geneous NEMD simulation, an external field is applied to the system. The field exerts
a force on the molecules while keeping the total external force on the system equal
to zero. The external field is coupled to particle properties and usually independent
of the positions of the particles. Therefore, concentration gradients do not appear in
the system31;32;38;39. It is important to note that homogeneous NEMD provides MS
diffusivities. Some disadvantages have been observed in NEMD simulations: (1) al-
gorithms for computing diffusion coefficients are inefficient30; (2) many simulations
are needed to obtain the diffusion coefficients corresponding to equilibrium condi-
tions at a single concentration as one has to extrapolate to a zero driving force. To
explore the concentration dependence of diffusion coefficients, this effort is multi-
plied38; (3) very low driving force are needed to avoid so-called “traffic lanes” in the
system38.

In equilibrium MD simulations, MS diffusivities follow directly from molecular
trajectories17;21;25;27–29;41–46. The computed MS diffusivities are of high accuracy,
even though the simulations are usually computationally expensive (due to the long
time scales involved in the collective motions of molecules)33–35. To relate experi-
mentally measurable Fick diffusivities to MS diffusivities, the matrix of thermody-
namic factors is needed, as shown in Figure 1.1. The matrix of thermodynamic fac-
tors can be computed from grand-canonical Monte Carlo (GCMC) simulations31;32.
However, presently used simulation techniques to determine the matrix of thermo-
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Figure 1.2: Schematic overview of predictive models for diffusion coefficients. The Darken-
type and the Vignes-type equations are often used to describe the concentration dependence
of MS diffusivities Ði j. The Darken equation requires self-diffusivities, i.e. Di,self while
Vignes-type equation requires the MS diffusivities at dilution, i.e. Ð

x j→1
i j and Ðxk→1

i j . As in

the limit of infinite dilution, self-diffusivities are identical to the MS diffusivities, i.e. Ð
x j→1
i j

= Di,self, the Darken-type equation can be used to parametrize the Vignes equation.

dynamic factors in dense systems are quite inefficient47;48. A recent study shows
that it is possible to access the grand-canonical ensemble in MD simulations49. This
method is accurate and more efficient compared to the GCMC simulations. The ther-
modynamic factor can also be calculated from experimental vapor-liquid equilibrium
data, but this introduces other difficulties, see chapters 6 and 7 of this thesis.

Many efforts have been carried out in developing predictive models for diffu-
sion2;23;50–53. The Darken-type and generalized Vignes-type equations are prevalent
to describe the relation between diffusion coefficients and mixture composition1;23;52,
see Figure 1.2. In binary systems, the Darken equation uses concentration dependent
self-diffusivities to predict MS diffusivities. However, the Darken equation is only
for binary systems, as presented in the original publication54. For multicomponent
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systems, the Darken-type model is not available. In this thesis, we derive a multicom-
ponent Darken equation for the description of MS diffusivities. Details are discussed
in chapter 4. The concentration dependence of self-diffusivities can be obtained via
an empirical diffusion model and experiments7;23. The Vignes equation is an em-
pirical approach for the prediction of MS diffusivities1;2;47;55. Unlike the Darken
equation, the Vignes equation requires binary MS diffusivities at infinite dilution. In
binary mixtures, MS diffusivities at infinite dilution are easily obtained as they are
identical to the self-diffusivity of the component that is infinitely diluted1;7. How-
ever, in systems containing more than two components, the Vignes equation requires
MS diffusivities representing two infinitely diluted components in a third one (sol-
vent). This quantity is nearly impossible to directly obtain in experiments. Over the
past 20 years, several models have been proposed in the literature for the estima-
tion of these ternary MS diffusivities in the limit of dilution23;24;50;51. Unfortunately,
these models are empirical and lack a solid theoretical background which introduce
difficulties in identifying the physical cause of their success or failure in describ-
ing diffusion23;50–52. In chapter 3 of this thesis, we provide a physically motivated
alternative.

The questions and challenges in the field of diffusion in liquids can be summa-
rized as follows:

1. Can measurable Fick diffusivities be predicted more efficiently using a consis-
tent methodology?

2. Can multicomponent diffusion be predicted based upon the corresponding bi-
nary systems?

3. What microscopic information is important for predicting multicomponent dif-
fusion?

1.2 Molecular Dynamics simulation

Molecular Dynamics (MD) simulation is a computational technique which uses atomic
interactions to compute the equilibrium and transport properties of a many-body sys-
tem. Usually, these interactions can be described by a classical force field, although
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they can also be obtained from ab-initio techniques.56. A classical force field de-
scribes the interaction between particles (atoms or molecules), i.e. bonded and non-
bonded potentials. Usually, the force field parameters appearing in the force field
function are derived from experiments and/or quantum mechanical calculations. In
this thesis, bonded interactions typically consist of bond stretching, bond bending
and torsion interactions while non-bonded interactions consist of Lennard-Jones (LJ)
and Coulombic interactions. In MD simulations, the equations of motion (Newton’s
second law) are integrated numerically17–19. Newton’s second law states that the ac-
celeration of a particle is proportional to the net force and inversely proportional to
the mass (second derivative of position with respect to the time),

ai =
Fi

mi
=

d2ri

d t2 , (1.1)

in which ai is the acceleration of particle i, Fi is the net force acting on particle i, mi

is the mass of particle i, ri is the position of particle i and t is the time. To integrate
the equations of motion, several algorithms are available. For example, the time-
reversible velocity Verlet algorithm is often used17;18.

ri(t +∆t) = ri(t)+ vi(t)∆t +
Fi(t)
2mi

∆t2, (1.2)

vi(t +∆t) = vi(t)+
Fi(t +∆t)+Fi(t)

2mi
∆t, (1.3)

in which ri(t) and vi(t) are the position and velocity of particle i at time t, respec-
tively. The velocities of particles are related to the temperature17. ∆t is the time step
for integration and the typical value for ∆t is 10−15 s17. Fi(t) is the net force acting
on particle i at time t and can be calculated using a classical force field. Typically, we
use hundred to a few thousand molecules in MD simulation. Periodic boundary con-
ditions are usually applied17–19. By integrating the equation of motion, the typical
trajectories of interacting particles are obtained from MD simulation. From these tra-
jectories, thermodynamic and transport properties can be computed. The time scale
of MD simulation depends on the properties of interest ranging from a few to hundred
nanoseconds. For studying diffusion, simulations using quantum mechanical interac-
tions are not feasible due to the required time scale (i.e. ≥ 100 ns). For more details
on MD simulations, the reader is referred to some excellent standard textbooks17–20.
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1.3 Scope of this thesis

The objectives of this thesis are three-fold:

1. Developing a consistent methodology for the prediction of multicomponent
diffusion coefficients.

2. Developing predictive engineering models for diffusion coefficients.

3. Improving predictive models for diffusivities.

In chapter 2, diffusion in the ternary systems n-hexane - cyclohexane - toluene is
investigated using equilibrium MD simulations. In this system, components are not
highly associated and the electrostatic interactions are excluded. We tested the qual-
ity of often used predictive engineering models for ternary diffusion in the limit of
infinite dilution. Even though these models sometimes predict reasonable diffusion
coefficients, they may fail in other systems due to the lack of a sound theoretical
basis. To solve this problem, i.e. the LBV model, (taken from the initials of the
authors: Liu, Bardow and Vlugt) was derived in chapter 3 for diffusion in ternary
systems at infinite dilution based on the Onsager relations. We investigated the LBV
model for ternary systems with different complexities, i.e. a ternary Weeks-Chandler-
Andersen (WCA) fluid, the ternary system n-hexane - cyclohexane - toluene and the
ternary system methanol - ethanol - water. We show that the LBV model is supe-
rior compared to other existing models for describing diffusion at infinite dilution. In
chapter 4, we study diffusion for the full concentration range. A consistent multicom-
ponent Darken equation is developed for describing the concentration dependence of
MS diffusivities. In addition, a predictive model for the required self-diffusivities is
proposed. The quality of these novel models has been evaluated in ternary and qua-
ternary WCA systems and the ternary system n-hexane - cyclohexane - toluene. To
explore the limitations of predictive models, we investigated a more complex ionic
liquid (IL) system (IL with water and DMSO) in which electrostatic interactions are
important (chapter 5). We found that for these systems, MS diffusivities vary by a
factor of 10 within the concentration range which is still significantly smaller than the
variation of the self-diffusivities. As explained earlier, Fick diffusivities can be mea-
sured in experiments while molecular simulations provide MS diffusivities. These
two quantities can be related by the so-called matrix of thermodynamic factors which
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is usually only known with large uncertainty, thereby leaving a gap between exper-
iments and molecular simulations. To connect experiments and theories, we devel-
oped an approach to obtain the measurable Fick diffusivities using only equilibrium
MD simulations. This approach allows for a consistent way for the description of
diffusion. The validation of this method in binary systems acetone - methanol and
acetone - tetrachloromethane is discussed in chapter 6. In chapter 7, this method is
validated and extended to the ternary system chloroform - acetone - methanol. Com-
pared to the available experimental diffusion data, MD results show good agreement
with experiments.





2

Maxwell-Stefan Diffusivities in Liquid
Mixtures: Using Molecular

Dynamics for Testing Model Predictions

This chapter is for a large part based on:

X. Liu, T.J.H. Vlugt, A. Bardow, Maxwell-Stefan diffusivities in liquid mixtures: us-
ing molecular dynamics for testing model predictions, Fluid Phase Equilibria, 2011,
301, 110-117.



12 CHAPTER 2

2.1 Introduction

The study of MS diffusivities in multicomponent systems is of great practical and the-
oretical interest as the MS theory accounts for chemical potential gradients as driving
forces for transport diffusion21;27;57. In experiments, it is impossible to directly mea-
sure MS diffusivities. Instead, MS diffusivities are obtained from measurable Fick
diffusivities and the matrix of thermodynamic factors2. As this procedure may intro-
duce errors, predictive models for MS diffusivities based on easily measurable quanti-
ties are desirable7;8;10;11;58. In binary systems, several predictive models are available
for estimating MS diffusivities and their dependence on temperature, mixture density
and composition1;59;60. However, models for estimating MS diffusivities in mixtures
containing three or more components are less established due to a lack of accurate
experimental and simulation data. Several studies report that in multicomponent sys-
tems, MS diffusivities strongly depend on the overall density and composition, which
seriously complicates the development of predictive models23;25;61.

The objectives of this chapter are threefold. First, we use an approach based on
optimal computational design for efficiently evaluating predictive models for MS dif-
fusivities in ternary systems. This approach enables us to evaluate different predictive
models using a limited number of simulations. Second, we present two different ways
to evaluate these predictive models: an indirect comparison using self-diffusivities at
infinite dilution and a direct comparison using MS diffusivities. Third, we directly
test the predictive capability of the well-known Vignes equation without using any
additional assumptions. For this, we performed equilibrium Molecular Dynamics
(MD) simulations to compute the self- and MS diffusivities of liquid mixtures of
n-hexane, cyclohexane and toluene. This system was chosen because the MS diffu-
sivities obtained by predictive models show significant differences compared to other
mixtures for which experimental reference data is available7.

This chapter is organized as follows. In section 2.2 we briefly review the various
approaches for estimating self- and MS diffusivities. The simulation method used for
computing these diffusivities is described in section 2.3. In section 2.4 we construct
the framework for evaluating the predictive models. Three different comparisons
are presented. The efficiency of each comparison is discussed in section 2.5. Our
findings are summarized in section 2.6.
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2.2 Prediction of diffusion coefficients

2.2.1 Determination of MS diffusivities from Fick diffusivities

Generalized Fick’s law relates the molar flux Ji of component i to the Fick diffusivity
Di j and its driving force ∇x j

Ji =−ct

n−1

∑
j=1

Di j∇x j. (2.1)

Here, ct is the total molar concentration and x j is the mole fraction of component
j. There are (n− 1) independent fluxes and (n− 1) independent driving forces in
an n-component system as the net flux of the system is zero in the molar reference
frame, i.e. ∑

n
i=1 Ji = 0. From Eq. (2.1) it follows directly that the elements of the

matrix of Fick diffusivities [D] depend on the labeling of the components. The MS
formulation uses chemical potential gradients as driving forces for mass transport.
For liquid mixtures at constant temperature and pressure, the MS equation equals62

n−1

∑
j=1

Γi j∇x j =
n

∑
j=1
j 6=i

xiJ j− x jJi

ct Ði j
, (2.2)

where Ði j is the MS diffusivity which describes the interaction or friction between
components i and j due to the difference in their velocities. Γi j is the thermodynamic
factor which is defined as

Γi j = δi j + xi

(
∂ lnγi

∂x j

)
T,p,∑

, (2.3)

in which δi j is the Kronecker delta, and γi is the activity coefficient of component i in
the mixture. The symbol Σ indicates that the partial differentiation of lnγi with respect
to mole fraction x j is carried out at constant mole fraction of all other components
except the n-th one, so that ∑

n
i=1 xi = 1 during the differentiation. Since generalized

Fick’s law and the MS approach describe the same process, the MS formulation can
be related to the Fick formulation by1;21;23

[D] = [B]−1[Γ]. (2.4)
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in which [D] is the matrix of Fick diffusivities in a molar reference frame and [Γ] is
the matrix of thermodynamic factors. The elements of matrix [B] are defined as:

Bii =
xi

Ðin
+

n

∑
j=1
j 6=i

x j

Ði j
, with i = 1,2, ...(n−1), (2.5)

Bi j = −xi

(
1

Ði j
− 1

Ðin

)
,with i, j = 1,2, ...(n−1) and i 6= j. (2.6)

In practice, the large uncertainty in the thermodynamic factor [Γ] makes it difficult to
obtain MS diffusivities from the measurable Fick diffusivities62.

2.2.2 Predicting MS diffusivities using the Darken equation

Krishna and van Baten23 proposed a generalized Darken equation to predict MS dif-
fusivities in multicomponent system using self-diffusivities at the same mixture com-
position:

Ði j =
xi

xi + x j
D j,self +

x j

xi + x j
Di,self. (2.7)

For binary systems, Eq. (2.7) reduces to the well-known Darken equation25.

Ði j = xiD j,self + x jDi,self. (2.8)

In the limit of xi → 1 or x j → 1, the Darken equation (Eq. (2.8)) is exact. The fol-
lowing empirical models have been proposed23 for relating the self-diffusivity Di,self

at any mixture composition to the self-diffusivity in a diluted solution Dx j→1
i,self :

Di,self =
n

∑
j=1

x jD
x j→1
i,self , (2.9)

Di,self =
n

∑
j=1

w jD
x j→1
i,self , (2.10)

Di,self =
n

∑
j=1

v jD
x j→1
i,self . (2.11)
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In these equations, w j is the mass fraction, v j is the volume fraction, and Dx j→1
i,self

is the self-diffusivity of component i in an i- j mixture when the mole fraction of
component j is approaching 1. Krishna and van Baten23 showed that the generalized
Darken relation (Eq. (2.7)) can accurately predict MS diffusivities in liquid mixtures
of linear alkanes. However, Eq. (2.7) suffers from an inconsistency, that is, it leads
to two different limits if both xi and x j are vanishing for a system containing three or
more components. This will be discussed further in chapters 3 and 4.

2.2.3 Predicting MS diffusivity using the Vignes equation

A geometrically consistent generalization of the Vignes equation for ternary mixtures
was proposed by Wesselingh and Krishna24:

Ði j = (Ðxi→1
i j )

xi
(Ðx j→1

i j )
x j
(Ðxk→1

i j )
xk
. (2.12)

The terms Ðxi→1
i j and Ðx j→1

i j describe the interaction between components i and j if
one component is infinitely diluted in the other one. These binary diffusion coeffi-
cients are easily obtained from both simulations and empirical equations 25;47;63–66.
The term Ðxk→1

i j describes the interaction between components i and j while both i
and j are infinitely diluted in a third component k. This diffusion coefficient Ðxk→1

i j is
not directly accessible in experiments. Several predictive models have been proposed
for Ðxk→1

i j : (1) the WK model proposed by Wesselingh and Krishna24; (2) the KT
model proposed by Kooijman and Taylor50; (3) the VKB model; (4) the DKB model,
both the Vignes-type VKB and the Darken-type DKB model were proposed by Kr-
ishna and van Baten23; (5) the RS model proposed by Rehfeldt and Stichlmair51:

◦WK (Wesselingh and Krishna24):

Ðxk→1
i j =

√
Ðx j→1

i j Ðxi→1
i j , (2.13)

◦ KT (Kooijman and Taylor50):

Ðxk→1
i j =

√
Ðxk→1

ik Ðxk→1
jk , (2.14)
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◦ VKB (Krishna and van Baten23):

Ðxk→1
i j =

(
Ðxk→1

ik

) xi
xi+x j

(
Ðxk→1

jk

) x j
xi+x j , (2.15)

◦ DKB (Krishna and van Baten23):

Ðxk→1
i j =

x j

xi + x j
Ðxk→1

ik +
xi

xi + x j
Ðxk→1

jk , (2.16)

◦ RS (Rehfeldt and Stichlmair51;67):

Ðxk→1
i j = (Ðxk→1

ik Ðxk→1
jk Ðx j→1

i j Ðxi→1
i j )1/4. (2.17)

All these predictive models suggest to estimate the MS diffusivity Ðxk→1
i j based on

easily measurable binary diffusion coefficients. The WK model relates the MS dif-
fusivity Ðxk→1

i j to the diffusion coefficients in binary mixtures of components i and

j, i.e. Ðxi→1
i j and Ðx j→1

i j . The KT model suggests to estimate Ðxk→1
i j using diffusion

coefficients obtained from i-k and j-k mixtures, i.e. Ðxk→1
ik and Ðxk→1

jk . The VKB and

DKB models are also based on binary diffusion coefficients Ðxk→1
ik and Ðxk→1

jk , but
different weights are assigned to these coefficients. In chapter 3, we will show that in
the limit xk→1, the MS diffusivity Ði j should not depend on the ratio xi/x j. The RS
model is a combination of WK and KT approaches. However, all these models are
empirical in nature and lack a solid theoretical foundation. A thorough experimental
validation of these models has been prohibited by the lack of experimental data and
the uncertainty introduced by the thermodynamic factor. It is important to note that
it is extremely difficult to obtain Ðxk→1

i j from experiments. In the limit where com-
ponents i and j are infinitely diluted in component k, it is also extremely difficult to
obtain good statistics for Ðxk→1

i j in equilibrium MD simulations. The CPU require-
ments for calculating Ðxk→1

i j are far beyond the simulations for binary systems. To the
best of our knowledge, due to this difficulty, MS diffusivities Ðxk→1

i j have not been
analyzed in simulations previously.
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2.3 Equilibrium Molecular Dynamics simulation

Equilibrium MD simulations are used to determine the self- and MS diffusivities in
the mixtures of n-hexane, cyclohexane and toluene. In the equilibrium MD simula-
tions, we use the united-atom approach and consider the CHx groups as single un-
charged interaction centers with their own effective interaction potentials. All bond
lengths are kept fixed using the SHAKE algorithm17;18. For n-hexane and cyclo-
hexane, a harmonic bond bending potential controls the bond-bending between three
consecutive beads. The interaction between four consecutive atoms in a molecule is
described by a torsion potential taken from Ref.68. Toluene is treated as a rigid body.
LJ interactions are used to describe the non-boned interactions. Wick et al. reported a
force field for linear and branched alkanes as well as alkylbenzenes, using a potential
truncated at 14 Å and analytical tail corrections68. Dubbeldam et al. reported LJ po-
tentials for alkanes using a potential truncated and shifted in these models at 12 Å69.
We slightly adjusted these LJ energy parameters for the following reasons (keeping
the LJ size parameters fixed): (1) the LJ parameters were fitted at higher tempera-
tures (above 400 K) while standard conditions (298.15 K, 1 atm) are of interest in
the present work. As diffusivities strongly depend on the density, we feel that it is
important to accurately reproduce the experimental liquid density; (2) different cutoff
radii were used in Refs.68;69. In this work, we use a LJ potential that is truncated and
shifted at 12 Å without using analytical tail corrections. The LJ energy parameters
are therefore rescaled to match the experimental densities at standard conditions and
are listed in Table 2.1. The LJ parameters for the interactions of unlike atoms are
calculated using the standard Lorentz-Berthelot mixing rules18. Using these parame-
ters the experimental liquid density at standard conditions is correctly reproduced as
shown in Table 2.2.

To simulate one component infinitely diluted in another one, a binary mixture
consisting of 1 molecule of component i and 599 molecules of component j is used. A
system consisting of 1 molecule of component i, 1 molecule of component j and 598
molecules of component k is used to represent a system of components i and j infinite
diluted in the third component k. A ternary mixture of 1 molecule of component
i, 300 molecules of components j and k respectively is used to represent a system
in which component i infinite diluted in j-k mixture with equimolar composition.
Thus, binary and ternary mixtures containing 600 or 601 molecules in total are used
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Table 2.1: Comparison of the LJ parameters of various united-atom models. The interactions
between unlike pseudo-atoms are calculated using Lorentz-Berthelot mixing rules18. Here,
the LJ potentials are truncated and shifted at 12 Å.

this work Wick et al.68 Dubbeldam et al.69

pseudo-atom σ /[Å] ε/kB [K] σ /[Å] ε/kB [K] σ [Å] ε/kB [K]
CH3-CH3 (in n-hexane) 3.760 92.61 3.750 98.0 3.760 108.0
CH3-CH3 (in toluene) 3.760 100.83 3.750 98.0 3.760 108.0
CH2-CH2 (in n-hexane) 3.960 48.02 3.950 46.0 3.960 56.0
CH2-CH2 (in cyclohexane) 3.960 57.12 3.950 46.0 3.960 56.0
CH-CH (in toluene) 3.965 51.96 3.965 50.5 - -
C-C (in toluene) 3.880 21.66 3.880 21.0 - -

Table 2.2: Density of pure components ρi/(g ·ml−1) at 298.15 K, 1 atm. Here, “1” represents
n-hexane, “2” represents cyclohexane and “3” represents toluene. The values obtained in this
work are obtained from equilibrium MD simulations in the N pT ensemble.

i this work Experimental Results
1 0.6574 0.6548 (Ref.70) 0.6551 (Ref.71)
2 0.7757 0.7739 (Ref.70) 0.7739 (Ref.72)
3 0.8636 0.8619 (Ref.73) 0.8685 (Ref.74)

in all simulations. Such a system is generated as follows. Starting from an initial
configuration, the system is equilibrated using equilibrium MD in the NpT ensemble
at 298.15 K, and 1 atm using the Nosé-Hoover thermostat with a time constant of 1
ps. Periodic boundary conditions are used. The integration time step is 2 fs for which
the pseudo-Hamiltonian is well conserved. When the average density of the systems
does not change with time, we use the equilibrated system at this average density for
computing the self- and MS diffusivities in the microcanonical (NVE) ensemble.

The self-diffusivity describes the motion of individual molecules. The Einstein
equation connects the self-diffusivity Di,self to the average molecular displacements17

Di,self =
1

6Ni
lim

m→∞

1
m ·∆t

〈
Ni

∑
l=1

(rl,i(t +m ·∆t)− rl,i(t))2

〉
. (2.18)

An alternative but equivalent expression is
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Di,self =
1

3Ni

∫
∞

0
dt ′
〈

Ni

∑
l=1

(
vl,i(t) · vl,i(t + t ′)

)〉
. (2.19)

In these equations, Di,self is the self-diffusivity of component i, Ni is the total number
molecules of component i, rl,i(t) is the position of lth molecule of component i at
time t and vl,i(t) is its velocity. The MS diffusivities follow directly from the Onsager
coefficients, which are obtained from equilibrium MD simulations using23

Λi j =
1
6

lim
m→∞

1
N

1
m ·∆t

×〈(
Ni

∑
l=1

(rl,i(t +m ·∆t)− rl,i(t))

)(
N j

∑
k=1

(rk, j(t +m ·∆t)− rk, j(t))

)〉
.(2.20)

The Green-Kubo form for obtaining Λi j is

Λi j =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
N j

∑
k=1

vk, j(t + t ′)

〉
. (2.21)

In these equations, N is the total number of molecules in the simulation, and i, j
are the molecule types. Note that the matrix [Λ] is symmetric, i.e. Λi j = Λ ji and
that the Onsager coefficients are constraint by ∑i MiΛi j = 0 in which Mi is the molar
mass of component i23. In all cases, mean squared displacement is updated with
different frequencies according to the order-n algorithm described in Refs.17;75. By
plotting the mean squared displacements as a function of time on a log-log scale,
we determined the regime for diffusion and extracted the diffusivities76. For more
information on how to extract MS diffusivities from equilibrium MD simulations, we
refer the reader to appendix A. The self- and MS diffusivities for a certain mixture are
averaged over 30 independent simulations of 40 ns each. The initial configurations
of these simulations were generated such that they were independent. The statistical
errors in the computed self- and MS diffusivities are below 1% and 4% for both
binary and ternary mixtures, respectively.
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2.4 Evaluation approaches for diffusion models

2.4.1 Model validation

The excess molar volume V E is one possible way to study the interaction between
different components. It is defined as

V E =
n

∑
i=1

xiMi

ρ
−

n

∑
i=1

xiMi

ρi
, (2.22)

where Mi is the molar mass of component i, ρi is the density of pure component
i, ρ is the density of the mixture, and n is the number of components. The excess
molar volume of a binary mixture can be used to validate the simulation model. The
Redlich-Kister equation can be used to correlate the composition dependence of the
excess molar volume. In a binary mixture, this equation equals77

V E = x1(1− x1)
p

∑
i=0

ai(2x1−1)i, (2.23)

in which x1 is the mole fraction of the first component, and p is the total number
of parameters used in Eq. (2.23). The coefficients ai can be calculated using a least
squares fit.

2.4.2 Indirect comparison

Recently, it was shown that predictive models for MS diffusivities can be accessed in
experiments directly via self-diffusivities at infinite dilution7. The same approach can
be used in simulations. In experiments, the MS diffusivities are determined from the
measurable Fick diffusion coefficients using Eq. (2.4) while in the simulations they
can be computed directly, see section 2.3. As discussed in the previous section, the
presence of the thermodynamic factors [Γ] in Eq. (2.4) introduces large uncertainties
in determining MS diffusivities from experiments62. To avoid difficulties associated
with the thermodynamic factors [Γ], we consider simulations in the region of infinite
dilution for which [Γ] for any system reduces to

Γ
xi→0
ii = 1, (2.24)
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Figure 2.1: Objective functions φ (Eq. (2.29)) for screening the differences between predic-
tive models: Eq. (2.28) + Eq. (2.12) + Eqs. (2.13) to (2.17). The parameters for the predictive
models were taken from the simulations in Table 2.4. (a) D1,self (b) D2,self, (c) D3,self. Here,
“1” represents n-hexane, “2” represents cyclohexane and “3” represents toluene.
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Γ
xi→0
i j, i6= j = 0. (2.25)

Furthermore, at these conditions (xi→ 0), the off-diagonal elements of the Fick ma-
trix vanish

Dxi→0
i j = 0, (2.26)

and the diagonal elements become identical to the self-diffusivities

Dxi→0
ii = Dxi→0

i,self . (2.27)

In this limit, the self-diffusivity of component i is related to the MS diffusivities by62

1

Dxi→0
i,self

=
n

∑
j=1, j 6=i

x j

Ði j
. (2.28)

It is important to note that Eqs. (2.24) to (2.28) hold for any n-component system, and
that Eq. (2.28) is exact. To relate the self-diffusivity in ternary mixtures to the binary
diffusion coefficients, the following procedure can be used. The MS diffusivities in
Eq. (2.28) are estimated using the generalized Vignes equation (Eq. (2.12)). The bi-
nary diffusion coefficients (Ðxi→1

i j and Ðx j→1
i j ) that appear in the generalized Vignes

equation can be obtained from experiments or simulations. The value of Ðxk→1
i j can

be obtained from any of the five predictive models (Eqs. (2.13) to (2.17)), requiring
binary diffusion data only. This results in five predictions for Dxi→0

i,self , here denoted by

Dprediction
il,self with l = 1,2, · · ·5. In the following sections, we refer to these predictions

as “Eq. (2.28) + Eq. (2.12) + Eqs. (2.13) to (2.17)”. To minimize the amount of sim-
ulations required to discriminate between these models, an objective function φi is
constructed to analyze the differences between the five predictive models:

φi =
∑

M
l=1 |D

prediction
il,self −Daverage

i,self |
M ·Daverage

i,self
, (2.29)

in which M is the number of predictive models (here: M = 5). The term Daverage
i,self is the

average of Dprediction
il,self . Figure 2.1 shows the objective function φi as a function of the

mixture composition using binary diffusion data from equilibrium MD simulations.
Here, the system consists of n-hexane, cyclohexane and toluene. The value of φi is
large when xi ≈ 0 and x j ≈ xk (i 6= j 6= k). This is the case for all 3 components.
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Figure 2.2: Ternary diagram for the system n-hexane (1) - cyclohexane (2) - toluene (3). The
various labeled compositions (No. 1, 2, 3, 4, 5, 6) are referred to in the main text.

The results are consistent with the conclusion of a previous study in which a different
method was applied to analyze the differences7. These compositions are referred to
as No. 1, 2 and 3 in Figure 2.2. Simulations at these conditions contain the maximum
information regarding the discrimination between the considered models based on
diffusion coefficients.

2.4.3 Validation of the generalized Vignes equation

The indirect comparison described in the previous subsection critically relies on the
generalized Vignes equation (Eq. (2.12)). However, it is unknown whether or not
the generalized Vignes equation provides an accurate estimate for Ði j at any con-
centration in multicomponent mixtures. To test the quality of the predictions of the
generalized Vignes equation, we parametrize the generalized Vignes equation using
binary MS diffusivities obtained from equilibrium MD simulations. The predictions
of the generalized Vignes equation are compared directly to ternary MS diffusivities
obtained from equilibrium MD simulations.
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Figure 2.3: Excess molar volumes of binary systems as a function of the composition at
298.15 K, 1 atm. The filled symbols are simulation results and the dash lines plus open
symbols are experimental data from Ref.77. Diamonds: “1-2” mixture, triangles: “1-3” mix-
ture, Squares: “2-3” mixture. xi refers to the mole fraction of i in an i- j mixture. Here, “1”
represents n-hexane, “2” represents cyclohexane and “3” represents toluene.

2.4.4 Direct comparison

Several models (Eqs. (2.13) to (2.17)) are available to predict (Ðxk→1
i j ) using binary

MS diffusivities. As mentioned earlier, these models are empirical in nature and lack
a solid theoretical foundation. Therefore, we performed equilibrium MD simulations
in the corners of the ternary diagram corresponding to the limiting conditions xi,x j→
0,xk→ 1, defined by No. 4, 5 and 6 in Figure 2.2.

2.5 Results and discussion

2.5.1 Model validation

The excess molar volumes of binary mixtures are calculated to validate the simulation
models. The dependency of excess molar volume on the mixture composition is well
described using the Redlich-Kister equation using three coefficients ai. In Figure 2.3,
we compare the computed excess molar volume to the experimental data. We observe
that (1) the computed excess molar volume has the same sign as in the corresponding
experiment; the agreement is thus reasonable; (2) both simulation and experimental
results show a maximum or minimum of the excess molar volume around the equimo-
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Table 2.3: Self-diffusivity of pure components Di,self/(10−9 m2 · s−1) at 298.15 K, 1 atm. The
statistical errors in equilibrium MD simulations are below 1%. Here, “1” represents n-hexane,
“2” represents cyclohexane and “3” represents toluene.

i MD Experiment
1 5.50 4.25 (Ref.78)
2 2.05 1.37 (Ref.78)
3 2.89 2.25 (Ref.78)

lar composition. In summary, our model is considered to be adequately detailed for
the present study.

The self-diffusivities of the pure components at 298.15 K, 1 atm are calculated
from equilibrium MD simulations, see Table 2.3. Compared to the experimental
data, the computed diffusivities are systematically somewhat larger. The MS diffu-
sivities in binary mixtures are shown in Table 2.4. The MS diffusivities at infinite
dilution Ðx j→1

i j calculated from equilibrium MD simulations are also larger than the
experimental results. The degree to which the simulation results agree with the ex-
perimental data is governed by three elements: (1) how accurately the model (force
field) matches reality. In this work, a united-atom model was used. The LJ parame-
ters were rescaled to reproduce the density of pure components at 298.15 K, 1 atm.
However, the force field was not optimized for describing transport properties. Even
with this simple interaction model, we still obtain the correct order of magnitude and
qualitative trends for the MS diffusivities; (2) the statistical error in the computed MS
diffusivities. As mentioned earlier, this error is below 4%; (3) the accuracy of the ex-
perimental data. It is important to note that in the experiments, the self-diffusivity of
component i is obtained as a function of its mole fraction xi. The function Di,self(xi)

is extrapolated to xi→ 07, and by definition in this limit Ði j = Di,self. These extrapo-
lated values are listed in Table 2.4. In summary, we feel that the agreement between
experiments and simulations is quite good and that our model for the ternary system
n-hexane - cyclohexane - toluene is a suitable test system to investigate models for
MS diffusivities.
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Table 2.4: Comparison between MS diffusivities Ð
x j→1
i j /(10−9 m2 · s−1) in binary mixtures

obtained both from experiments and equilibrium MD simulations. The statistical errors in
equilibrium MD simulations are less than 1%. Here, “1” represents n-hexane, “2” represents
cyclohexane and “3” represents toluene. The limit x j → 1 is approached by considering a
system of 1 molecule of type i and 599 molecules of type j.

i - j MD Experiment
1 - 2 2.63 1.69 (Ref.79)
2 - 1 4.30 3.88 (Ref.79)
1 - 3 2.98 2.39 (Ref.78)
3 - 1 4.84 4.35 (Ref.78)
2 - 3 2.73 2.23 (Ref.78)
3 - 2 2.10 1.13 (Ref.78)

2.5.2 Indirect comparison

As explained earlier, the self-diffusivities at infinite dilution are predicted using
Eqs. (2.12), (2.28) and Eqs. (2.13) to (2.17), requiring only MS binary diffusion
data at infinite dilution which were obtained from equilibrium MD simulations, see
Table 2.4. This analysis corresponds to the experimental test carried out in Ref.7.
Table 2.5 shows a comparison between these predictions and the self-diffusivities
computed directly from equilibrium MD simulations. The predicted self-diffusivities
of n-hexane and cyclohexane are all systematically larger than the directly computed
self-diffusivities. The differences are of the order of 10-40%. For toluene, the pre-
dictions are all systematically lower than the directly computed self-diffusivities but
the differences are much smaller than for n-hexane and cyclohexane. From Table 2.5
it is however clear that none of the predictions is significantly better than the others.
Given this result, it is important to investigate the origin of the observed differences
with the computed self-diffusivity individually, i.e. the quality of the generalized Vi-
gnes equation (Eq. (2.12)) and the quality of the predictive models for Ðxk→1

i j .

2.5.3 Validation of the generalized Vignes equation

To directly assess the quality of the generalized Vignes equation (Eq. (2.12)), we
parametrize the generalized Vignes equation using MS diffusivities from equilibrium
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Table 2.5: Predictions for self-diffusivities Di,self/(10−9 m2 · s−1) in ternary mixtures (com-
position corresponding to No.1, 2 and 3 in Figure 2.2 using Eq. (2.28). The binary diffusion
coefficients in Table 2.4 are used as input. The procedure is explained in the main text.
The statistical errors in the equilibrium ns are below 1%. RelDiff is the relative difference
between simulation results and predictions. Here, “1” represents n-hexane, “2” represents
cyclohexane and “3” represents toluene.

D1,self RelDiff D2,self RelDiff D3,self RelDiff Averaged RelDiff
Eqs. (2.28)+(2.12)+WK 3.16 46% 3.00 6% 2.95 12% 21%
Eqs. (2.28)+(2.12)+KT 2.70 25% 3.42 22% 3.23 4% 17%
Eqs. (2.28)+(2.12)+VKB 2.60 20% 3.41 25% 3.27 2% 16%
Eqs. (2.28)+(2.12)+DKB 2.81 30% 3.43 19% 3.19 5% 18%
Eqs. (2.28)+(2.12)+RS 2.92 35% 3.23 15% 3.12 7% 19%
MD 2.16 – 2.88 – 3.35 – –

MD simulations (Tables 2.4 and 2.7). Table 2.6 shows the MS diffusivities estimated
using the generalized Vignes equation (composition corresponding to Figure 2.2,
No. 1, 2 and 3). For our test mixture, the generalized Vignes equation provides rea-
sonable predictions of the MS diffusivities with relative differences less than 17%.
However, these differences are certainly significant and it suggests that a large part of
the differences observed in Table 2.5 are due to the fact that the generalized Vignes
equation is not exact. This result also serves as an estimate of the best accuracy that
can be expected from any Vignes-based model.

2.5.4 Direct comparison

Table 2.7 shows the predicted MS diffusivities at infinite dilution (Ðxk→1
i j ) using five

different models Eqs. (2.13)-(2.17). These models are parametrized using MS dif-
fusivities of binary mixtures as shown in Table 2.4. The accuracy of the predictive
models depends on both the accuracy of the binary MS diffusivities and the quality
of predictive models. As the MS diffusivities in binary mixtures are computed with
the high accuracy, the errors are less than 4%, we are able to address the quality of
predictive models. For predicting Ðx3→1

12 (composition corresponding to Figure 2.2,
No. 4), the KT, VKB, DKB and RS models are accurate. The WK model is clearly
the worst. For predicting Ðx2→1

13 (composition corresponding to Figure 2.2, No. 5),
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Table 2.6: Predictions for MS diffusivities Ði j/(10−9 m2 · s−1) in ternary mixtures (compo-
sition corresponding to No. 1, 2 and 3 in Figure 2.2) using the generalized Vignes equation
(Eq. (2.12)). The binary diffusion coefficients Ðxi→1

i j , Ð
x j→1
i j and ternary diffusion data Ðxk→1

i j
obtained from equilibrium MD simulations are shown in Tables 2.4 and 2.7. The statistical er-
rors in equilibrium MD simulations are below 4%. RelDiff is the relative difference between
simulations and predictions. Here, “1” represents n-hexane, “2” represents cyclohexane and
“3” represents toluene.

MD Vignes RelDiff
Fig. 2.2 No.1 Ð12 2.48 2.78 12%

Ð13 2.74 2.56 7%
Ð23 2.28 2.40 5%

Fig. 2.2 No.2 Ð12 3.19 3.55 11%
Ð13 4.10 3.79 7%
Ð23 2.85 3.33 17%

Fig. 2.2 No.3 Ð12 3.68 3.36 9%
Ð13 3.86 3.26 16%
Ð23 3.41 2.92 14%

Table 2.7: Predictions for the MS diffusivities Ðxk→1
i j /(10−9 m2 · s−1) in ternary mixtures

(composition corresponding to No. 4, 5 and 6 in Figure 2.2) compared with direct equilibrium
MD simulations. These predictive models are parametrized using the binary diffusivities
shown in Table 2.4. The statistical errors in equilibrium MD simulations are below 4%. Here,
RelDiff is the relative difference between simulation results and predictions. “1” represents
n-hexane, “2” represents cyclohexane and “3” represents toluene. In the MD simulations,
Ðxk→1

i j is approached by considering a system of 1 molecule of type i, 1 molecule of type j,
and 598 molecules of type k.

Ðx3→1
12 RelDiff Ðx2→1

13 RelDiff Ðx1→1
23 RelDiff Averaged RelDiff

WK 3.36 14% 3.80 74% 2.39 41% 43%
KT 2.85 3% 2.35 7% 4.56 12% 8%
VKB 2.85 3% 2.35 7% 4.56 12% 8%
DKB 2.86 3% 2.37 8% 4.57 13% 8%
RS 3.10 5% 2.99 37% 3.31 18% 20%
MD 2.94 – 2.19 – 4.06 – –
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the KT, VKB and DKB models still provide reasonable predictions while the WK
and RS models give large errors. For predicting Ðx1→1

23 (composition corresponding
to Figure 2.2, No. 6), the performance of the five models is similar to the second
case. Considering their average performance, the WK model predicts MS diffusiv-
ities with deviations more than 40%, and the KT, VKB and DKB models yield the
best predictions. Here, we would stress that both VKB and DKB models suffer from
inconsistencies when xi and x j are approaching zero simultaneously. Therefore, we
would prefer the KT model over the VKB and DKB models. The RS model behaves
worse than KT, VKB and DKB models. This suggests that in a ternary mixture, the
interaction between two diluted components (expressed by Ðxk→1

i j ) strongly depends
on how each solute interacts with the solvent in the corresponding binary mixture
(expressed by Ðxk→1

ik and Ðxk→1
jk ). Therefore, it is natural to consider the following

generalized model for Ðxk→1
i j

Ðxk→1
i j = (Ðxi→1

i j Ðx j→1
i j )

α

2 (Ðxk→1
ik Ðxk→1

jk )(
1
2−

α

2 ). (2.30)

For α = 0, this equation reduces to the KT model, α = 0.5 corresponds to the RS
model, and α = 1 corresponds to the WK model. We fitted the computed diffu-
sivities at the three compositions (Figure 2.2, No. 4, 5, 6) simultaneously using a
least-squares method. The optimal value of α equals 0.18, resulting in an average
relative difference of 6%. This cannot be considered as a major improvement over
the existing models for the tested systems.

2.6 Conclusions

The MS theory is the most natural method for describing mass transport, as it uses
the chemical potential gradient as driving force. MS diffusivities often do not de-
pend strongly on the concentration, i.e. the concentration dependence is often quite
smooth, in sharp contrast to multicomponent Fick diffusivities. As MS diffusivities
cannot be measured directly in experiments and molecular simulations are often time
consuming, there is a clear need for predictive models based on easily measurable
quantities. For diffusion in binary mixtures, several predictive models are able to es-
timate MS diffusion coefficients with a reasonable accuracy. Some recent studies on
binary mixtures show that the binary predictive models may fail in mixtures including
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water and alcohols28;29. The situation in multicomponent systems is certainly more
complicated. The applicability of predictive models in multicomponent systems is
much less investigated. This hampers the progress of investigations of multicompo-
nent diffusion processes.

In this chapter, we have demonstrated an efficient method for evaluating predic-
tive models for estimating MS diffusivities. This method allows for a critical as-
sessment of different predictive models with minimal simulation effort. We analyzed
two different ways for evaluating these predictive models: (1) a direct comparison
of MS diffusivities is the most straightforward way and it can be conducted using
simulations; (2) an indirect comparison using self-diffusivities at infinite dilution,
as proposed by the experimental study of Ref.7. We found that for predicting the
MS diffusivity Ðxk→1

i j in ternary mixtures of n-hexane - cyclohexane - toluene, the
Kooijman-Taylor model is favored. The same finding is also observed in the indirect
comparison, both in experiments7 and in our simulations. However, the differences
between predictive models are significantly reduced in the indirect comparison which
indicates that the self-diffusivity is not very sensitive to the used predictive model.
Therefore, evaluating self-diffusivities is not the best choice for evaluating the pre-
dictive models. Also, we directly tested the applicability of the generalized Vignes
equation in ternary mixtures. Our results show that the generalized Vignes equation
is a reasonable engineering model for the prediction of MS diffusivities in the inves-
tigated ternary mixture but it still introduces a significant error of more than 10%.
Our results also show that the MS diffusivities in i-k and j-k mixtures should be in-
cluded in predicting the MS diffusivities Ðxk→1

i j in n-hexane - cyclohexane - toluene
mixtures. In these mixtures, the interaction between solutes and solvent is important
for studying diffusion even at infinite dilution. The observation that in the system
n-hexane - cyclohexane - toluene none of the approaches is able to accurate predict
MS diffusivities from binary data suggests that new models and/or approaches are
needed. From recent results on binary mixtures28;29, it can be expected that these sit-
uation is even more critical for mixtures including water and alcohols. The approach
developed in this work shows that molecular simulations can be used as a tool to
develop better models for predicting transport diffusivities in ternary mixtures.
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Multicomponent Maxwell-Stefan
Diffusivities at Infinite Dilution

This chapter is for a large part based on:

X. Liu, A. Bardow, T.J.H. Vlugt, Multicomponent Maxwell-Stefan diffusivities at in-
finite dilution, Industrial & Engineering Chemistry Research, 2011, 50, 4776-4782.



32 CHAPTER 3

3.1 Introduction

Diffusion plays an important role in (bio)chemical processes. The MS theory pro-
vides a sound theoretical basis and is therefore preferred for modeling of diffusion
in liquids1;2;21. Unfortunately, it is difficult to obtain MS diffusivities from exper-
iments while obtaining MS diffusivities from MD simulations is time consuming.
In experiments, Fick diffusivities are measured8;58 which have to be converted to
MS diffusivities via a thermodynamic factor. This introduces large uncertainties7;80.
Extracting MS diffusivities from simulations may lead to extensive CPU-time re-
quirements28;29. Therefore, predictive models for the concentration dependence of
MS diffusivities based on easily measurable quantities are highly desired. The Vi-
gnes equation is often recommended to predict the concentration dependence of MS
diffusivities1;2. In ternary mixtures, the generalized Vignes equation equals24

Ði j = (Ðxi→1
i j )xi(Ðx j→1

i j )x j(Ðxk→1
i j )xk , (3.1)

in which Ði j is the MS diffusivity describing the friction between components i and
j, and xi is the mole fraction of component i. The terms Ðxi→1

i j and Ðx j→1
i j describe the

friction between a diluted component and the solvent and therefore these are equal
to their value in a binary mixture of i and j only. The generalized Vignes equation
requires the value of Ðxk→1

i j , which describes the friction between components i and
j when both are infinitely diluted in a third component k. This quantity is not eas-
ily accessible in experiments since no direct measurement is possible7. In the past
decades, several empirical models were proposed for estimating Ðxk→1

i j from binary
diffusion data, as presented in chapter 2, Eqs. (2.13) to (2.17)23;24;50;51;67. These em-
pirical models can be classified into three categories: (1) the friction between the two
diluted components is taken into account and the friction between the diluted com-
ponents and the solvent is neglected, i.e. the WK model; (2) the friction between the
diluted components and the solvent is taken into account and the friction between the
diluted components themselves is neglected, i.e. the KT, VKB, DKB models; (3) a
combination of the first two categories, i.e. the RS model. Since there is no physical
basis for any of these models, it is unclear which one to use for a specific system. It
is important to note that errors introduced by modeling the concentration dependence
of MS diffusivities using the generalized Vignes equation (Eq. (3.1)) may be either
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be reduced or enhanced by a particular choice for a model for Ðxk→1
i j

33. In the re-
mainder of this chapter, we will not consider this issue further and focus instead on
how Ðxk→1

i j can be predicted.

In this chapter, we show that Ðxk→1
i j is a well-defined quantity that is independent

of the ratio xi/x j. Based on linear response theory and the Onsager relations, we
propose a new model for estimating Ðxk→1

i j from easily measurable self-diffusivities.
Unlike the WK, KT, VKB, DKB, and RS models, our model has a sound theoretical
basis. The key assumption is that velocity cross-correlations between particles are
negligible. We perform MD simulations to assess the quality of our new model. It
turns out that the model works very well for systems consisting of non-associating
molecules. For the highly associating system water - methanol - ethanol, the earlier
mentioned cross-correlations between particle velocities cannot be neglected due to
the collective motion of molecules, originating from networks of hydrogen bonds.

This chapter is organized as follows. In section 3.2, we explain how MS dif-
fusivities can be obtained from MD simulations. We show that Ðxk→1

i j does not de-
pend on the molar ratio xi/x j and we derive a model for estimating Ðxk→1

i j using
easily measurable pure-component and binary self-diffusivities. Details about the
MD simulations are addressed in section 3.3. In section 3.4, we test our model for
the following ternary systems: (1) a system without attractions, i.e. particles interact
with a WCA potential81; (2) the n-hexane - cyclohexane - toluene system, in which
molecules interact with LJ interactions; (3) the ethanol - methanol - water system in
which electrostatic interactions play an important role. We compare the predictions
of Ðxk→1

i j with the results from MD simulations. Our conclusions are summarized in
section 3.5.

3.2 Obtaining Maxwell-Stefan Diffusivities from MD simu-
lations

MD simulations can be used to directly compute the MS diffusivities Ði j from local
fluctuations. The Onsager coefficients Λi j can be obtained directly from the motion
of the molecules in MD simulations23, see section 2.3 and appendix A.
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3.2.1 Deriving an expression for Ðxk→1
i j

In appendix A, we show the exact expression of Ði j as a function of xi, x j, xk for
ternary systems, and all elements of the matrix [Λ] (Eq. (A.11)).

Ði j = f
(
xi,x j,xk, [Λ]

)
. (3.2)

Using these expressions, we consider the situation in which components i and j are
infinitely diluted in component k. It is possible to find a convenient expression for the
term Λii using the Green-Kubo formulation of the Onsager coefficients (Eq. (2.21)).
As component i is infinitely diluted in component k, we can neglect correlations in
the velocities between two distinct molecules of component i. Therefore,

Λii =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
Ni

∑
g=1

vg,i(t + t ′)

〉

=
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) · vl,i(t + t ′)

〉
+ (3.3)

1
3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

Ni

∑
g=1,g 6=l

vl,i(t) · vg,i(t + t ′)

〉

≈ 1
3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) · vl,i(t + t ′)

〉
=

Ni

3N

∫
∞

0
dt ′
〈
vi,1(t) · vi,1(t + t ′)

〉
= xiCii, (3.4)

in which Cii is a constant which does not depend on the total number of molecules.
Similarly, we can write for the other component j that is diluted in component k,

Λ j j ≈ x jC j j. (3.5)

In the limit of infinite dilution (which requires the thermodynamic limit), Eqs. (3.3)
and (3.5) will be exact. For the solvent k, the expression for Λkk is
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Λkk =
1

3N

∫
∞

0
dt ′
〈

Nk

∑
l=1

vl,k(t) ·
Nk

∑
g=1

vg,k(t + t ′)

〉

=
1

3N

∫
∞

0
dt ′
〈

Nk

∑
l=1

vl,k(t) · vl,k(t + t ′)

〉
+ (3.6)

1
3N

∫
∞

0
dt ′
〈

Nk

∑
l=1

Nk

∑
g=1,g6=l

vl,k(t) · vg,k(t + t ′)

〉
≈ xkCkk + x2

kNC?
kk, (3.7)

in which Ckk and C?
kk account for self- and cross-correlations of the velocities of

molecules of type k, respectively. The value of Ckk is independent of the total number
of molecules. For Λi j with i 6= j, i.e. correlations between unlike molecules, we can
write

Λi j =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
N j

∑
k=1

vk, j(t + t ′)

〉

≈
NiN j

3N

∫
∞

0
dt ′
〈
v1,i(t) · v1, j(t + t ′)

〉
= Nxix jCi j. (3.8)

By inserting Eqs. (3.3) to (3.8) into Eq. (A.11) and setting x j = axi (a being a positive
constant), we take the limit xi→ 0. The resulting expression is:

Ðxk→1
i j =

CiiC j j

Ckk +Cx
, (3.9)

with

Cx = N
(
Ci j−Cik−C jk +C?

kk
)
. (3.10)

Eq. (3.9) clearly shows that Ðxk→1
i j is independent of the ratio a = x j/xi. This was

already suggested in the study by Kooijman and Taylor 20 years ago50, however in
that study no formal proof was provided. The fact that Ðxk→1

i j should be independent
of xi/x j suggests that Eqs. (2.15) and (2.16) violate Onsager’s reciprocal relations
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at infinite dilution. Note that all terms in Eq. (3.10) originate from velocity cross-
correlations, i.e. correlations of the velocities of different molecules. As the Onsager
coefficients Λi j are intensive properties, the terms NC?

kk, NCi j, NCik, and NC jk will
approach finite values when N→ ∞. A numerical confirmation of this is provided in
Ref.82. Therefore, the term Cx converges to a finite value when N → ∞. Weingärt-
ner83 used a similar method to study the diffusivities in binary systems. More dis-
cussion on the self- and cross-correlations (so-called distinct diffusion coefficients)
in binary systems can be found in Ref.83.

3.2.2 Obtaining a physically-based model for Ðxk→1
i j

In general, the self-diffusivity of component i in a medium can be computed from
Eq. (2.19)17. From Eqs. (3.3) and (2.19), it follows that

Cii = Di,self. (3.11)

Therefore, Eq. (3.9) can be written as

Ðxk→1
i j =

Dxk→1
i,self ·D

xk→1
j,self

Dxk→1
k,self +Cx

, (3.12)

in which the self-diffusivities Dxk→1
i,self , Dxk→1

j,self and Dxk→1
k,self are taken from a system in

which xk → 1. It is natural to assume that integrals of velocity auto-correlations are
much larger than integrals of velocity cross-correlations, suggesting that Cx is small
compared to Dk,self. Using this assumption, Eq. (3.12) then becomes

Ðxk→1
i j =

Dxk→1
i,self ·D

xk→1
j,self

Dxk→1
k,self

. (3.13)

This equation allows us to predict the ternary diffusivity Ðxk→1
i j based on binary dif-

fusion coefficients Ðxk→1
ik , Ðxk→1

jk and the pure component self-diffusivity Dk,self. In
the remainder of this chapter, we will verify the predictions of Eqs. (3.12) and (3.13)
using MD simulations. It is worthwhile to note that Eq. (3.13) reduces to the KT

model (Eq. (2.14)) in the case that Dk,self =
√

Ðxk→1
ik Ðxk→1

jk .



MULTICOMPONENT MAXWELL-STEFAN DIFFUSIVITIES AT INFINITE . . . 37

3.3 Details of Molecular Dynamics simulations

The predictions of Eqs. (3.12) and (3.13) are tested for the following ternary systems:
(1) a simple system in which only repulsive interactions are considered; here particles
interact with a WCA potential81. The three components only differ in their molar
mass; (2) the system n-hexane - cyclohexane - toluene in which particles interact
with LJ potentials; (3) the system ethanol - methanol - water in which both LJ and
electrostatic interactions are considered. For all systems, diffusivities were obtained
from MD simulations in the NVE ensemble (constant number of particles, constant
total energy and constant volume). Self- and MS diffusivities are computed using
Eqs. (2.21) and (2.19). The details of extracting correlation functions and mean-
squared displacements from the MD trajectories are described in Refs.17;33;75. Errors
of the computed diffusivities are calculated by performing at least 5 independent MD
simulations for each system (i.e. simulations using different initial positions of the
molecules) and analyzing their differences.

3.3.1 WCA system

Simulations were carried out in a system containing 400 particles that interact with a
WCA potential81. The WCA potential is constructed by truncating and shifting the LJ
potential at 21/6σ . A linked-cell algorithm is applied to improve the efficiency17. For
convenience, we express all quantities in reduced units17 by setting the LJ parameters
σ and ε as units for length and energy. The mass of the lightest component is set as
unit of mass, i.e. M1 = 1. We investigate the influence of the mass of the solvent
molecules (here: M3) and the total number density ρ .

3.3.2 n-hexane - cyclohexane - toluene

The united-atom model is used in which CHx groups are considered as single interac-
tion sites. For n-hexane and cyclohexane, the SHAKE algorithm is used to constrain
the distance between two neighboring atoms84. Bond bending and torsion poten-
tials describe the interaction between three and four consecutive atoms, respectively.
Toluene is treated as a rigid molecule. The non-bonded interactions are described by
LJ potentials. The Lorentz-Berthelot mixing rule is applied to obtain the LJ param-
eters for the interaction of unlike atoms18. LJ interactions are truncated and shifted
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at 12 Å. The equations of motion are integrated using the velocity Verlet algorithm
with a time step of 1 fs. The simulations were performed at a total energy and density
corresponding to a pressure of 1 atm and a temperature of 298 K. The force field
parameters for this system are listed in Table 2.1.

3.3.3 Ethanol - methanol - water

In the ethanol-methanol-water system, intermolecular interactions are described by
LJ and electrostatic interactions with parameters listed in Table 3.1. LJ interactions
are truncated and shifted at 12 Å. Electrostatic interactions are handled by the Ewald
summation using a relative precision85 of 10−4. Ethanol and methanol are described
using TraPPE-UA model86 in which the CHx groups are considered as united atoms.
A flexible simple point-charge (SPC-FW) model is used to describe water87. The
simulations were performed at a total energy and density corresponding to a pressure
of 1 atm. and a temperature of 298 K.

3.4 Results and discussion

3.4.1 WCA system

In Table 3.2, a comparison is made between the MS diffusivities obtained from MD
simulations and the predictions from Eqs. (3.12) and (3.13). Ternary mixtures in
which particles interact using a WCA potential are considered. The components only
differ in their masses and we consider the case that components 1 and 2 are diluted in
component 3. We refer to the latter component as the solvent. Eqs. (3.12) and (3.13)
are parametrized using the computed self-diffusivities and velocity cross-correlation
functions which are listed in Tables C.1 and C.2 of appendix C. The influence of
the total number density (ρ), the mass of solvent molecules (M3) and the molar ratio
of the diluted components (x1/x2) on Ð12 are studied. All reported quantities are
listed in reduced units. The molecular mass of component 1 was used as unit of mass
(M1 = 1).

As discussed earlier, Ðxk→1
i j is well defined so it should be independent of the

ratio xi/x j in the limit of infinite dilution. The simulation results of Table 3.2 show
that indeed Ðxk→1

i j does not depend on xi/x j within the accuracy of the simulations.
For all conditions, Eqs. (3.12) and (3.13) result in accurate predictions. This result
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Figure 3.1: Computed MS diffusivities for a ternary mixture in which particles interact with
a WCA potential. We consider the case that components 1 and 2 are diluted in component 3.
The MS diffusivity Ð12 is plotted as a function of the mass of component 3 (M3) for different
number densities ρ . All quantities are reported in reduced units. Details of MD simulations:
total number of molecules = 400; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T =2. The statistical
errors of the computed diffusivities are smaller than the symbol sizes.

implies that velocity cross-correlations play a minor role in a WCA system, which
is conformed by the computed values for the coefficients Ci j (see Table C.2 of ap-
pendix C).

For densities ρ ranging from 0.1 to 0.8, as expected, the MS diffusivity Ð12 de-
creases with increasing number density ρ . At a constant ρ , Figure 3.1 and Table
3.2 show that for sufficiently low number density ρ the diffusivity Ðxk→1

i j strongly
increases with increasing mass of the solvent (M3). This observation is well captured
by Eq. (3.13): increasing the mass of the solvent molecules k reduces the mobility of
molecules of component k leading to a lower self-diffusivity of the solvent molecules
and therefore a larger Ð12. At the same time, at low ρ , a large free space is avail-
able for diffusion and therefore the self-diffusion of components i and j is not much
affected by the mass of solvent molecules k. This is clearly shown in Table C.1 of
appendix C. According to Eq. (3.13), a strong increase of Ðxk→1

i j is expected with
increasing molar mass of component k. In the limit when the mass of the solvent
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molecules becomes infinitely large, the solvent can be considered as an immobile
medium. This situation corresponds to the diffusion of guest molecules of type i and
j in a porous solid (e.g. zeolites). For the diffusion of small guest molecules in an
immobile zeolite framework, it was observed earlier that the MS diffusivity describ-
ing the interactions between two adsorbed components is indeed infinitely large27;88.
Our results and Eq. (3.13) may provide a clear explanation for this observation from
simulations.

In Table 3.3, predictions for Ðx3→1
12 are compared with MD simulations. The

WK, KT, VKB, DKB and RS models as well as Eq. (3.13) are parametrized using
MS diffusivity of binary mixtures. This binary diffusion data is listed in Table C.3 of
appendix C. Eqs. (3.12) and (3.13) always result in excellent predictions at densities
ρ = 0.2 and ρ = 0.5, for any mass of the solvent molecules. In sharp contrast to this,
the quality of the predictions of the empirical WK, KT, VKB, DKB and RS models
strongly depend on the density and the value of M3. For each of these models (WK,
KT, VKB, DKB, RS), it is always possible to choose a combination of the density ρ

and the mass of the solvent molecules (M3) such that the model prediction completely
fails. As this is not the case for Eq. (3.13), we feel that this model equation should be
preferentially used for predictions of Ðxk→1

i j .

3.4.2 n-hexane - cyclohexane - toluene

The computed and predicted MS diffusivities using Eqs. (3.12) and (3.13) in the n-
hexane - cyclohexane - toluene system are shown in Table 3.4. Self-diffusivities in
ternary mixtures are used as input for Eqs. (3.12) and (3.13). Using data from binary
systems in these equations lead to identical results for Ðxk→1

i j . Part of the data is
taken from Table C.4 of appendix C. We observe that Eq. (3.12) accurately predicts
Ðxk→1

i j while Eq. (3.13) provides very reasonable approximations. The reason for
this is that in Eq. (3.13) velocity cross-correlations are neglected. Although these
velocity cross-correlations (represented by the term Cx) are smaller than the velocity
auto-correlations, there is still a non-negligible contribution to Ðxk→1

i j . Values for
the velocity auto-correlations and velocity cross-correlation functions are provided
in Table C.5 of appendix C. As shown in Ref.33, the predictions of Ðxk→1

i j using the
WK, KT, VKB, DKB and RS models result in average deviations of 8-43% from
the computed Ðxk→1

i j for this system. We can therefore conclude that for this system,
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Eq. (3.13) is equally accurate as the best empirical model prediction from the set
WK, KT, VBK, DKB, RS, while also providing a clear physical interpretation of the
observed deviations.

3.4.3 Ethanol - methanol - water

Table 3.5 shows the computed MS diffusivities, as well as the predictions using
Eqs. (3.12) and (3.13) for the ethanol - methanol - water system. Self-diffusivities
as well as velocity cross-correlations as used in Eqs. (3.12) and (3.13) are shown in
Tables C.6 and C.7 of appendix C. It is clear that Eq. (3.12) perfectly agrees with
the results from MD simulations. This shows that this equation captures the cor-
rect physics of the problem and should form the basis for the development of further
predictive models.

However, Eq. (3.13) significantly underestimates the MS diffusivity Ðxk→1
i j . Again,

the reason for this is that in Eq. (3.13) velocity cross-correlations are neglected. In
this system, these cross-correlations are particularly strong as there is a strong col-
lective motion of molecules due to the formation of networks of hydrogen bonds.
In Table 3.5, the predictions of Ðxk→1

i j using various predictive models are compared
with the results from MD simulations. The WK, KT, VKB, DKB and RS models are
parametrized using MS diffusivity in binary mixtures. This binary diffusion data is
listed in Table C.8 of appendix C. In the ethanol-methanol-water system, the WK,
KT, VKB, DKB and RS models also fail to predict Ðxk→1

i j , leading to similar devi-
ations from MD data as Eq. (3.13). A better model from predicting Ðxk→1

i j could
be obtained by using a model for the velocity cross-correlations represented by the
term Cx in Eq. (3.12). Unfortunately, to the best of our knowledge such a model is
currently not available.

3.5 Conclusions

In this chapter, we investigated the MS diffusivity Ðxk→1
i j which describes the fric-

tion of components i and j infinitely diluted in component k. Neither experiments
nor simulations are well suited to obtain this quantity due to large uncertainties in
experiments and extensive CPU-time requirements in simulations. Several empirical
models are available from literature for estimating Ðxk→1

i j . All of these are lacking a
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sound theoretical basis. We derived a new model for Ðxk→1
i j requiring easily obtain-

able self-diffusivities (Eq. (3.13)). In sharp contrast to other models (Eqs. (2.13) to
(2.17)), our model does have a sound physical background. The model is tested for
the following ternary systems: (1) a simple system in which only repulsive interac-
tions are considered; particles interact using a WCA potential. The three components
only differ in their molar mass; (2) the n-hexane - cyclohexane - toluene system in
which particles interact using LJ potentials; (3) the ethanol-methanol-water system
in which both LJ and electrostatic interactions are considered. Our results show that:
(1) in all tested systems, Eq. (3.12) perfectly predicts the MS diffusivity at infinite
dilution. It is important to note that Eq. (3.12) requires knowledge on velocity cross-
correlations. At present, no analytical or empirical methods are available to estimate
these velocity cross-correlations and one has to rely on molecular simulation; (2) for
the WCA system, the predictions of Eq. (3.13) are superior to the WK, KT, VBK,
DKB and RS models; (3) Eq. (3.13) may provide an explanation for the observation
that for diffusion of guest molecules in zeolites, the MS diffusivity Ði j describing
the friction between guest molecules of different type (i and j) is usually infinitely
large; (4) for systems with weak attractions, i.e. the n-hexane - cyclohexane - toluene
system, Eq. (3.13) leads to predictions that are equally accurate as the best model
prediction from the set WK, KT, VBK, DKB, RS. This is due to the fact that velocity
cross-correlations are relatively small for these systems. (5) in the ethanol-methanol-
water system, Eq. (3.13) significantly underestimates the MS diffusivity Ðxk→1

i j as
it neglects velocity cross-correlations. The rigorous derivation of Eq. (3.13) allows
the identification of the physical cause of its failure which was not possible for the
previous empirical models. The other predictive models fail in a similar way. This
result suggests that the velocity cross-correlations play a significant role when polar
compounds are involved and that it is important to correctly capture the collective
motion of molecules. (6) the applicability of the WK, KT, VKB, DKB and RS mod-
els is unpredictable and strongly depends on the system under investigation. Large
deviations are expected when using these models to estimate Ðxk→1

i j .
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Table 3.1: LJ parameters and partial charges used for the ethanol-methanol-water system.
CHx groups are treated as united atoms. The LJ interactions between unlike united atoms
are calculated using the Lorentz-Berthelot mixing rules18. The LJ interactions are truncated
and shifted at 12 Å. Electrostatics are handled using the Ewald summation17. The force field
parameters are taken from Refs.86;87.

pseudo-atom σ /[Å] ε/kB [K] q/e
CHx-O-H 3.02 93 -0.700
O-H - - +0.435
CH3-OH 3.75 98 +0.265
CH3-CHx 3.75 108 -
CHx-CH2-OH 3.95 51 +0.265
O (in H2O) 3.16 78 -0.820
H (in H2O) - - +0.410
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Table 3.2: Computed MS diffusivities compared to the predictions of Eqs. (3.12) and (3.13)
for ternary mixtures in which particles interact with a WCA potential. Eqs. (3.12) and (3.13)
are parametrized using self-diffusivities and velocity cross-correlations. Details of the self-
diffusivities and velocity cross-correlations are listed in Tables C.1 and C.2 of appendix C.
Here, we consider the case that components 1 and 2 are diluted in component 3. In all cases,
the total number of molecules is 400. All reported quantities are in reduced units. The
statistical errors of the computed diffusivities are less than 3%.

MS Diffusivity Ð12

MD Prediction
simulation Eq. (3.12) ADa Eq. (3.13) ADa

Number Density b

0.1 3.294 3.212 2% 3.341 1%
0.2 1.411 1.401 1% 1.441 2%
0.5 0.318 0.310 2% 0.315 1%
0.7 0.144 0.145 1% 0.149 3%
0.8 0.094 0.092 2% 0.097 4%

Mass of Species 3 c 5 1.411 1.401 1% 1.441 2%
50 2.692 2.686 0% 2.560 5%

ρ = 0.2
100 3.348 3.344 0% 3.288 2%
500 6.238 6.237 0% 6.619 6%

2500 17.609 17.609 0% 18.923 7%
5000 41.794 41.792 0% 44.051 5%

Mass of Species 3 d 5 0.318 0.310 2% 0.315 1%
10 0.270 0.267 1% 0.275 2%

ρ = 0.5
50 0.218 0.217 0% 0.227 5%

100 0.172 0.172 0% 0.161 7%

Ratio of x1/x2
e 1/3 0.318 0.312 2% 0.312 2%

1 0.318 0.310 2% 0.315 1%
with x3 = 0.95 3 0.318 0.312 2% 0.326 2%

Ratio of x1/x2
f 1/3 0.318 0.316 1% 0.320 1%

1 0.318 0.320 1% 0.325 2%
with x3 = 0.97 3 0.319 0.322 1% 0.321 1%

a absolute difference normalized with corresponding value from MD simulations
b M1 = 1; M2 = 1.5; M3 = 5; x1/x2 = 1; x3 = 0.95; T = 2
c ρ = 0.2; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T = 2
d ρ = 0.5; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T = 2
e ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x3 = 0.95; T = 2
f ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x3 = 0.97; T = 2
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Table 3.3: Computed and predicted MS diffusivities in ternary mixtures in which particles
interact with a WCA potential. We consider the case that components 1 and 2 are diluted
in component 3. Eqs. (3.12) and (3.13) are parametrized using self-diffusivities and velocity
cross-correlations. Details of the self-diffusivities and velocity cross-correlations are listed in
Tables C.1 and C.2 of appendix C. The WK, KT, VKB, DKB, RS models are parametrized
using binary diffusivities obtained from MD simulations, see Table C.3 of appendix C. All
reported quantities are in reduced units. The statistical errors of the computed diffusivities
are less than 3%.

MS diffusivity Ðx3→1
12

Eq. (3.12) Eq. (3.13) WK KT VKB DKB RS
Prediction 1.401 1.441 1.296 0.952 0.952 0.952 1.111
MD b 1.411 1.411 1.411 1.411 1.411 1.411 1.411
AD a 1% 2% 8% 32% 32% 32% 21%
Prediction 0.310 0.315 0.390 0.248 0.248 0.248 0.311
MD c 0.318 0.318 0.318 0.318 0.318 0.318 0.318
AD a 2% 1% 23% 22% 22% 22% 2%
Prediction 3.344 3.288 1.296 0.682 0.682 0.683 0.940
MD d 3.348 3.348 3.348 3.348 3.348 3.348 3.348
AD a 0% 2% 61% 80% 80% 80% 72%
Prediction 0.172 0.161 0.389 0.085 0.085 0.086 0.182
MD e 0.172 0.172 0.172 0.172 0.172 0.172 0.172
AD a 0% 7% 126% 50% 50% 50% 6%

a absolute difference normalized with corresponding value from MD simulations
b ρ = 0.2; M1 = 1; M2 = 1.5; M3 = 5; x1/x2 = 1; x3 = 0.95; T = 2
c ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x1/x2 = 1; x3 = 0.95; T = 2
d ρ = 0.2; M1 = 1; M2 = 1.5; M3 = 100; x1/x2 = 1; x3 = 0.95; T = 2
e ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 100; x1/x2 = 1; x3 = 0.95; T = 2
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Table 3.4: Computed and predicted MS diffusivities in ternary mixtures of n-hexane - cyclo-
hexane - toluene at 298 K, 1 atm. “1”: n-hexane; “2”: cyclohexane; “3”: toluene. Eqs. (3.12)
and (3.13) are parametrized using self-diffusivities and velocity cross-correlations. Details
of the self-diffusivities and velocity cross-correlations are listed in Tables C.4 and C.5 of
appendix C. The statistical errors of the computed diffusivities are less than 5%.

MS Diffusivity/(10−9 m2s−1)
MD simulation Prediction of Ðxk→1

i j
Ð23 Eq. (3.12) ADa Eq. (3.13) ADa

x1→ 1b 4.07 4.12 1% 3.78 7%
Ð13 Eq. (3.12) ADa Eq. (3.13) ADa

x2→ 1c 2.19 2.21 1% 2.69 23%
Ð12 Eq. (3.12) ADa Eq. (3.13) ADa

x3→ 1d 2.99 2.93 2% 2.82 6%

a absolute difference normalized with corresponding value from MD simulations
b 598 n-hexane molecules; 1 cyclohexane molecule; 1 toluene molecule
c 1 n-hexane molecule; 598 cyclohexane molecules; 1 toluene molecule
d 1 n-hexane molecule; 1 cyclohexane molecule; 598 toluene molecules
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Table 3.5: MD simulation results and predictions of MS diffusivities Ðxk→1
i j in ethanol-

methanol-water mixtures at 298K, 1 atm. 1: ethanol; 2: methanol; 3: water. Eqs. (3.12)
and (3.13) are parametrized using self-diffusivities and velocity cross-correlations. Details
of the self-diffusivities and velocity cross-correlations are listed in Tables C.6 and C.7 of ap-
pendix C. The WK, KT, VKB, DKB, RS models are parametrized using binary simulation
results shown in Table C.8 of appendix C. The statistical errors of the computed diffusivities
are less than 5%.

Ðxk→1
i j /(10−9 m2s−1)

Eq. (3.12) Eq. (3.13) WK KT VKB DKB RS
Prediction of Ð23 2.68 1.57 2.07 1.25 1.25 1.32 1.61
MD b 2.68 2.68 2.68 2.68 2.68 2.68 2.68
AD a 0% 41% 23% 53% 53% 51% 40%
Prediction of Ð13 3.17 2.07 1.20 2.04 2.04 2.06 1.56
MD c 3.24 3.24 3.24 3.24 3.24 3.24 3.24
AD a 2% 36% 63% 37% 37% 37% 52%
Prediction of Ð12 5.01 1.06 1.78 1.72 1.72 1.73 1.75
MD d 4.76 4.76 4.76 4.76 4.76 4.76 4.76
AD a 5% 78% 63% 64% 64% 64% 63%

a absolute difference normalized with corresponding result from MD simulations
b 168 ethanol molecules; 1 methanol molecule; 1 water molecule
c 1 ethanol molecule; 248 methanol molecules; 1 water molecule
d 1 ethanol molecule; 1 methanol molecule; 598 water molecules
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4.1 Introduction

For the description of multicomponent mass transport in gases and liquids, the MS
theory is commonly used in chemical engineering as it provides a convenient descrip-
tion of diffusion in n-component systems1. The key point of this approach is that the
driving force for diffusion of component i (i.e. the gradient in chemical potential ∇µi)
is balanced by a frictional force, resulting in the following transport equation

− 1
RT

∇µi =
n

∑
j=1, j 6=i

x j(ui−u j)

Ði j
. (4.1)

The frictional force between components i and j is proportional to the velocity dif-
ference (ui− u j). R and T represent the gas constant and absolute temperature re-
spectively. x j is the mole fraction of component j. The MS diffusivity Ði j acts as
an inverse friction coefficient describing the magnitude of the friction between com-
ponents i and j. It is not possible to directly obtain the MS diffusivities Ði j from
experiments7;8;80, and obtaining the MS diffusivities from MD simulations requires
extensive large amounts of of CPU time33. Predictive models for MS diffusivities
based on easily measurable quantities are therefore highly desired. The prediction of
MS diffusivities usually follows a two-step approach: (1) prediction of MS diffusiv-
ities Ðxi→0

i j in binary systems at infinite dilution; and (2) estimation of MS diffusion
coefficients Ði j in concentrated mixtures using mixing rules. For the first step, a large
number of models are available with the Wilke-Chang equation89 still being the most
popular (for a critical review we refer the reader to Ref.2). In this work, we focus on
the second step.

For the estimation of MS diffusion coefficients of concentrated mixtures, empir-
ical models are typically employed interpolating the diffusion coefficients at infinite
dilution Ðxi→0

i j . The logarithmic interpolation suggested by Vignes52 is typically rec-
ommended1;2. The Vignes equation has been generalized to multicomponent mix-
tures as follows24

Ði j = (Ðxi→1
i j )xi(Ðx j→1

i j )x j
n

∏
k=1,k 6=i, j

(Ðxk→1
i j )xk . (4.2)

The generalized Vignes equation requires Ðxk→1
i j which describes the friction between
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components i and j when both are diluted in component k as explained earlier in
chapters 2 and 3. This quantity is not directly accessible in experiments7. Sev-
eral predictive models have been proposed to estimate Ðxk→1

i j from binary diffusion
data23;24;50;51;67. However, all of these models are empirical and lack a sound theo-
retical basis. In chapter 3, we derived a physically-based model for estimating this
quantity using the self-diffusivities obtained from pure- and binary mixtures at infi-
nite dilution34

Ðxk→1
i j =

Dxk→1
i,self Dxk→1

j,self

Dxk→1
k,self

=
Ðxk→1

ik Ðxk→1
jk

Dxk→1
k,self

. (4.3)

In the remainder of this chapter, we will refer to this as the LBV equation (taken
from the author’s names). At infinite dilution, the self-diffusion coefficient Dxk→1

i,self

is equal to the MS diffusivity Ðxk→1
ik

2. The central assumption in Eq. (4.3) is that
velocity correlations between different molecules are neglected. Eq. (4.3) leads to
superior and more robust predictions compared to the previous empirical models34.
By inserting Eq. (4.3) into Eq. (4.2), we obtain the so-called Vignes-LBV equation

Ði j = (Dxi→1
j,self)

xi(Dx j→1
i,self )

x j
n

∏
k=1,k 6=i, j

(
Dxk→1

i,self Dxk→1
j,self

Dxk→1
k,self

)xk

. (4.4)

This physically-based multicomponent form of the Vignes equation requires the pure
component self-diffusivities Dxk→1

k,self as additional information. For this property, there
are also predictive models available2;23. The Vignes-LBV equation thus allows the
prediction of multicomponent MS diffusion coefficients based on pure component
data and binary mixture data at infinite dilution.

The popularity of the generalized Vignes equation (Eq. (4.2)) has, however, re-
cently been challenged by a number of groups working on diffusion using molecular
simulation23;25;43;45–47;90. Their simulations results show that the Darken equation54

is superior to the Vignes equation. In the Darken equation, the MS diffusion coef-
ficient Ði j is estimated from the self-diffusion coefficients of the two components
Di,self and D j,self in the binary mixture54

Ði j = xiD j,self + x jDi,self. (4.5)

While often regarded as an empirical mixing rule, the Darken equation can be
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rigorously derived as limiting case from statistical-mechanical theory91;92, see ap-
pendix B for an alternative derivation. Despite this theoretical advantage and the
support from simulations, the Darken equation is generally seen as “of little practical
use due to the fact that it relies on the self-diffusion coefficients in the mixture, which
are rarely available.”46 In addition, the Darken equation had been only formulated
for binary mixtures.

To overcome these limitations, Krishna and van Baten23 recently proposed a gen-
eralized Darken equation for describing the concentration dependence of MS diffu-
sivities in multicomponent mixtures based on molecular simulations of liquid mix-
tures of linear alkanes,

Ði j =
xi

xi + x j
D j,self +

x j

xi + x j
Di,self. (4.6)

The authors suggested to estimate the self-diffusivities Di,self and D j,self in Eq. (4.6)
as mass-weighted averages of the values at infinite dilution

Di,self =
n

∑
j=1

w jD
w j→1
i,self . (4.7)

Here, w j is mass fraction of component j. The generalized Darken equation (Eqs.
(4.6) and (4.7)) thus allows to predict MS diffusivities using the same information
as for the Vignes-LBV equation: the diffusion coefficient in the binary mixtures at
infinite dilution and the pure component self-diffusivities. Note that in the limit of
infinite dilution, both are equal, i.e. Ðxi→1

i j = Dxi→1
j,self .

While retaining the Darken equation (Eq. (4.5)) as binary limit, both the general-
ization of the Darken equation (Eq. (4.6)) and the model for the self-diffusivity (Eq.
(4.7)) are empirical in nature. In particular, it is important to note that in systems
with three or more components, the limit where both xi→ 0 and x j → 0 is not well-
defined by Eq. (4.6)7, see also chapter 3. Furthermore, Eq. (4.6) suggests that the
MS diffusivities of an infinitely-diluted component in a mixture should all become
equal, i.e., Ðxi→0

i j = Ðxi→0
ik for all j,k 6= i. This assumption seems unphysical and is

in fact not supported by the authors’ own data for linear alkanes23.
In this chapter, we derive a sound extension of the Darken equation to multicom-

ponent mixtures. In addition, a physically-motivated model for the estimation of the
required self-diffusivities is provided. The resulting predictive Darken-LBV equation
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for multicomponent mixtures is validated using molecular simulations in ternary and
quaternary mixtures. The remainder of this chapter is organized as follows. In section
4.2, the predictive Darken-LBV equation is derived based on linear response theory
and the Onsager relations. In section 4.3, we introduce the details concerning the MD
simulations. In section 4.4, we test our model for ternary and quaternary systems in
which purely repulsive pair interactions are used, i.e. particles interact using a WCA
potential81. We also test our model for the ternary system n-hexane - cyclohexane -
toluene. Our conclusions are summarized in section 4.5. It is shown that the predic-
tive Darken-LBV model is clearly superior to the generalized Darken equation and
it even outperforms the Vignes-LBV equation for the prediction of multicomponent
MS diffusion coefficients.

4.2 The predictive Darken-LBV equation

MS diffusivities Ði j can be obtained from the Onsager coefficients Λi j, i.e. Eq. (2.21),
see section 2.3 and appendix A. For the terms Λii, we can write34

Λii =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
Ni

∑
g=1

vg,i(t + t ′)

〉

=
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) · vl,i(t + t ′)

〉
+ (4.8)

1
3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

Ni

∑
g=1,g6=l

vl,i(t) · vg,i(t + t ′)

〉
≈ xiCii + x2

i NC?
ii, (4.9)

in which Cii and C?
ii account for self- and cross-correlations of the velocities of

molecules of component i, respectively. We assumed here that N2
i −Ni ≈ N2

i . In
general, the self-diffusivity of component i in a medium can be computed from a
Green-Kubo relation. From Eqs. (4.9) and (2.19), it follows that

Cii = Di,self. (4.10)
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For Λi j with i 6= j, i.e. the correlations between unlike molecules, we can write34

Λi j =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
N j

∑
k=1

vk, j(t + t ′)

〉

≈
NiN j

3N

∫
∞

0
dt ′
〈
v1,i(t) · v1, j(t + t ′)

〉
= Nxix jCi j. (4.11)

It has been shown that in systems in which particles are not or weakly associated (e.g.
the system in which particles are interacting with a WCA potential, or the n-hexane -
cyclohexane - toluene system), the terms involving integrals of these velocity cross-
correlation functions, Ci j,i6= j and C?

ii, are small at infinite dilution compared to the
terms involving auto-correlation functions (Cii), see chapter 3. For ideal-diffusing
mixtures, we assume that this is also the case at finite concentrations. As shown in
appendix B, this approach leads to a multicomponent Darken-like equation for an
n-component system:

Ði j =
Di,selfD j,self

Dmix
, (4.12)

with Dmix defined as
1

Dmix
=

n

∑
i=1

xi

Di,self
. (4.13)

We will refer to Eqs. (4.12) and (4.13) as the multicomponent Darken equation. For
binary systems (n = 2), the multicomponent Darken equation reduces to the well-
known Darken equation (Eq. (4.5))23;90;93;94. For ternary systems (n = 3), the multi-
component Darken equation reduces to the Cooper model93;95. To demonstrate this
correspondence, the derivation of the binary Darken equation and the ternary Cooper
model is presented using the same approach in appendix B. It is important to note
that for a ternary system at infinite dilution, Eqs. (4.12) and (4.13) directly result in
Eq. (4.3).

As noted above, the applicability of the Darken equation has been suffering from
the fact that it requires the self-diffusivities of all components in the mixtures. Com-
paring Eqs. (4.3), (4.12) and (4.13) suggests that the quantity Dmix describes the
effective diffusivity of the medium. Its mixing rule (Eq. (4.13)) motivates the fol-
lowing equation to estimate the self-diffusivity of component i in a multicomponent
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system
1

Di,self
=

n

∑
j=1

x j

Dx j→1
i,self

. (4.14)

We thus model the self-diffusivity of species i in the mixture as the inverse mole-
fraction weighted sum of its pure component value and its values at infinite dilution.
Note that in the limit xi → 0, Eq. (4.14) reduces to Eq. (2.28). Therefore, in the
limit of infinite dilution Eq. (4.14) is exact. We refer to the combined models of the
multicomponent Darken equation (Eqs. (4.12) and (4.13)) and the predictive model
for the self-diffusivities (Eq. (4.14)) as the predictive Darken-LBV equation. MD
simulations are used to generate benchmark values. Comparisons are made between
our model and existing models.

4.3 Molecular Dynamics simulation

The predictive models for Ði j and Di,self described in sections 4.1 and 4.2 are tested
for two systems: (1) systems in which only repulsive pair interactions are consid-
ered i.e. particles interact with a WCA potential81; (2) the ternary system n-hexane
- cyclohexane - toluene in which united atoms interact with LJ potentials. Errors in
computed diffusivities are calculated by performing at least 10 independent MD sim-
ulations for each system and analyzing their differences. Using 10 simulations with
different initial positions of the molecules allows us to provide a better estimate of
the error in the average values of the diffusivities.

4.3.1 WCA system

Both ternary and quaternary mixtures are considered. All components only differ in
their molar mass. Diffusivities were obtained from MD simulations in the micro-
canonical (NVE) ensemble. Self- and MS diffusivities are computed using equations
provided in appendix A. An order-n algorithm was used to compute correlation func-
tions17;75. All simulations were carried out in a system containing N = 400 particles.
The WCA potential is constructed by truncating and shifting the LJ potential at 21/6σ .
A linked-cell algorithm is applied to improve the efficiency17. For convenience, we
express all quantities in reduced units by setting the LJ parameters σ and ε as units
for length and energy17. The mass of the lightest component is set as unit of mass,
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i.e. M1 = 1. The equations of motion were integrated using a time step of ∆t = 0.001
(in reduced units) and typically 109 integration steps were needed.

4.3.2 n-hexane - cyclohexane - toluene

A united-atom model is used in which CHx groups are considered as single interac-
tion sites. For n-hexane and cyclohexane, the SHAKE algorithm is used to constrain
the bond length84. Bond bending and torsion potentials describe the interaction be-
tween three and four consecutive atoms, respectively. Toluene is modeled as a rigid
molecule. The LJ potentials describe the non-bonded interactions which are trun-
cated and shifted at 12 Å. The Lorentz-Berthelot mixing rules are applied to obtain
the LJ parameters for the interaction of unlike atoms18. The equations of motion
were integrated using the velocity Verlet algorithm with a time step of 2 fs. The
simulations were performed at a constant total energy and density corresponding to
a pressure of 1 atm. and a temperature of 298 K. All force field parameters for this
system are shown in Table 2.1. Typical simulations to extract MS diffusivities took
at least 50 ns.

4.4 Results and discussion

4.4.1 Ternary WCA systems

Figures 4.1, 4.2, 4.3 and 4.4 show a comparison between computed and predicted
self-diffusivities in ternary WCA systems. Two predictive models are considered:
(1) the mass-weighted average of the values at infinite dilution Eq. (4.7); and (2)
Eq. (4.14) as presented in this study. In Figures 4.1 and 4.2, the mole fraction of
component 1 is kept constant while the ratio x2/x3 varies. At ρ = 0.2 (typical den-
sity of a dense gas), an excellent agreement between computed self-diffusivities and
predictions using Eq. (4.14) was observed. Eq. (4.7) consistently underestimates
the self-diffusivities computed by MD. At a higher number density (ρ = 0.5, corre-
sponding to a typical liquid density), slightly larger deviations between the computed
self-diffusivities and predictions are observed as shown in Figure 4.2. Here, both
models underestimate the self-diffusivities. However, Eq. (4.14) leads to much better
predictions than Eq. (4.7) with an average absolute deviation of 5% instead of 18%.
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Figure 4.1: Computed and predicted self-diffusivities in ternary systems in which particles
interact with a WCA potential. Open symbols represent the computed self-diffusivities us-
ing MD. Solid lines represent the predictions using Eq. (4.14). Dashed lines represent the
predictions using Eq. (4.7). Triangles represent the self-diffusivity of component 1. Squares
represent the self-diffusivity of component 2. Circles represent the self-diffusivity of compo-
nent 3. (a) x1 = 0.2; (b) x1 = 0.4; (c) x1 = 0.6; (d) x1 = 0.8. Simulation details: ρ = 0.2; M1 =
1; M2 = 5; M3 = 10; T = 2; N = 400.
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Figure 4.2: Computed and predicted self-diffusivities in ternary systems in which particles
interact with a WCA potential. Open symbols represent the computed self-diffusivities us-
ing MD. Solid lines represent the predictions using Eq. (4.14). Dashed lines represent the
predictions using Eq. (4.7). Triangles represent the self-diffusivity of component 1. Squares
represent the self-diffusivity of component 2. Circles represent the self-diffusivity of compo-
nent 3. (a) x1 = 0.2; (b) x1 = 0.4; (c) x1 = 0.6; (d) x1 = 0.8. Simulation details: ρ = 0.5; M1 =
1; M2 = 5; M3 = 10; T = 2; N = 400.
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Figure 4.3: Computed and predicted self-diffusivities in ternary systems in which particles
interact with a WCA potential. Open symbols represent the computed self-diffusivities us-
ing MD. Solid lines represent the predictions using Eq. (4.14). Dashed lines represent the
predictions using Eq. (4.7). Triangles represent the self-diffusivity of component 1. Squares
represent the self-diffusivity of component 2. Circles represent the self-diffusivity of com-
ponent 3. (a) x1 varies, x2/x3=1; (b) x2 varies, x1/x3=1; (c) x3 varies, x1/x2=1. Simulation
details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400.
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Figure 4.4: Computed and predicted self-diffusivities in ternary systems in which particles
interact with a WCA potential. Open symbols represent the computed self-diffusivities us-
ing MD. Solid lines represent the predictions using Eq. (4.14). Dashed lines represent the
predictions using Eq. (4.7). Triangles represent the self-diffusivity of component 1. Squares
represent the self-diffusivity of component 2. Circles represent the self-diffusivity of com-
ponent 3. (a) x1 varies, x2/x3=1; (b) x2 varies, x1/x3=1; (c) x3 varies, x1/x2=1. Simulation
details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400.
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Exactly the same trends were observed when keeping xi/x j constant and varying xk,
see Figures 4.3 and 4.4.

Tables D.1 and D.2 compare predicted MS diffusivities to computed MS diffu-
sivities using MD. The multicomponent Darken equation (Eqs. (4.12) and (4.13)) is
parametrized using data from MD simulations, while the Darken-LBV (Eqs. (4.12),
(4.13) and (4.14)), Vignes-LBV (Eq. (4.4)) and generalized Darken equations (Eqs.
(4.6) and (4.7)) are parametrized using pure-component and binary diffusion data
which are listed in Tables D.3 to D.4 of appendix D. Absolute differences between
the predictive models and the MD simulations are calculated and normalized with the
corresponding MD results. The averaged absolute difference is used to qualify the
various models.

At lower number densities (ρ = 0.2), the predictive Darken-LBV equation per-
forms equally well as the Vignes-LBV equation and leads to lower maximum devi-
ations (Table D.1). This suggests that the Darken-LBV model is more robust. The
performance of the generalized Darken equation is worse than the other predictive
models with average errors larger by a factor 2. The differences between multicom-
ponent Darken and Darken-LBV are small.

At higher number densities (ρ = 0.5), similar observations are found as seen for
lower densities, see Table D.2. The maximum deviation from MD data is always
obtained for the generalized Darken equation. In Figures 4.5 and 4.6, the comparison
is visualized for mixtures in which x1 varies and x2/x3 = 1 (results for mixtures in
which x2 is varied while x1/x3 = 1 as well as for mixtures in which x3 is varied while
x1/x2 = 1 are shown in Figures D.1, D.2, D.3 and D.4 of appendix D). The results
shown in Tables D.1 and D.2 as well as Figures 4.5 and 4.6 can be summarized
as follows: (1) Differences between the multicomponent Darken equation and the
Darken-LBV equation are small, as Eq. (4.14) accurately predicts self-diffusivities
of components in a mixture from pure component data; (2) the Darken-LBV equation
performs even slightly better than the Vignes-LBV equation, and much better than the
generalized Darken equation. The outperformance of the Vignes-LBV model by the
Darken-LBV model becomes especially clear from Figures 4.5 and 4.6, in particular
Figures 4.5b and 4.6c which allow for the clearest discrimination. It is important to
note that the accuracy of the Vignes-LBV equation (Eq. (4.4)) relies on an accurate
estimate of Ðxk→1

i j . It was previously shown that Eq. (4.3) provides the best prediction
for Ðxk→1

i j
34. With this model, the Darken-LBV and the Vignes-LBV models are in
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fact identical in the corners of the ternary diagram, where the mole fraction of one
of the components approaches unity. Other predictive models for Ðxk→1

i j introduce
deviations ranging from 10-80%33. Therefore, much larger errors are expected when
combining the Vignes equation with other predictive models for Ðxk→1

i j . The reason
for the poor performance of the generalized Darken equation can be twofold: (1) the
quality of the generalized Darken equation itself; and (2) the quality of the predictive
model for self-diffusivities. We also used the computed self-diffusivities from MD at
the given compositions to parametrize the generalized Darken equation. In this way,
deviations introduced by the predicted self-diffusivities are avoided. Our results show
that this results in averaged absolute differences of 14-20% (see Figures 4.5 and 4.6
and Tables D.5 and D.6 of appendix D). These deviations are similar to the deviations
when Eq. (4.7) is used for predicting self-diffusivities in a mixture, suggesting that
the differences are not due to the choice of model for self-diffusivities but due to the
generalized Darken equation itself. As stated above, the model structure of Eq. (4.6)
suffers from inconsistencies at infinite dilution.

4.4.2 Quaternary WCA systems

In Table D.7 of appendix D, it is shown that self-diffusivities in quaternary systems
are very well predicted using Eq. (4.14), while the predictions using Eq. (4.7) show
large deviations from MD results. Tables D.8 and D.9 compare the computed and
predicted MS diffusivities in quaternary mixtures. The multicomponent Darken equa-
tion (Eq. (4.12)) provides reasonable predictions and again the Darken-LBV equa-
tion which requires only binary- and pure-component diffusivities performs equally
well. Also here the performance of the Vignes-LBV equation is quite good with
the present choice for the terms Ðxk→1

i j . These models retain their prediction quality
from the ternary case. The performance of the generalized Darken equation is again
significantly worse with average and maximum deviations larger by at least a factor
2.

4.4.3 n-hexane - cyclohexane - toluene

In Table D.10, computed and predicted self-diffusivities in the n-hexane - cyclohex-
ane - toluene system at a pressure of 1 atm and a temperature of 298 K are listed. A
detailed comparison between simulations and experiments for this mixture is given
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Figure 4.5: Computed and predicted MS diffusivities in ternary systems in which particles
interact with a WCA potential. Triangles represent computed MS diffusivities using MD.
Solid lines represent predictions using the Vignes-LBV equation (Eq. (4.4)). Dashed lines
represent predictions using the generalized Darken equation (Eqs. (4.6)+(4.7)). Squares rep-
resent predictions using the generalized Darken equation with the self-diffusivities obtained
from MD simulation (Eq. (4.6)+MD). Dotted lines represent predictions using the Darken-
LBV equation (Eqs. (4.12)+(4.14)). Circles represent predictions using the multicomponent
Darken equation with the self-diffusivities obtained from MD simulation (Eq. (4.12)+MD).
Simulation details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400, x2/x3 = 1.
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Figure 4.6: Computed and predicted MS diffusivities in ternary systems in which particles
interact with a WCA potential. Triangles represent computed MS diffusivities using MD.
Solid lines represent predictions using the Vignes-LBV equation (Eq. (4.4)). Dashed lines
represent predictions using the generalized Darken equation (Eqs. (4.6)+(4.7)). Squares rep-
resent predictions using the generalized Darken equation with the self-diffusivities obtained
from MD simulation (Eq. (4.6)+MD). Dotted lines represent predictions using the Darken-
LBV equation (Eqs. (4.12)+(4.14)). Circles represent predictions using the multicomponent
Darken equation with the self-diffusivities obtained from MD simulation (Eq. (4.12)+MD).
Simulation details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400, x2/x3 = 1.
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in chapter 2 showing that the simulations correctly capture the experimental behav-
ior. In this ternary system, the self-diffusivities are again much better predicted by
Eq. (4.14) than Eq. (4.7). Table D.11 compares the predicted MS diffusivities to
the computed MS diffusivities at same conditions. The pure and binary diffusion
coefficients were taken from chapter 2. We observe that using the multicomponent
Darken equation results in most accurate predictions of the MS diffusivities (average
deviations of 7%), requiring self-diffusivities at a given composition. It is therefore
very encouraging that the Darken-LBV performs equally well (average deviations of
9%), while the performance of the Vignes-LBV is similar but slightly worse (average
deviations of 11%). The performance of the generalized Darken equation is signif-
icantly worse (average deviations of 15%). This is especially reflected by the large
maximum deviations.

4.5 Conclusions

In this chapter, we derived a predictive Darken-LBV model for MS diffusivities in
multicomponent systems (Eqs. (4.12) and (4.13)). MS diffusivities can be expressed
as functions of easily obtainable self-diffusivities and the integrals of velocity corre-
lations between different molecules. Neglecting the latter terms results in the mul-
ticomponent Darken equation. By combining the multicomponent Darken equation
with a new predictive model for self-diffusivities in a mixture (4.14) we obtain the
so-called Darken-LBV model (Eqs. (4.12), (4.13) and (4.14)). We compared our
Darken-LBV equation to the Vignes-LBV model (Eq. (4.4)) and the generalized
Darken model (Eqs. (4.6) and (4.7)) for WCA systems and the ternary n-hexane - cy-
clohexane - toluene system. Our results show that the Darken-LBV equation provides
very good predictions for MS diffusivities and is superior compared to the other mod-
els. Since the Darken-LBV model is rigorously derived, it should also provide the
preferred framework to extensions for the prediction of diffusion in liquid mixtures.
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5.1 Introduction

Ionic liquids (ILs) are salts which have melting points below 100 ◦C. An enormous
number of different ILs can be prepared by a well-chosen selection of the cation and
anion pair96;97. They offer an alternative to common organic solvents, for example
for CO2 capture98–101. Several properties make ILs popular, like small vapor pres-
sure, thermal stability and the ability to dissolve a wide range of compounds102;103.
Imidazolium-based ILs as shown in Figure 5.1 are widely studied in both experi-
ments and computer simulations as these ILs are already used in practice and are
easy to synthesize96;97;103–105.

The study of diffusion in ILs receives increasing interest as diffusion restricts the
applicability of ILs in many processes. Self-diffusion of these systems was exten-
sively studied in the past. This quantity can be measured using Pulsed-Field Gradient
Nuclear Magnetic Resonance (PFG-NMR) spectroscopy. For instance, Lovell et al.
studied the dependence of self-diffusivities on concentration in 1-ethyl-3-methylimid
-azolium acetate and cellulose106. Iacob et al. measured self-diffusivities of 1-hexyl-
3-methylimidazolium hexafluorophosphate in silica membranes107. Bara et al. stud-
ied self-diffusivities of flue gases absorbed in imidazolium-based ILs and provided
guidelines for separating CO2 from flue gases using imidazolium-based ILs108. To
gain a molecular understanding of diffusion, MD simulations are often used. How-
ever, the nature of ILs implies strong electrostatic interactions which significantly
increases the computational cost for obtaining adequate sampling109. This becomes
even more severe for computing collective properties like transport diffusivities33;110.
While previous studies on diffusion in ILs focused on self-diffusivities111, the col-
lective (or mutual) diffusion coefficient is required to describe mass transport in
applications. Both experimental and simulation studies of mutual diffusion in ILs
have mostly been concentrated on the infinite dilution regime where mutual and self-
diffusivities become equal112–117. The concentration dependence of mutual diffusiv-
ities in systems with ILs has only been studied experimentally by Richter et al.118.
To the best of our knowledge, a molecular understanding of the concentration depen-
dence of MS diffusivities in ILs is still lacking. Mutual diffusion is conveniently de-
scribed using the MS theory. General interest in MS diffusivities increases as (1) they
usually depend less on concentration than Fick diffusivities; (2) the (electro)chemical
potential gradient is used as the driving force of diffusion. In a system containing n
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Figure 5.1: Schematic representation of the structure of Cnmim+ cations (here, n = 4),
DMSO and water. The atom labeling for the IL is as follows: NA:N, CR:C, CW:C, H4:H,
H5:H, CN3:CH3, CN2:CH2, CT2:CH2, CT3:CH3.

components, n(n− 1)/2 MS diffusivities are sufficient to describe mass transport
while (n− 1)2 Fick diffusivities are needed. The (n− 1)2 Fick diffusivities are not
independent; (3) In multicomponent systems, MS diffusivities can be predicted using
the MS diffusivities obtained from binary mixtures. Multicomponent Fick diffusiv-
ities are not related to their binary counterparts, which hinders the development of
predictive models for describing multicomponent mass transport. MS diffusion coef-
ficients cannot be directly accessed in experiments but need to be derived from Fick
diffusivities. In chapters 2, 3 and 4, we showed that MD simulations are a valuable
tool for developing and testing predictive models for MS diffusivities33;34.

In this chapter, MD simulations have been performed in binary mixtures with
1-alkyl-3-methylimidazolium chloride (CnmimCl, n = 2,4,8), DMSO (dimethyl sul-
foxide) and H2O. Our model is validated using experimental self-diffusivities. Self-
and MS diffusivities in various binary mixtures are computed. We find that: (1) self-
and MS diffusivities strongly decrease with increasing IL concentration; (2) addi-
tions of H2O or DMSO have a different influence on liquid structure: ILs stay in a
form of isolated ions in CnmimCl-H2O mixtures, however, ion pairs are preferred in
CnmimCl-DMSO systems; (3) velocity cross-correlations cannot be neglected, so the
predictions of Eq. (3.13) for Ðxk→1

i j do not work well.
This chapter is organized as follows. In section 5.2, we describe the procedure

of obtaining diffusion coefficients from MD simulations as well as the simulation
details. In section 5.3, we review several predictive models which are often used
for estimating the diffusion coefficients. The computed diffusivities and the quality
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of predictive models are analyzed in section 5.4. Our conclusions are addressed in
section 5.5.

5.2 Molecular Dynamics simulation

5.2.1 Obtaining diffusivities from MD simulation

Equilibrium MD simulations are used to determine self- and MS diffusivities. We
refer the reader to section 2.3 and appendix A for details on this.

5.2.2 Details of equilibrium MD simulation

To describe the interactions between atoms and molecules in the system, we used a
classical force field approximation for the total potential energy U ,

U = ∑
bonds

Kr(r− r0)
2 + ∑

angles
Kθ (θ −θ0)

2 + ∑
dihedrals

Kχ [1+ cos(nχ−δ )]

+∑
i< j

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
+∑

i< j

1
4πε0

qiq j

ri j
, (5.1)

in which Kr, Kθ and Kχ are energy parameters for bond-stretching, bond-bending
and dihedrals, respectively; εi j and σi j are the energy and size parameters of the LJ
potential, and qi is the partial charge of (united) atom i. We use the united-atom ap-
proach for ILs and DMSO. CHx groups are considered as single interaction centers
with their own effective interaction potentials. Bead types H4 and H5 (see Figure
5.1) in the imidazolium ring are not treated as united atoms as they are more active
and important for describing hydrogen bonding110. A flexible SPC model is used
to describe water87. In this work, the LJ potential is truncated and shifted at 12 Å.
The Lorentz-Berthelot mixing rules are applied to calculate the LJ parameters for
the interactions of unlike atoms18. Electrostatic interactions are handled by Ewald
summation using a relative precision85 of 10−5. Since the force fields for 1-alkyl-3-
methylimidazolium, chloride [Cnmim][Cl], DMSO and H2O were fitted at different
cut-off radii (see Refs.87;110;119), we fixed the cut-off radius for LJ interactions at rcut

= 12 Å and slightly adjusted the force field by keeping the size parameter σ constant
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and changing the energy parameter ε . We fit the force field to the experimental den-
sity at lower temperatures (5 K above the melting points) as it is important that the
simulations reproduce the experimental density33;34. The values of the force field pa-
rameters for non-bonded interactions are listed in Tables E.1 and E.2 of appendix E.
Pure component data at higher temperatures are well reproduced and comparable
with the experimental results as shown in Tables 5.1 and 5.2. Recently, Chen et al.
used this force field for ILs to compute the viscosity of BmimCl and its mixture
with water, acetonitrile and glucose120. Their results showed reasonable agreement
between simulations and experiments, i.e. the computed viscosity of ILs is 20-50%
larger than that obtained from experiments. Therefore, we can expect that our com-
puted diffusivities of ILs are lower than in experiments. It is important to note that we
are aiming to study the dependence of diffusivities on mixture composition instead
of expanding the database of diffusion coefficients of ILs. Therefore, we feel that the
force field applied in this work is sufficiently accurate for our purpose.

The simulations were carried out as follows: first, independent initial configura-
tions are generated and equilibrated using equilibrium MD simulations in the NpT en-
semble at the target temperature and pressure. The total number of molecules ranges
from 100 (pure ILs) to 600 (pure water). The Nosé-Hoover thermostat and barostat
are used with a time constants of 0.2 and 1 ps, respectively. Three dimensional pe-
riodic boundary conditions consistent with a cubic box were applied to obtain prop-
erties corresponding to bulk systems. A time step of 1 fs is used for integrating the
equation of motion. When the average density of the systems does not change with
time, we use the equilibrated system at this average density for computing the self-
and MS diffusivities in the microcanonical (NVE) ensemble. Simulations longer than
100 ns are often needed to obtain accurate diffusivities.

5.3 Predictive models for diffusion coefficients

5.3.1 Maxwell-Stefan diffusivities

The MS formulation uses (electro)chemical potential gradients as driving forces for
mass transport. For liquid mixtures at constant temperature and pressure, in the ab-
sence of external electric fields the MS equation equals21;62
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Table 5.1: Comparison of experimental and computed densities and self-diffusivities of
DMSO and H2O at 1 atm. The statistical errors of computed densities are less than 1%
and less than 3% for the computed self-diffusivities.

DMSO
T/K ρ/(g · cm−3) Dself/(10−9 m2 · s−1)

this work experiment Dthis work
self Dexp

self
298 1.090 1.096121 0.79 0.80122

303 1.082 1.091121 0.97 n.a.a

318 1.068 n.a. 1.30 1.07123

328 1.061 n.a. 1.40 1.26123

368 1.026 n.a. 2.38 n.a.
H2O

T/K ρ/(g · cm−3) Dself/(10−9 m2 · s−1)

this work experiment Dthis work
self Dexp

self
298 1.003 0.997124 3.00 2.49122

310 0.995 0.993125 3.70 3.07126

323 0.986 0.988125 4.69 3.95126

348 0.972 0.975125 6.12 6.08126

368 0.946 0.960125 8.40 n.a.

a not available.
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n−1

∑
j=1

Γi j∇x j =
n

∑
k=1
k 6=i

xiJk− xkJi

ct Ðik
, (5.2)

where Γi j is the thermodynamic factor. Ðik represent the MS diffusivity describing
the friction between components i and k. MD simulations can be used to directly
compute the MS diffusivities Ði j from local particle fluctuations as shown in section
5.2. It is important to note that MS diffusivities do depend on the concentration23. For
ordinary electrolyte solutions, the concentration dependence has usually been studied
from infinite dilution to the solubility limit. Convenient prediction models covering
the full concentration range are lacking. For mixtures of organic compounds, the
Vignes equation is often recommended to predict the concentration dependence of
MS diffusivities1;2. In a binary electrolyte solution, the generalized Vignes equation
becomes

Ð+− =
(

Ðx+→1
+−

)x+ (
Ðx−→1
+−

)x− (
Ðxk→1
+−

)xk
,

Ð+k =
(

Ðx+→1
+k

)x+ (
Ðx−→1
+k

)x− (
Ðxk→1
+k

)xk
,

Ð−k =
(

Ðx+→1
−k

)x+ (
Ðx−→1
−k

)x− (
Ðxk→1
−k

)xk
, (5.3)

in which the subscripts + and− represent the cation and anion of the IL respectively.
k represents a component carrying no net charge. It is important to note that Eq. (5.3)
is a valid mathematical operation even though it is physically impossible as it violates
electroneutrality i.e. Ðx+→1

i j and Ðx−→1
i j do not exist. To preserve electroneutrality, we

rewrite the Vignes equation as

Ð+− = (ÐxIL→1
+− )xIL(Ðxk→1

+− )xk ,

Ð+k = (ÐxIL→1
+k )xIL(Ðxk→1

+k )xk ,

Ð−k = (ÐxIL→1
−k )xIL(Ðxk→1

−k )xk , (5.4)

in which xIL is the number of IL molecules divided by the total number of molecules
in the system (IL + solvent). Therefore
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xIL + xk = 1. (5.5)

in which xk is the mole fraction of the uncharged component k.

5.3.2 Maxwell-Stefan diffusivities at infinite dilution

Eq. (5.4) requires the value of Ðxk→1
+− (or Ðxk→1

i j ) which describes the friction between
cation and anion when both are infinitely diluted in solvent k. This quantity is not
easily accessible in experiments as no direct measurement is possible7. In the past
decades, several empirical models were proposed for estimating the quantity Ðxk→1

i j .
However, all of them are lacking a sound theoretical basis23;24;50;51;67. In chapter 3,
we have showed that Ðxk→1

i j does exist (i.e. does not depend on the ratio xi/x j) and
we have developed a new predictive model for Ðxk→1

i j based on the linear response
theory and the Onsager relations34. We find that Ðxk→1

i j can be expressed in terms of
self-diffusivities and integrals over velocity cross-correlation functions34

Ðxk→1
i j =

Dxk→1
i,self ·D

xk→1
j,self

Dxk→1
k,self +Cx

, (5.6)

where Di,self is the self-diffusivity of component i. The parameter Cx is related to
integrals over velocity cross-correlation functions, see chapter 3. We assumed that in
the limit of infinite dilution (here, we consider a case in which components i and j are
infinitely diluted in component k), the correlation of molecules that are of type k is
much larger than the correlation of unlike molecules, i.e. Cx/Dk,self ≈ 0. By neglect-
ing the integrals over velocity cross-correlation functions, we obtain a convenient
predictive model for Ðxk→1

i j
34

Ðxk→1
i j =

Dxk→1
i,self ·D

xk→1
j,self

Dxk→1
k,self

. (5.7)

It was shown in chapter 3 that Eq. (5.7) is superior compared to the existing mod-
els in several systems, i.e. systems in which particles interacting using WCA potential
or ternary mixtures of n-hexane-cyclohexane-toluene. In the ethanol-methanol-water
system, Eq. (5.7) deviates from direct calculations of Ði j revealing that velocity
cross-correlation functions should be taken into account as Cx is of the same order
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of magnitude as Dxk→1
k,self . This deviation is mainly due to the formation of hydrogen

bonds. In this work, we also test the ability of Eq. (5.7) in predicting Ðxk→1
i j in

mixtures with ILs.

5.3.3 Salt diffusivity

The electroneutrality condition forces both ions of ILs to diffuse at the same rate in
the absence of an electric current. This phenomenon is known as salt diffusion. It is
well known that the correct driving force for diffusion is the electrochemical potential
gradient. The MS diffusion coefficient of IL molecules based on a thermodynamic
driving force is defined as127

ÐIL =
Ð+kÐ−k(z+− z−)
z+Ð+k− z−Ð−k

, (5.8)

with z is the charge number of the ion. Ð+k and Ð−k are defined by Eq. (5.2). The
often used salt diffusivity DIL which considers the concentration gradient as driving
force of diffusion can be related to ÐIL using127

DIL = ÐIL
cT

c0

(
1+

dlnγ+−
dlnm

)
, (5.9)

where γ+− is the mean molal activity coefficient. In this equation, m is the molarity
(moles of electrolyte per kilogram of solvent), cT is the total solution concentration
(mol/m3), and c0 is the concentration of the solvent (mol/m3). In the limit of infinite
dilution, the equation for the salt diffusivity DIL can be simplified as127

DIL =
D+,self D−,self (z+− z−)
z+D+,self− z−D−,self

. (5.10)

5.4 Results and Discussion

5.4.1 Model validation via self-diffusivities

Pure ILs

Table 5.2 shows the computed self-diffusivities of CnmimCl at 1 atm. Simulations
were carried out above the melting points of CnmimCl. The results shown in Table
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Table 5.2: Comparison of experimental and computed densities of CnmimCl at 1 atm. Com-
puted self-diffusivities of ions are also listed. The statistical errors of computed densities are
less than 1% and less than 4% for the computed self-diffusivities.

C1mimCla

T/K ρ/(g · cm−3) D/(10−9 m2 · s−1)

this work experiment D+,self D−,self
400 1.119 1.140128 0.190 0.162
425 1.105 1.120128 0.298 0.258

C2mimClb

T/K ρ/(g · cm−3) D/(10−9 m2 · s−1)

this work experiment D+,self D−,self
368 1.105 n.a.c 0.109 0.074
373 1.098 1.11128 0.119 0.097
400 1.072 1.09128 0.247 0.210

C4mimCld

T/K ρ/(g · cm−3) D/(10−9 m2 · s−1)

this work experiment D+,self D−,self
353 1.048 n.a. 0.010 0.009
368 1.042 n.a. 0.027 0.026
373 1.033 n.a. 0.028 0.028
400 1.024 n.a. 0.079 0.070

C8mimCle

T/K ρ/(g · cm−3) D/(10−9 m2 · s−1)

this work experiment D+,self D−,self
368 0.989 n.a. 0.007 0.008
400 0.968 n.a. 0.037 0.039

a The melting point of C1mimCl is 398∼ 399 K, see Refs.128;129.
b The melting point of C2mimCl is 357 K, see Ref.128.
c not available.
d The melting point of C4mimCl is 314∼ 339 K depending on the type of crystal
polymorph, see Ref.130.
e The melting point of C8mimCl is 285 K, see Ref.131.



MAXWELL-STEFAN DIFFUSIVITIES IN BINARY MIXTURES OF IONIC . . . 77

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.2 0.4 0.6 0.8 1

D
i,s

el
f/(

10
 -9

 m
2 s

-1
)

xDMSO

Figure 5.2: Computed self-diffusivities of DMSO-H2O mixtures at 298 K, 1 atm. Triangles
represent the computed self-diffusivity of DMSO and squares represent the computed self-
diffusivity of H2O. The solid line represents the self-diffusivity of DMSO obtained from
experiments and the dashed line represents the experimental self-diffusivity of H2O122. The
error bars of computed diffusivities are smaller than the symbol size.

5.2 can be summarized as follows: (1) as the temperature increases, self-diffusivities
of CnmimCl increase as well. This is due to both decreased density and enhanced
mobilities of molecules; (2) for CnmimCl with shorter tail, i.e. n = 1 and 2, the self-
diffusivity of cations is larger than that of anions; (3) as the side chain increases, the
self-diffusivities of cation and anion are almost equal. This is in agreement with the
observations by Feng et al.132.

H2O-DMSO

Figure 5.2 compares self-diffusivities in DMSO-H2O system obtained from both
simulations and experiments122. A strongly non-ideal behavior of the mixture was
observed due to the strong hydrogen bond between DMSO and H2O. The small-
est values for self-diffusivities of both components were found between xDMSO =
0.4-0.6. Moreover, it is clear that the dynamics of water is more strongly affected
than that of DMSO. A similar feature has been observed in both experiments and
simulations133;134. A general understanding of the structure of water-DMSO mix-
tures was derived earlier mainly from x-ray, neutron scattering and computer simu-
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lations135–138. It is well established that the local minimum in Figure 5.2 is due to
the formation of 1:DMSO-2:H2O or 2:DMSO-1:H2O rigid structures which restrict
the mobility of molecules yielding lower self-diffusivities122;133;134. In the range
xDMSO < 0.4 or xDMSO > 0.6, excess water molecules and DMSO molecules are
available which are less restricted by these rigid structures. This results in larger
self-diffusivities.

ILs-H2O

Experimental studies have shown that CnmimCl (n = 2, 4, 8) is completely misci-
ble with H2O at 368 K, 1 atm.131;139. Figure 5.3 shows computed self-diffusivities
of Cnmim+, Cl− and H2O in ILs-H2O mixtures. The self-diffusivities of all compo-
nents strongly decrease with increasing concentration of ILs. For the self-diffusivities
of anions and H2O, two regimes are formed. At lower ILs concentration, the influ-
ence of the size of cation on self-diffusivity is negligible. As the ILs concentration
increases, the influence originating from the cation size becomes important. Due
to the two regimes, deviations from a single exponential behavior are observed for
self-diffusivities in IL-H2O mixtures. Strongly decreasing self-diffusivities with in-
creasing IL concentration were observed in several other studies106;132. Lovell mea-
sured self-diffusivities in 1-ethyl-3-methyl-imidazolium acetate cellulose solutions
using 1H NMR106. Feng et al. computed the self-diffusivities in CnmimCl-H2O and
CnmimBF4-H2O mixtures using MD simulations132. These authors found that an
exponential relation is the best description for the concentration dependence of the
self-diffusivities of ions.

ILs-DMSO

Figure 5.4 shows the self-diffusivities in CnmimCl-DMSO mixtures. We only studied
CnmimCl-DMSO systems with n = 2 and 4. The C8mimCl-DMSO system is not
included in this study as the solubility of C8mimCl in DMSO is not known. For
CnmimCl-DMSO systems, self-diffusivities exponentially decrease with increasing
IL concentration. However, the decrease of self-diffusivities in CnmimCl-DMSO
mixtures is less pronounced than that in ILs aqueous solutions.

The observations from Figures 5.3 and 5.4 can be summarized as follows: (1)
the self-diffusivities of all components decrease strongly as the ILs concentration in-
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Figure 5.3: Computed self-diffusivities of CnmimCl-H2O mixtures at 368 K, 1 atm. Tri-
angles represent the C2mimCl-H2O mixture. Squares represent the C4mimCl-H2O mixture.
Circles represent the C8mimCl-H2O mixture. The error bars of computed diffusivities are
smaller than the symbol size.
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creases; (2) larger cations result in smaller self-diffusivities; (3) the side chain length
of cations plays a minor role in determining the self-diffusivities in the IL-DMSO
systems. The values of the computed diffusivities in these figures are listed in Ta-
bles E.3 and E.4 of appendix E.

5.4.2 Maxwell-Stefan diffusivities and radial distribution functions

ILs-H2O

Figure 5.5 shows the MS diffusivities Ð+−, Ð+H2O and Ð−H2O in CnmimCl-H2O
mixtures. It is clear that (1) both Ð+− and Ð−H2O decrease with increasing IL con-
centration; (2) Ð+H2O is less sensitive to the concentration compared to Ð+− and
Ð−H2O; (3) at the same water content, the MS diffusivities are smaller in a system
containing larger IL molecules. As MS diffusivities can be considered as inverse
friction coefficients (see Eq. (5.2)), this implies stronger effective interactions be-
tween different components; (4) the Vignes equation (Eq. (5.4)) does not describe
the simulation data very well. In all systems, lower diffusivities than predicted by the
Vignes equation are observed.

Radial distribution functions (RDFs) characterize the liquid structure and can be
used to understand trends in values of the diffusivities. Figures 5.6 (a), (c), (e) show
the RDFs of CR-O (CR is the atom located on the ring of the cation and connected
with nitrogen, see Figure 5.1; O is the oxygen atom in H2O) in a CnmimCl-H2O
mixture. In IL-rich mixtures, i.e. xH2O = 0.2, the peak of the RDFs first increases
with increasing tail length of cations, followed by a decrease. In water-rich mixtures,
i.e. xH2O = 0.8, a continuous increasing trend of this peak was observed. Figures 5.6
(b), (d), (f) show the RDFs of Cl-O in CnmimCl-H2O mixtures. Much higher peaks
were found compared to the RDFs of CR-O indicating a much stronger interaction
(also due to less steric hindrance) between anions and water.

ILs-DMSO

Figure 5.7 presents the MS diffusivities in CnmimCl-DMSO mixtures with n = 2 and
4. We observe that (1) Ð+− is not sensitive to the mixture composition meaning that
adding DMSO has a negligible effect on the interaction or friction between cations
and anions; (2) both Ð+DMSO and Ð−DMSO are larger than Ð+− indicating the cation-
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anion interaction is the most strongest; (3) Ð+DMSO and Ð−DMSO are decreasing with
increased IL concentration. The Vignes equation gives a better description of the
concentration dependence than for IL-H2O system but systematic deviations are still
discernible.

Figure 5.8 shows the RDFs of CR-S and Cl-S (CR is the atom located on the ring
of the cation and connected with nitrogen; S is the sulfur atom in DMSO). Similar
coordination numbers were observed for both CR-S and Cl-S which is different from
the RDFs in ILs aqueous solution. This similar trend for CR-S and Cl-S suggests that
the interaction between cation and DMSO is comparable with that of the anion and
DMSO.

Ionization of ILs

Figure 5.9 compares the RDFs between cation and anion in CnmimCl-H2O and
CnmimCl-DMSO mixtures. In the CnmimCl-H2O system, the first peak is reduced
as the water concentration increases, as shown in Figure 5.9 (a), (c), (e), suggesting
that the interaction between cations and anions is reduced. This reduced cation-
anion interaction is due to the dilution by water. In other words, water molecules re-
place anions around the cations. The opposite behavior was observed for CnmimCl-
DMSO mixtures; a dramatic increase of the first peak was observed with the in-
creased DMSO concentration, as shown in Figure 5.9 (b), (d). This result sug-
gests that the interaction between cations and anions is strengthened with increasing
DMSO concentration.

CnmimCl is miscible with both water and DMSO but there are clear differences:
CnmimCl dissolves in water in form of isolated ions. The results presented in Figure
5.9 suggest that in the case of DMSO, CnmimCl dissolves in a form of ion pairs.
It would be very interesting to investigate the lifetime of these ion pairs in more
detail140. A similar phenomenon was observed in both MD simulations and NMR
measurement for a binary mixture with C4mimCl139. This feature has been proposed
for explaining a phenomenon observed previously in dissolving bio-polymers using
ILs139. IL-bio-polymer systems are highly viscous. Therefore, a second solution is
often added to reduce the viscosity. Experimental studies show that by adding water,
the ability of ILs for dissolving bio-polymers is dramatically reduced141. In contrast,
adding DMSO has a negligible effect on the dissolution of bio-polymers139.
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Table 5.3: Diffusivities of ILs infinitely diluted in H2O or DMSO at 368 K, 1 atm. Compar-
ison between MS diffusivities obtained from MD simulations and the predictive model Eq.
(5.7).

i− j ÐMD
+− ÐPrediction

+− ADa

C2mimCl-H2O 1.08 2.29 112%
C4mimCl-H2O 0.84 1.65 96%
C8mimCl-H2O 0.56 1.55 177%
C2mimCl-DMSO 0.11 2.46 2140%
C4mimCl-DMSO 0.07 1.08 1446%

a absolute difference normalized with corresponding result from MD simulations

MS diffusivities at infinite dilution

In the limit of infinite dilution, MS diffusivity Ðk→1
+− can be obtained from both MD

simulations and predictive model Eq. (5.7) as shown in Table 5.3. Eq. (5.7) is
parametrized using self-diffusivities which are listed in Table E.5 of appendix E. Ab-
solute differences between MD simulations and predictions were calculated to eval-
uate the quality of Eq. (5.7). We found that: (1) Eq. (5.7) overestimates the MS
diffusivity Ðk→1

+− ; (2) Eq. (5.7) results in a large deviations in ILs-DMSO mixtures.
As discussed in chapter 3, in mixtures with none or weakly associated molecules,
Eq. (5.7) is accurate and superior to the existing predictive models; in mixtures
with highly associated molecules, Eq. (5.7) either overestimates or underestimates
the MS diffusivity at infinite dilution. The assumption that the correlation of unlike
molecules is negligible does not hold in these systems. Detailed information of ve-
locity cross-correlations should then be taken into account. In this work, we found
that the largest deviation occurred in ILs-DMSO mixtures. This is mainly due to
the increasing interaction between cation and anion in the presence of DMSO. In the
ILs-water mixtures, this interaction between ions is greatly reduced yielding a rela-
tively smaller deviations. The information of velocity cross-correlation function in
the studied mixtures is listed in Table E.6 of appendix E.
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5.4.3 Diffusivity of IL molecules

As mentioned previously, the electroneutrality condition forces both ions of ILs to
diffuse at the same rate in the absence of an electric current. This phenomenon is
known as salt diffusion. The MS diffusion coefficient of IL molecules ÐIL based
on a thermodynamic driving force are calculated using Eq. (5.8) and presented in
Figure 5.10. Not surprisingly, in ILs-H2O mixtures, the concentration dependence
of ÐIL is in between the one found for Ð+H2O and Ð−H2O. The IL MS diffusivity in
water shows a strong, nontrivial dependence on the IL concentration. The influence
of the alkyl chain length on the IL MS diffusion coefficient, however, is minor and
for xIL < 0.5 even negligible.

Sarraute et al. measured the Fick diffusivities of C4mimCl-H2O mixtures at in-
finite dilution using the Taylor dispersion technique at temperatures ranging from
283 K to 333 K115. According to the Arrhenius relation given by these authors, the
value of the Fick diffusivity of IL molecules can be extrapolated to 368K resulting
in a value 4.3·10−9 m2 s−1. Here, the calculated MS diffusivity of IL molecules is
4.0·10−9 m2 s−1 for the same system. At infinite dilution, the thermodynamic fac-
tor equals one revealing an excellent agreement between the computed diffusivity
and experimental data. Recall that the computed diffusivity of pure H2O is larger
than the experimental data while the computed diffusivities of ILs are expected to be
lower than experimental results. These deviations from experimental data are thus
compensated in IL-H2O systems yielding a good agreement between computed and
measured diffusivities.

In the ILs-DMSO systems, the decrease of ÐIL is comparable to that of Ð+DMSO

and Ð−DMSO. Again, the length of the alkyl chain in the IL does not influence the
diffusion coefficient in the studied IL-DMSO mixtures. The data in Figure 5.10 are
listed in Tables E.3 and E.4 of appendix E.

For obtaining the salt diffusivity DIL, it is essential to know the thermodynamic
factor. The thermodynamic factor can be measured in experiments i.e. Karl Fischer
titration142. However, difficulties still exist in implementing these methods. For
example, the uncertainty in measured activity coefficient is 20% in a BmimCl-H2O
mixture142. Since the thermodynamic factor requires the concentration derivative
of the activity coefficient, even larger errors have to be expected. In our view, MD
simulations are thus the preferred method to study the behavior of MS diffusivities.
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5.5 Conclusions

ILs are often considered as green solvents and good candidates for many processes.
Their physical and chemical properties can be well tuned through varied combina-
tions of cations and anions. Imidazolium-based ILs are extensively studied in both
experiments and computer simulations as they have been employed in practice i.e. as
gas storage fluids, and as separation media143;144.

To the best of our knowledge, MS diffusivities in the mixtures with ILs have not
yet been reported. In this study, we computed MS diffusivities using MD simulations
in CnmimCl-H2O (n = 2,4,8) and CnmimCl-DMSO mixtures (n = 2,4). The effects of
alkyl chain length and mixture composition on the diffusion coefficients are explored.
Our results show that: (1) self- and MS diffusivities strongly decrease with the in-
creasing concentration of ILs; (2) the MS diffusivities of the ionic liquid (ÐIL) are
almost independent of the alkyl chain length. The dependence is much smaller than
for the self-diffusivities indicating the necessity for studying mutual diffusion in de-
tail; (3) addition of H2O and DMSO have a different influence on the liquid structure
of ILs. ILs stay in a form of isolated ions in CnmimCl-H2O mixtures, however, ion
pairs are preferred in CnmimCl-DMSO systems; (4) in the limit of infinite dilution,
MS diffusivity Ðxk→1

i j can be predicted by Eq. (5.7) based on easily obtained self-
diffusivities. In the studied mixtures with ILs, Eq. (5.7) results in larger deviations in
estimating MS diffusivity suggesting that velocity cross-correlations are important.
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Figure 5.5: MS diffusivities of CnmimCl-H2O mixtures at 368 K, 1 atm. Triangles represent
the C2mimCl-H2O mixture. Squares represent the C4mimCl-H2O mixture. Circles repre-
sent the C8mimCl-H2O mixture. Lines are the predicted MS diffusivities using Eq. (5.4).
Solid lines represent the C2mimCl-H2O mixture. Dotted lines represent the C4mimCl-H2O
mixture. Dashed lines represent the C8mimCl-H2O mixture.
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Figure 5.6: Radial distribution functions of CR-O and Cl-O atom pairs in water at 368 K,
1 atm. Solid lines represent xH2O = 0.2. Dashed line represents xH2O = 0.8 (a) CR-O in
a C2mimCl-water mixture. CR is the atom located on the ring of the cation and connected
with nitrogen, see Figure 5.1; (b) Cl-O in a C2mimCl-water mixture; (c) CR-O in a C4mimCl-
water mixture; (d) Cl-O in a C4mimCl-water mixture; (e) CR-O in a C8mimCl-water mixture;
(f) Cl-O in a C8mimCl-water mixture.
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Figure 5.7: MS diffusivities in CnmimCl-DMSO mixtures at 368 K, 1 atm. Triangles repre-
sent the C2mimCl-H2O mixture. Squares represent the C4mimCl-H2O mixture. Lines are the
predicted MS diffusivities using Eq. (5.4). Solid lines represent the C2mimCl-H2O mixture.
Dotted lines represent the C4mimCl-H2O mixture.
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Figure 5.8: Radial distribution function of CR-S and Cl-S atom pairs in DMSO at 368 K,
1 atm. Solid lines represent xH2O = 0.2. Dashed line represents xH2O = 0.8. (a) CR-S in
a C2mimCl-DMSO mixture. CR is the atom located on the ring of the cation and con-
nected with nitrogen, see Figure 5.1; (b) Cl-S in a C2mimCl-DMSO mixture; (c) CR-S in
a C4mimCl-DMSO mixture; (d) Cl-S in a C4mimCl-DMSO mixture.
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Figure 5.9: Radial distribution function of CR-Cl atom pairs in a binary mixture of CnmimCl
and water / DMSO at 368 K, 1 atm. Solid lines represent xH2O = 0.2. Dashed lines represent
xH2O = 0.8. (a) CR-Cl in a C2mimCl-water mixture; (b) CR-Cl in a C2mimCl-DMSO mixture;
(c) CR-Cl in a C4mimCl-water mixture; (d) CR-Cl in a C4mimCl-DMSO mixture. (e) CR-Cl
in a C8mimCl-water mixture. CR is the atom located on the ring of the cation and connected
with nitrogen, see Figure 5.1.
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Fick Diffusion Coefficients of Liquid
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6.1 Introduction

Understanding mass transport in liquids by mutual diffusion is an important issue for
many applications in chemistry and chemical engineering21;145. The reason for this
is that diffusion is often the rate limiting step in chemical reactors and separators.
To describe mass transport in liquid mixtures, generalized Fick’s law and the MS
theory are often used. In an n-component system, generalized Fick’s law in a molar
reference frame equals7

Ji =−ct

n−1

∑
j=1

Di j ∇x j, (6.1)

in which Ji is the molar diffusion flux of component i, ct is the total molar concen-
tration, Di j are Fick diffusivities, and x j is the mole fraction of component j. The
reference frame for the diffusion fluxes is the average molar velocity

n

∑
i=1

xiui = ureference, (6.2)

in which ui is the average velocity of component i. From this it follows that ∑
n
i=1 Ji =

0. Other reference frames, like the barycentric, the mean volume or the solvent
frames of reference, are alternatively used depending on their convenience for ex-
perimental conditions. We refer to Refs.1;146 for the transformation rules from one
reference frame to the other. For binary mixtures, the resulting Fick diffusion co-
efficient is the same for all reference frames provided that one uses the gradient of
the appropriate concentration in Eq. (6.1)1. From Eq. (6.1) it follows directly that
the elements of the matrix of Fick diffusivities [D] depend on the labeling of the
components.

Some problems arise when applying generalized Fick’s law: (1) Fick diffusivi-
ties strongly depend on the concentration, and in multicomponent systems, they can
be either positive or negative21; (2) multicomponent Fick diffusivities are unrelated
to their binary counterparts which seriously hinders their prediction; (3) generalized
Fick’s laws is difficult to handle in practice due to the large number of concentration
dependent coefficients, i.e. in an n-component system, (n−1)2 diffusion coefficients
are needed for the mass transport description. However, it is important to understand
the concentration dependence of Fick diffusivities as they directly relate to the mea-
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surable quantities, i.e. concentrations, and thus can be accessed in experiments. In
fact, all mutual diffusion experiments measure Fick diffusion coefficients.

For modeling multicomponent diffusion in liquids, the MS approach is often
more convenient1;21;146. The key point of this approach is that the driving force for
diffusion of component i (i.e. the chemical potential gradient ∇µi) is balanced by a
friction force, resulting in the following equation,

− 1
RT

∇µi =
n

∑
j=1, j 6=i

x j(ui−u j)

Ði j
, (6.3)

in which R and T are the gas constant and absolute temperature, respectively. The
friction force between components i and j is proportional to the difference in average
velocities of the components, (ui− u j). The MS diffusivity Ði j is an inverse fric-
tion coefficient describing the magnitude of the friction between components i and
j. The MS diffusivities are symmetric, Ði j = Ð ji. Compared to generalized Fick’s
law, the MS theory requires only n(n−1)/2 diffusion coefficients for an n-component
system and they are all positive21. Often, MS diffusivities depend less strongly on
the concentration than Fick diffusivities21. It is impossible to obtain MS diffusivities
directly from experiments as chemical potentials cannot be measured directly. Ob-
taining MS diffusivities from MD simulations is possible but requires large amounts
of CPU time9;23;33–35;41–45;92;147.

As generalized Fick’s law and the MS theory describe the same physical process,
it is possible to relate the corresponding transport coefficients1;21;23. The correspond-
ing equation to relate the coefficients in Eqs. (6.1) and (6.3) is

[D] = [B]−1[Γ], (6.4)

in which [D] is the (n−1)× (n−1) matrix of Fick diffusivities. The elements of the
matrix [B] are given by1;7;23

Bii =
xi

Ðin
+

n

∑
j=1, j 6=i

x j

Ði j
with i = 1, · · · ,(n−1) (6.5)

Bi j = −xi

(
1

Ði j
− 1

Ðin

)
with i, j = 1, · · · ,(n−1) and i 6= j. (6.6)
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The elements of the so-called matrix of thermodynamic factors [Γ] are defined by1;21

Γi j = δi j + xi

(
∂ lnγi

∂x j

)
T,p,∑

, (6.7)

in which δi j is the Kronecker delta, and γi is the activity coefficient of component
i. The symbol Σ indicates that the partial differentiation of lnγi with respect to mole
fraction x j is carried out at constant mole fraction of all other components except the
n-th one, so that ∑

n
i=1 xi = 1 during the differentiation. The constrained derivative of

Eq. (6.7) can be written as a function of unconstrained derivatives as follows:

∂ lnγi

∂x j

∣∣∣∣
T,p,Σ

=
∂ lnγi

∂x j

∣∣∣∣
T,p, j′
− ∂ lnγi

∂xn

∣∣∣∣
T,p,n′

. (6.8)

Here, the primed symbols in the derivative evaluations indicate that the mole fractions
of all other components are held constant. For any system in the limit of infinite
dilution, the values of [Γ] are known, i.e. Γ

xi→0
ii =1 and Γ

xi→1
i j,i 6= j=0. In binary mixtures,

transport diffusion is described by a single MS and a single Fick diffusion coefficient.
The following notation is used to relate these diffusivities

D = Γ×Ð12, (6.9)

in which D is the binary Fick diffusivity, Ð12 is the MS diffusivity and Γ is the
thermodynamic factor given by1

Γ = 1+ x1

(
∂ lnγ1

∂x1

)
T,p,∑

. (6.10)

Eq. (6.9) nicely visualizes the gap between experimental and molecular simulation
approaches to mutual diffusion. In experiments, Fick diffusion coefficients are mea-
sured and molecular simulation usually provides MS diffusivities33;38;47;63;148. The
two formalisms are related via the matrix of thermodynamic factor [Γ] but this is
usually known only with relatively large uncertainties62;149. To obtain the matrix
of thermodynamic factors, experimental vapor-liquid equilibrium data can be fitted
using excess Gibbs energy models, e.g. Margules, van Laar, NRTL etc2. Several
models may provide estimates of lnγi that give equally good fits to the vapor-liquid
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equilibrium (VLE) data. However, the thermodynamic factor Γi j involves the first
derivative of the activity coefficient lnγi with respect to the composition. Errors of
the size of 20% and larger are expected for this derivative80.

Currently used approaches for computing Fick diffusivities from molecular sim-
ulation suffer from inconsistencies or other problems:

• Direct calculation of Fick diffusivities using non-equilibrium MD (NEMD) re-
quires very large concentration gradients30–32. This approach is usually not
accurate and quite impractical as the concentration dependence of Fick diffu-
sivities is not easily captured.

• Combining MS diffusivities obtained from equilibrium MD simulations with
experimentally obtained equations of state or models for the excess Gibbs en-
ergy is inconsistent, as experiments and molecular models provide different
values for the thermodynamic factor63;150;151.

• Currently used molecular simulation techniques to determine the thermody-
namic factor of liquid mixtures are quite inefficient47;48. To the best of our
knowledge, these techniques have only been applied to binary mixtures.

In this chapter, we introduce a consistent and efficient framework for the deter-
mination of Fick diffusivities in liquid mixtures directly from equilibrium MD sim-
ulations by calculating both the thermodynamic factor Γ and the MS diffusivity Ð12.
Up to now, approaches to compute Fick diffusivities from molecular simulation suf-
fer from inconsistencies or other problems: (1) direct calculation of Fick diffusivities
using NEMD requires significant efforts and very high concentration gradients30–32.
This approach is usually not accurate and quite impractical as the concentration de-
pendence of Fick diffusivities is not easily captured; (2) combining MS diffusivi-
ties obtained from equilibrium MD simulations with experimentally obtained equa-
tions of state or models for the excess Gibbs energy is inconsistent as experiments
and molecular models in principle provide different values for the thermodynamic
factor63;150;151; (3) presently used molecular simulation techniques to determine the
thermodynamic factor of liquid mixtures are inefficient47;48. Recently, we developed
an efficient method to obtain thermodynamic factor directly from equilibrium MD
simulations48;49. This method is based on sampling concentration fluctuations in-
side small subvolumes inside the simulation box and correcting for finite-size effects.
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We already validated this method for simple systems with only a single interaction
site per molecule, i.e. mixtures in which the components interact using WCA or LJ
interaction potentials. In this work, we implemented the method for more complex
mixtures of acetone - methanol and acetone - tetrachloromethane (CCl4). Thereby,
we can efficiently compute Γ such that in combination with computed MS diffusiv-
ities, we are able to compute Fick diffusion coefficients directly from equilibrium
MD. Our MD results for Γ, Ð12, and D also agree very well quantitatively with the
experiments suggesting that the tools for computing multicomponent Fick diffusivi-
ties efficiently from MD simulations are now available.

6.2 Diffusion coefficients and the thermodynamic factor

6.2.1 Obtaining diffusion coefficients from MD simulations

In equilibrium MD simulations, representative trajectories of a liquid mixture consist-
ing of interacting molecules are obtained17;18;20. From the trajectory of the molecules,
transport properties can be computed17. For more details on computing MS- and self
diffusivities, we refer the reader to section 2.3 and appendix A.

6.2.2 Predictive models for diffusion

To obtain a better understanding of the concentration dependence of MS diffusivities,
it is instructive to study the different contributions of the correlation function in Eq.
(2.21), i.e. velocity auto- and cross-correlations. These contributions are defined as
follows. Considering the Green-Kubo form of the Onsager coefficients (Eq. (2.21)),
we can express Λii as
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Λii =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
Ni

∑
g=1

vg,i(t + t ′)

〉

=
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) · vl,i(t + t ′)

〉
+

1
3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

Ni

∑
g=1,g6=l

vl,i(t) · vg,i(t + t ′)

〉
≈ xiCii + x2

i NC?
ii

= xiDi,self + x2
i NC?

ii, (6.11)

in which Cii and C?
ii account for self- and cross-correlations of the velocities of

molecules of component i, respectively. Here, we assumed that N2
i −Ni ≈ N2

i . For
Λi j with i 6= j, i.e. the correlations between unlike molecules, we can write34

Λi j =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
N j

∑
k=1

vk, j(t + t ′)

〉

≈
NiN j

3N

∫
∞

0
dt ′
〈
v1,i(t) · v1, j(t + t ′)

〉
= Nxix jCi j. (6.12)

For a binary system, combining Eqs. (2.19), (A.1), (6.11) and (6.12) leads to

Ð12 = x2C11 + x1C22 + x1x2N(C?
11 +C?

22−2C12)

= x2D1,self + x1D2,self + x1x2N(C?
11 +C?

22−2C12) . (6.13)

In so-called ideal diffusing mixtures, the terms C?
ii and Ci j are small compared to

terms of the type Cii resulting in the well-known binary Darken equation, see also
appendix B and Refs.35;54;92:

Ði j = x jDi,self + xiD j,self. (6.14)

A natural extension of Eq. (6.14) to multicomponent systems was presented in
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chapter 4. It is important to note that the application of the Darken equation relies on
the availability of self-diffusivities in the mixture. To parametrize the Darken equa-
tion, we proposed the following model to predict self-diffusivities in multicomponent
systems from data at infinite dilution as discussed earlier in chapter 4:

1
Di,self

=
n

∑
j=1

x j

Dx j→1
i,self

. (6.15)

We have shown in chapter 4 that Eq. (6.15) works well for WCA fluids and the
ternary mixture n-hexane/toluene/cyclohexane.

6.2.3 Obtaining the thermodynamic factor from MD simulations

The elements of the matrix [Γ] can be expressed as average concentration fluctu-
ations in the grand-canonical ensemble as derived by Kirkwood and Buff152;153 in
1951. The natural method for obtaining these averages are grand-canonical Monte
Carlo (GCMC) simulations. However, GCMC simulations of liquid mixtures at room
temperature are very challenging as the insertion and deletion of molecules is very
inefficient for dense liquids17. There is some recent improvement in this area154;155

but these simulations remain quite inefficient. Kirkwood and Buff showed that in the
thermodynamic limit the fluctuations in the grand-canonical ensemble can be related
to the integrals of radial distribution functions over volume152;153, resulting in the
following expression for the so-called Kirkwood-Buff (KB) coefficients:

Gi j = V

〈
NiN j

〉
−〈Ni〉

〈
N j
〉

〈Ni〉
〈
N j
〉 −

δi j

ci
(6.16)

= 4π

∫
∞

0
[gi j(r)−1]r2dr . (6.17)

In these equations, V is the volume and ci is the number density of component i
defined by 〈Ni〉/V . The brackets 〈· · ·〉 denote an ensemble average in the grand-
canonical ensemble. gi j(r) is the radial distribution function for molecules of type
i and j in the grand-canonical ensemble, and it is natural to define the distance r
between two molecules as the distance between their centers of mass. As the choice
of ensemble is irrelevant for large systems, in practice gi j(r) is computed in the N pT
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or NV T ensemble. In binary mixtures, the thermodynamic factor Γ is related to the
KB coefficients Gi j by152;153

Γ = 1− xi
c j (Gii +G j j−2Gi j)

1+ c jxi (Gii +G j j−2Gi j)
. (6.18)

For ternary systems, the values of the terms Γi j (Eq. (6.7)) follow in a similar way
from the values of the KB coefficients Gi j, see Refs.93;156 and also chapter 7.

It is important to consider the convergence of the integrals in Eq. (6.17). For in-
finitely large systems, gi j(r)→ 1 for r→ ∞. For finite systems with periodic bound-
ary conditions, gi j(r) does not converge to 1 for large r and therefore corrections
have to be taken into account in practice48;49;157. This seriously hinders the direct
estimation of KB coefficients from simulations.

Recently, we found that the average particle fluctuations in Eq. (6.16) can also be
calculated by considering a large system in which smaller subvolumes are embedded.
The subvolumes can exchange particles and energy with the large simulation box and
therefore a subvolume can be considered as a system in the grand-canonical ensem-
ble. However, corrections should be taken due to the finite size effect originating
from the boundaries of the subvolumes48;49:

Gi j(L) = G∞
i j +

(constant)
L

. (6.19)

In this equation, L is the (linear) size of the subsystem in one dimension. The KB
coefficient in the thermodynamic limit (G∞

i j) can thus be obtained by simple extrapo-
lation to L→ ∞. This approach was previously validated for molecules with a single
interaction site only, e.g. systems in which the particle interact using a WCA or LJ
potential48;49. In practice, the size of the simulation box needs to be at least 10
times the size of a typical molecule in the system48. For more details concerning this
method, we refer the reader to Refs.48;49;158.

6.3 Simulation details

The binary systems acetone - methanol and acetone - CCl4 were studied. The OPLS
force field was used for acetone and methanol159;160 and a five-site model was used
for CCl4 159. All components are treated as rigid bodies. The LJ potentials describe
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Table 6.1: Force field and geometrical parameters for acetone, methanol and CCl4. Parame-
ters for acetone and CCl4 were taken from Ref159. Parameters for methanol were taken from
Ref.160

Force field parameters
site σ /Å (ε/kB)/K q/e
CH3 (acetone) 3.910 81.0866 0.0620
C (acetone) 3.750 52.9463 0.3000
O (acetone) 2.960 105.8997 -0.4240
C (CCl4) 3.410 50.3972 -0.1616
Cl (CCl4) 3.450 143.6321 0.0404
O (methanol) 3.070 85.6753 -0.7000
H (methanol) - - 0.4350
CH3 (methanol) 3.775 104.3223 0.2650

Standard geometrical parameters
bond length/Å bond angle/deg

C-Cl 1.766 CH3-C-CH3 116.30
C=O 1.220 CH3-C=O 121.86
CH3-C 1.507 Cl-C-Cl 109.47
O-H 0.945 CH3-O-H 108.50
CH3-O 1.430
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the intermolecular non-bonded interactions which are truncated and shifted at 10 Å.
The Lorentz-Berthelot mixing rules are applied to obtain the LJ parameters for the
interaction of unlike atoms18. Electrostatic interactions are handled by Ewald sum-
mation using a relative precision85 of 10−5. The force field parameters as well as the
parameters defining the geometries of the molecules are listed in Table 6.1. Three di-
mensional periodic boundary conditions consistent with a cubic box were applied to
obtain properties corresponding to bulk systems. The MD simulations were carried
out at a temperature of 298 K and a pressure of 1 atm. All binary systems were first
equilibrated in an N pT ensemble with a Nosé-Hoover thermostat and barostat using
the time constants of 0.1 ps and 1 ps, respectively. The equations of motion were
integrated using the leapfrog Verlet algorithm with a time step of 1 fs. The self- and
MS diffusion coefficients are obtained from equilibrium MD simulations in the NV T
ensemble using the Nosé-Hoover thermostat at a density corresponding to a pressure
of 1 atm.17. The box sizes were typically around (28 Å)3 resulting in a total number
of molecules of the order of 300. The simulations for extracting diffusion coefficients
were run for at least 100 ns to obtain MS diffusivities with an accuracy of around 5%
and self-diffusivities with an accuracy of 2%. KB coefficients required for the cal-
culation of thermodynamic factors were obtained from MD simulations in the N pT
ensemble. Temperature and pressure were controlled using the Nosé-Hoover thermo-
stat and barostat, respectively. In these simulations, the box size needs to be larger,
see also section 6.2.3. The volume of the simulation box was typically fluctuating
around (80 Å)3. The maximum number of molecules used in these simulations was
8000. Simulation runs of at least 5 ns were needed to obtain accurate values of the
thermodynamic correction factor.

6.4 Results and discussion

6.4.1 Model validation for pure component systems

In Table 6.2, we compare the computed densities and self-diffusivities of pure com-
ponents to the experimental results. For all three components, MD simulations un-
derestimate the densities of pure components by a maximal deviation of 3%. This
directly results in an small overestimation of self-diffusivities in most cases, i.e. for
pure methanol and pure CCl4. The computed self-diffusivities of pure acetone, pure
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Table 6.2: Densities and self-diffusivities of pure acetone, methanol and CCl4 at 298 K, 1
atm.

ρ/(g.ml−1) Di,self/(10−9m2s−1)
Component This work (MD) Experiment This work (MD) Experiment
acetone 0.76 0.78a,b,0.79c 4.2 4.8d , 4.4e

methanol 0.75 0.79a,b 2.5 2.3 f , 2.2g

CCl4 1.54 1.58c 1.8 1.5d

a Experiments by Campbell et al., Ref.161

b Experiments by Noda et al., Ref.162

c Experiments reported in Ref.163

d Experiments by Hardt et al., Ref.164

e Experiments by Toryanik et al., Ref.165

f Experiments by Kamei et al., Ref.166

g Experiments by Derlacki et al., Ref.167

methanol and pure CCl4 are 4.2, 2.5, and 1.8·10−9 m2s−1, respectively. Several val-
ues for the experimental self-diffusivity of pure acetone are available ranging from
4.4 to 4.8·10−9 m2s−1 164;165. For pure methanol, experimental self-diffusivities re-
ported in literature range from 2.2 to 2.3·10−9 m2s−1 166;167. The reported experimen-
tal self-diffusivity of pure CCl4 is 1.5·10−9 m2s−1 164;166. The maximal deviation of
computed self-diffusivities from experiments is thus 20%. We feel that this level
of deviation between experiments and simulations is acceptable in our study. Note-
worthy, the force fields used have not been fitted to transport properties. Thus, the
presented results are predictive.

In this chapter, we studied diffusion in two binary systems, acetone - methanol
and acetone - tetrachloromethane. The binary system methanol-tetrachloromethane
was not studied in detail as this system shows a liquid-liquid separation168, which
may introduce difficulties in the simulations.

6.4.2 Diffusion in acetone - methanol

Figure 6.1 compares the computed densities of acetone - methanol mixtures to the
experimental data at 298 K, 1 atm. It is shown that the computed mixture densi-
ties from this work are consistent with the data obtained by Perera et al. using MD
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Figure 6.1: Densities of acetone (1) - methanol (2) mixtures at 298 K, 1 atm. Squares are
the computed densities by this work using MD simulations. Diamonds are the computed
densities by Perera et al. using MD simulations157. Circles are the experimental densities
measured by Campbell et al. 161. Triangles are the experimental densities measured by Noda
et al. 162.

simulations157. However, the results obtained from simulations are systematically
somewhat lower than the experimental densities161;162. In acetone - methanol mix-
tures, both experiments and simulations show that densities are not sensitive to the
composition.

Figure 6.2 shows how the thermodynamic factor varies with concentration. The
computed Γ is less than unity suggesting a positive deviation from Raoult’s law. That
is, as the concentration of component 1 increasing, the activity coefficient of compo-
nent 1 decreases suggesting that the attraction of acetone - acetone is stronger than
that of acetone - methanol2. We observe that both the computed Γ in this work and
the computations by Perera et al.157 agree very well with experiments. Note that the
data of Perera et al.157 seems to have an inflection point around equimolar composi-
tion, which appears to be unphysical and due to limited accuracy in their simulations.
The dependence of Γ on concentration is accurately described by our simulations. It
is important to note that there are obvious differences between our simulations and
those of Perera et al.. Perera et al.157 obtained the KB coefficients by directly in-
tegrating the radial distribution functions over the volume (Eq. (6.17)), while we
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Figure 6.2: Thermodynamic factor Γ (Eq. (6.10)) in acetone (1) - methanol (2) mixtures at
298 K, 1 atm. Squares are the computed Γ by this work using MD simulations. Triangles
are the computed Γ by Perera et al. using MD simulations157. The solid line represents Γ

calculated from the NRTL model and fitted to experimental VLE data taken from Ref.168.
Fitted parameters of the NRTL model are: τ12 = 0.34; τ21 = 0.40; α = 0.1550.

used the novel fluctuation method described in section 6.2.3. The agreement between
the two methods clearly shows that macroscopic properties can be extrapolated from
microscopic systems by applying finite-size corrections. The proposed fluctuation
method is therefore not only valid in simple systems, e.g. WCA systems and ho-
mogeneous LJ systems. The presented results also show that it also works well for
complicated molecular systems in which electrostatic interactions plays an important
role.

Figure 6.3 shows self-diffusivities in acetone - methanol mixtures as a function
of the composition. We are not aware of any experimental results for the self-
diffusivities in acetone - methanol mixtures. To describe the dependence of self-
diffusivities on concentration, Eq. (6.15) is used. The self-diffusivities at infinite di-
lution are required for this. Figure 6.3 clearly shows that Eq. (6.15) correctly captures
the behavior of the self-diffusivities, i.e. as the concentration of acetone is increas-
ing, the self-diffusivities of both components increase and the self-diffusivities of
methanol show a stronger dependence on concentration.

Figure 6.4 compares the computed MS diffusivities using MD simulations (Eq.
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Figure 6.3: Self-diffusivities in acetone (1) - methanol (2) mixtures at 298 K, 1 atm. Open
symbols are the computed self-diffusivities by this work using MD simulations. Squares are
the self-diffusivities of acetone (1). Triangles are the self-diffusivities of methanol (2). Solid
lines are the predictions using Eq. (6.15).
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Figure 6.4: MS diffusivities in acetone (1) - methanol (2) mixtures at 298 K, 1 atm. Triangles
are the computed MS diffusivities by this work using MD simulations (Eq. (A.1)). Squares
are the predictions using the Darken equation (Eq. (6.14)) with the self-diffusivities taken
from MD simulations. The solid line represents the predictions using the Darken equation
(Eq. (6.14)) with the self-diffusivities predicted using Eq. (6.15).
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(A.1)) to the predictions using Darken equation (Eq. (6.14)). The self-diffusivities
needed in the Darken equation are parametrized with both MD data and prediction us-
ing Eq. (6.15). As Eq. (6.15) accurately describes the dependence of self-diffusivities
on concentration, the differences between both parametrization are small. There is,
however, a significant difference between the computed MS diffusivities and the pre-
dicted MS diffusivities using the Darken equation. In MD simulations, MS diffusivi-
ties strongly depend on the concentration and this strong dependence is not captured
by the Darken equation. It is important to consider the assumptions made in the
derivation of the Darken equation, i.e. velocity cross-correlations are assumed to be
much smaller than velocity auto-correlations. The deviations between MD simula-
tions and predictions using the Darken equation suggest that this assumption does
not hold in acetone - methanol mixtures. In Figure 6.5(a), we plot the intensive terms
NC?

ii and NCi j (see Eqs. (6.11) and (6.12)) as a function of the concentration. We split
the terms in Eq. (6.13) into a velocity auto-correlation part, i.e. (x2C11 + x1C22), and
a velocity cross-correlation part, i.e. x1x2N(C?

11 +C?
22− 2C12). The values of these

two terms are plotted in Figure 6.5(b). When the concentration of one of the compo-
nents is small, the terms involving velocity cross-correlations are much smaller than
those for velocity auto-correlations. The prediction using the binary Darken equa-
tion is reasonable in this regime. In more concentrated systems, the terms describing
velocity cross-correlations are comparable with those for velocity auto-correlations
resulting in the failure of the binary Darken equation. This is mainly due to the strong
correlations between distinct molecules of methanol (see the data for NC?

11 in Figure
6.5(a)).

Figure 6.6 shows the Fick diffusivities in acetone - methanol mixtures obtained
from different approaches. Computed Fick diffusivities from MD simulations are in
excellent agreement with experimental data. Combining the Darken equation with
experimental values for the thermodynamic factor clearly results in significant de-
viations. Although both the thermodynamic factor and the MS diffusivity strongly
depend on concentration, these effects cancel to a large degree for the Fick diffusiv-
ity.
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Figure 6.5: Velocity cross-correlations (see Eqs. (6.11), (6.12) and (6.13)) in acetone (1)
- methanol (2) mixtures at 298 K, 1 atm. (a) Squares represent NC?

11. Circles represent
NC?

22. Triangles represent NC12. (b) Circles represent x2C11 + x1C22. Squares represent
x1x2N(C?

11 +C?
22 +C12).

6.4.3 Diffusion in acetone - tetrachloromethane

Figure 6.7 compares the densities of acetone - CCl4 mixtures at 1 atm. Ref.163 re-
ported experimental mixture densities at 298 K which are larger than the computed
densities in this work. Kumar et al. also measured the densities of same mixtures
at different temperatures170. Their results showed that the mixture densities are not
very sensitive to the temperature. It is quite surprising to see such a big jump (ca.
10%) in density when temperature is raised from 298 to 303 K. It is unclear to us
whether this effect is real or it is due to an error in the experiments.

Figure 6.8 shows the thermodynamic factor as a function of concentration. Again,
an excellent agreement between simulations and experiments is obtained. The com-
puted Γ shows a positive deviation from Raoult’s law suggesting that the attraction
of acetone - acetone is stronger than that of acetone - CCl4 2. The non-ideality is
most pronounced at a mole fraction of acetone of 0.35. This is observed both in
experiments and simulations.

Figure 6.9 compares the self-diffusivities obtained from different approaches. We
observed that the computed self-diffusivities moderately increase with increasing
concentration of acetone. In contrast, the experimental results show a stronger de-
pendence of the self-diffusivities on concentration. The predictions using Eq. (6.15)
agree well with the simulation results.
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Figure 6.6: Fick diffusivities in acetone (1) - methanol (2) mixtures at 298 K, 1 atm. Tri-
angles represent Fick diffusivities calculated using the computed Γ and MS diffusivities Ð12
by this work. Squares are the predictions of Fick diffusivities using Γ obtained from ex-
periments168 and MS diffusivities predicted using the Darken equation (Eq. (6.14)). Self-
diffusivities appearing in Darken equation are estimated using Eq. (6.15). The solid line
represents the experimental data taken from Ref.169.
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Figure 6.7: Densities of acetone (1) - CCl4 (2) mixtures at 1 atm. Squares are the computed
densities by this work using MD simulations at 298 K. Triangles are the experimental density
taken from Ref.163 at 298 K. Diamonds are the experimental density measured by Kumar
et al. at 303 K170.
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Figure 6.8: Thermodynamic factor Γ in acetone (1) - CCl4 (2) mixtures at 298 K, 1 atm.
Squares are the computed Γ by this work using MD simulations. The solid line is Γ calcu-
lated from the NRTL model and fitted to experimental VLE data taken from Ref.168. Fitted
parameters of the NRTL model are: τ12 = 0.43; τ21 = 0.57; α = 0.2150.
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Figure 6.9: Self-diffusivities in acetone (1) - CCl4 (2) mixtures at 298 K, 1 atm. Filled
symbols are the computed diffusivities by this work using MD simulations. Open symbols
are the experimental results taken from Ref.164. Squares are the self-diffusivities of acetone
(1). Triangles are the self-diffusivities of CCl4 (2). Solid lines are the predictions using Eq.
(6.15).
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Figure 6.10: MS diffusivities in acetone (1) - CCl4 (2) mixtures at 298 K, 1 atm. Triangles
are the computed MS diffusivities by this work using MD simulations (Eq. (A.1)). Squares
are the predictions using the Darken equation with the self-diffusivities computed from MD
simulations. The solid line represents the predictions using Darken equation (Eq. (6.14))
with the self-diffusivities estimated by Eq. (6.15).
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Figure 6.11: Velocity cross-correlations (see Eqs. (6.11), (6.12) and (6.13)) in acetone (1)
- CCl4 (2) mixtures at 298 K, 1 atm. (a) Squares represent NC?

11. Circles represent NC?
22.

Triangles represent NC12. (b) Circles represent x2C11+x1C22. Squares represent x1x2N(C?
11+

C?
22 +C12).
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Figure 6.12: Fick diffusivities in acetone (1) - CCl4 (2) mixtures at 298 K, 1 atm. Triangles
represent Fick diffusivities calculated using the computed Γ and MS diffusivities Ð12 in this
work. Squares are the predictions of Fick diffusivities using Γ obtained from experiments168

and MS diffusivities predicted using the Darken equation (Eq. (6.14)). Self-diffusivities
appearing in the Darken equation are estimated using Eq. (6.15). Solid line represents the
experimental data taken from Ref.171.
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Figure 6.10 shows the computed and predicted MS diffusivities. The Darken
equation suggests an almost linear relation between MS diffusivities and mole frac-
tion while the computed MS diffusivities do not show this behavior. In Figure 6.11,
we plot the values of the velocity cross-correlations and velocity auto-correlations as
a function of the concentration, (see Eqs. (6.11), (6.12) and (6.13)). The contribu-
tions of velocity cross-correlations in acetone - CCl4 mixtures are smaller than those
in acetone - methanol mixtures. This may suggest that Darken equation works better
in acetone - CCl4 mixtures, see Figures 6.4 and 6.10. Figure 6.11(a) also shows that
the terms C?

11, C?
22 and C12 are all of the same order of magnitude.

Using the thermodynamic factor Γ and MS diffusivities Ði j shown in Figures 6.8
and 6.10, we calculated Fick diffusivities as a function of concentration, see Figure
6.12. Again, an excellent agreement between the computed Fick diffusivities from
equilibrium MD simulations and the ones reported by experimental work is obtained.
The comparison of Fick diffusivities in Figure 6.12 clearly shows that from equilib-
rium MD simulation we can quantitatively predict Fick diffusivities in a consistent
way. As velocity cross-correlations are relatively small for this system, the predicted
Fick diffusivities using the Darken equation and Eqs. (6.9) and (6.15) are in reason-
able agreement with the experimental results. However, this agreement cannot be
expected in general as the level of agreement strongly depends on the quality of the
predictive model for MS diffusivities (here: the binary Darken equation). Indeed,
predictive models may not work well (or even significantly fail) in systems in which
molecules are highly associated34;91.

6.5 Conclusions

We presented a method to compute Fick diffusivities from MD simulations. The key
ingredient of this approach is the application of a novel method to extract the thermo-
dynamic factor from MD. The described approach was tested for two binary systems,
acetone - methanol and acetone - CCl4. Excellent agreement between molecular sim-
ulation and experimental results were found for Fick- and MS diffusivities, as well
as the thermodynamic factor. The binary Darken equation is not applicable to these
systems as velocity cross-correlations have a large effect on the computed Onsager
coefficients. Our approach is in principle directly applicable to obtain Fick diffusivi-
ties from simulations for multicomponent systems (n≥ 3).
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7.1 Introduction

In chapter 6, we developed a consistent methodology to calculate binary Fick diffu-
sivities using MS diffusivities Ði j and thermodynamic factors [Γ] from equilibrium
MD simulations172;173. Thermodynamic factors can be computed by studying den-
sity fluctuations in small subvolumes inside a larger simulation box and correcting for
finite-size effects48;49. This approach was validated for the binary systems acetone -
methanol and acetone - tetrachloromethane in chapter 6172;173. In these simulations,
all molecules were treated as rigid bodies interacting through LJ and electrostatic
interactions. Our MD results for these systems quantitatively agree with the exper-
imental data for binary Fick diffusion coefficients D as well for the thermodynamic
factor Γ172;173. Our approach thus bridges the gap between experiments and molecu-
lar simulations. Here, this approach is extended and validated for the ternary system
chloroform - acetone - methanol. Our MD results show good agreement with ex-
periments. Even with simple molecular models taken from standard classical force
fields, i.e. excluding polarization effects, we shall see that it is possible to predict
Fick diffusivities with reasonable accuracy. This may suggest that the use of more
realistic/complex force fields is not needed for predicting transport diffusivities of
typical small molecules.

This chapter is organized as follows. In section 7.2, we explain how to obtain the
MS diffusivities and thermodynamic factors from equilibrium MD simulations. The
details of the simulations are addressed in section 7.3. In section 7.4, we validate
the methodology for computing Fick diffusivities for the ternary system chloroform
- acetone - methanol. Our findings are summarized in section 7.5.

7.2 Computation of diffusion coefficients and thermodynamic
factors

7.2.1 Obtaining diffusion coefficients from MD simulations

In equilibrium MD simulations, representative trajectories of a system consisting of
interacting molecules are obtained17;18;20. From these trajectories, transport proper-
ties can be computed17. For details on the computation of self- and MS diffusivities,
we refer the readers to section 2.3.
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7.2.2 Obtaining thermodynamic factors from MD simulations

In section 6.2.3, we showed that the elements of [Γ] follow from the so-called KB co-
efficients and we explained how these can be computed from simulations. In ternary
systems, the elements of thermodynamic factor [Γ] are related to the KB coefficients
Gi j by93;153;156

Γ11 = − 1
η
[−c2c3G22− c2 +2c2c3G23− c2c3G33− c3 +

c1(c2G12− c2G22−1+ c2G23− c2G13)], (7.1)

Γ12 = −c1

η
(c2G12 + c3G12− c2G13− c3G13− c2G22 + c2G23−

c3G23 + c3G33), (7.2)

Γ21 =
c2

η
(c1G11− c1G12− c3G12− c1G13 + c3G13 + c1G23 +

c3G23− c3G33), (7.3)

Γ22 =
1
η
(c1c3G11 + c1−2c1c3G13 + c1c3G33 + c3 + c2(c1G11−

c1G12− c1G13 +1+ c1G23)), (7.4)

in which

η = c1 + c2 + c3 + c1c2Ω12 + c2c3Ω23 + c1c3Ω13−
1
4

c1c2c3(Ω
2
12 +Ω

2
23 +Ω

2
13−2Ω13Ω23−2Ω12Ω13−2Ω12Ω23), (7.5)

and

Ωi j = Gii +G j j−2Gi j. (7.6)

The KB coefficients allow the computation of the thermodynamic factor from MD
simulations and thus avoid the insertion and deletion of particles as needed in simu-
lations in the grand-canonical ensemble. It is important to consider the convergence
of the integrals in Eq. (6.17). For infinitely large systems, gi j(r)→ 1 for r→ ∞. For
finite systems with periodic boundary conditions, however, gi j(r) does not converge
to 1 for large r resulting in a divergence of Gi j

153. To improve the convergence of
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Gi j, a natural choice is to make the system larger and to use longer simulations. How-
ever, this is computationally inefficient and seriously hinders the direct estimation of
KB coefficients from simulations. Recently, some effort has been made in comput-
ing the KB coefficients using different methods. Wedberg et al. accounted for finite
size effects in simulations by introducing tail corrections to the correlation functions
based on integral equation theory174. These corrections are based on the hypernetted
chain closure which is accurate at high densities. This method requires the optimiza-
tion of two parameters, the joining radius and the tail approximation. Nichols et al.
discussed the effects of truncation of the KB integrals are discussed175. In addition,
a method for estimating the KB integrals using the Fourier transformed atomic posi-
tions is described. This method is shown to account for the corners of the simulation
box and is less sensitive to cutoff effects than the traditional method of Eq. (6.17).
An empirical method for extrapolating the partial volume, compressibility and ac-
tivity coefficients for binary mixtures through the use of seven parameters was also
presented. Mukherji et al. obtained the KB coefficients by coupling a small all-atom
region to a very large coarse-grained reservoir. Exchanging molecules between the
small system and the reservoir is allowed via a hybrid region. The difficulties of
this approach are that the system should be very large and the thermodynamic force
which ensures the thermodynamic equilibrium over the whole system should be cal-
culated for each concentration176. The simplest and in the most past frequently used
approach is to simply use a switching function to force the radial distribution function
g(r) to converge to 1 for large distance r. However, it turns out that the final result
depends on the choice of the switching function157;176.

Recently, we found that the average particle fluctuations in Eq. (6.16) can also
be calculated by considering a large system in which smaller subvolumes are embed-
ded. These subvolumes can exchange particles and energy with the simulation box
and therefore a subvolume can be considered as a system in the grand-canonical en-
semble. However, corrections should be taken due to the finite size effect originating
from the boundaries of the subvolumes48;49;158. We refer the reader to section 6.2.3
and appendix A for more details.
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7.2.3 Obtaining thermodynamic factors from COSMO-SAC

An alternative method to compute the thermodynamic factors for a mixture is through
a model for the activity coefficients γi

177. The COSMO-SAC theory is a quantum-
mechanically based predictive model for the activity coefficients178;179. In brief, the
molecules are represented by a set of screening charge densities known as their σ -
profiles. These profiles are generated by placing each molecule in a conducting or
dielectric cavity and compute a charge distribution using density functional theory
(DFT) which completely screens the molecular charge distribution from the out-
side. The resulting σ -profiles represent “fingerprints” of each molecule which can be
used to model a solution by mixing them in their appropriate mole fractions. Since
COSMO-SAC is an activity coefficient model, the dispersion is assumed to cancel in
the reference fluid. The outcome of this modeling are the activity coefficients for all
species as a function of their concentration. The thermodynamic factors Γi j then fol-
low from numerical differentiation using Eqs. (6.7) and (6.8). This predictive excess
Gibbs energy model is used as a benchmark and reference in this work.

7.3 Simulations details

In the ternary mixture chloroform - acetone - methanol, the OPLS force field is
used for acetone and methanol159;160. A five-site model for chloroform is used180.
All components are treated as rigid molecules. The LJ potentials describe the in-
termolecular non-bonded interactions which are truncated and shifted at 10 Å. The
Lorentz-Berthelot mixing rules are applied to obtain the LJ interaction between un-
like atoms18. Electrostatic interactions are handled by Ewald summation using a
relative precision85 of 10−5. The force field parameters as well as the parameters
defining the geometries of the molecules can be found in Table 7.1. Three dimen-
sional periodic boundary conditions consistent with a cubic box are applied to obtain
properties corresponding to bulk systems. MD simulations were carried out at a tem-
perature of 298 K and a pressure of 1 atm. Systems were first equilibrated in an NpT
ensemble with a Nosé-Hoover thermostat and barostat using the time constants of 0.1
ps and 1 ps, respectively. The equations of motion were integrated using the leapfrog
Verlet algorithm with a time step of 1 fs. The MS diffusion coefficients are obtained
from equilibrium MD simulations in the NVT ensemble using the Nosé-Hoover ther-
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Table 7.1: Force field and geometrical parameters for acetone, methanol and chloroform.
Parameters for acetone were taken from Ref159. Parameters for chloroform were taken from
Ref180. Parameters for methanol were taken from Ref.160

Force field parameters
site σ /Å (ε/kB)/K q/e
CH3 (acetone) 3.910 81.0866 0.0620
C (acetone) 3.750 52.9463 0.3000
O (acetone) 2.960 105.8997 -0.4240
C (CHCl3) 3.800 37.7726 -0.0500
H (CHCl3) - - 0.1850
Cl (CHCl3) 3.470 15.1067 -0.0450
O (methanol) 3.070 85.6753 -0.7000
H (methanol) - - 0.4350
CH3 (methanol) 3.775 104.3223 0.2650

Standard geometrical parameters
bond length/Å bond angle/deg

C-Cl 1.771 CH3-C-CH3 116.30
C-H 1.094 CH3-C=O 121.86
C=O 1.220 CH3-O-H 108.50
CH3-C 1.507 Cl-C-Cl 110.60
O-H 0.945 H-C-Cl 108.31
CH3-O 1.430
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mostat at a density corresponding to a pressure of 1 atm.17. The box volume was
typically around (28 Å)3 resulting in a total number of molecules of the order of 200.
The simulations for extracting diffusion coefficients were run for at least 100 ns to
obtain MS diffusivities with an accuracy of around 5%. KB coefficients required for
the calculation of thermodynamic factors were obtained from MD simulations in the
NpT ensemble. Temperature and pressure were controlled using the Nosé-Hoover
thermostat and barostat, respectively. In these simulations, the box size needs to be
larger, see also section 7.2.2. The box volume was typically fluctuating around (85
Å)3. The maximum number of molecules used in these simulations was typically
7000. Simulation runs of at least 5 ns were needed to obtain accurate values of the
thermodynamic factors. The error bars of the computed thermodynamic factors are
less than 3%.

The COSMO-SAC computations were performed with the 2011.03 release ADF
Theoretical Chemistry software181. The COSMO surfaces were calculated using BP
functionals and the TZP bases181. The standard values of the parameters for the
model were used in all calculations179. To obtain accurate numerical derivatives,
calculations for the logarithmic activities of each mixture were performed at mole
fraction intervals of at most 0.05 in each component. The unconstrained derivatives
from Eq. (6.8) were then calculated in MATLAB directly from these activities using
a central differencing scheme. In the case of the ternary system, the derivatives were
computed using a barycentric coordinate system. The constrained derivatives were
then computed using Eq. (6.7).

7.4 Results and discussion

As ternary experimental data of diffusion coefficients are lacking for the ternary sys-
tem chloroform - methanol - acetone, we validated our method in the relevant binary
mixtures and predicted the ternary diffusion coefficients assuming that the quality
of our method in ternary mixtures is similar to that of binary systems. The binary
system acetone - methanol has been studied in our previous work172;173. The com-
puted Fick diffusivity D and thermodynamic factor Γ quantitatively agree with the
experiments172;173.
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Table 7.2: Densities of pure chloroform, acetone and methanol at 298 K, 1 atm.

ρ/(g·ml−1)
Component This work (MD) Experiments
acetone 0.76 0.78a,b,0.79c

methanol 0.75 0.79a,b

CHCl3 1.48 1.47d

a Experiments by Campbell et al., Ref.161

b Experiments by Noda et al., Ref.162

c Experiments reported in Ref.163

d Experiments reported in Ref.182

7.4.1 Chloroform - acetone

Karr et al. measured the densities of chloroform - acetone mixtures at 298 K, 1
atm182. In Figure 7.1, the computed densities using MD simulations are compared
to the experiments as a function of the composition. The computed mixture densi-
ties show a slightly stronger dependence on mixture composition suggesting a lower
density of pure acetone and a higher density of pure chloroform. This is also shown
in Table 7.2 in which computed pure-component densities are compared to the ex-
perimental ones.

Figure 7.2 shows the thermodynamic factor Γ obtained from experiment and MD
simulation in the binary mixture chloroform - acetone for various compositions. The
computed Γ is larger than unity suggesting a negative deviation from Raoult’s law.
The activity coefficient γ1 increases with increasing x1, that is, the repulsion between
chloroform - chloroform is stronger than that of chloroform - acetone2. In Ref168,
the VLE data are provided from which the activity coefficients γi can be calculated.
By fitting these activity coefficients γi using the NRTL model, the thermodynamic
factor Γ was obtained. Compared to the experiment, Γ obtained from COSMO-SAC
shows good agreement.

Using the computed MS diffusivity Ð12 and thermodynamic factor Γ from MD,
we calculate the Fick diffusivity D as a function of composition, see Figure 7.3. A
good agreement of Fick diffusivity D between experiments and MD simulations is
seen. The very good agreement is partially due to error cancellation: the computed
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Figure 7.1: Densities of chloroform (1) - acetone (2) mixtures at 298 K, 1 atm. Circles are
the computed densities by this work using MD simulations. Squares are the experimental
densities measured by Karr et al. 182.

value of Γ is lower than in experiments implying larger values of the computed MS
diffusivity Ð12. This is reasonable since the computed mixture densities are lower
than in the experiments and larger values of diffusion coefficients are thus expected.

7.4.2 Chloroform - methanol

In the binary mixture chloroform - methanol, the computed mixture densities agree
very well with the experiments183, see Figure 7.4. Figure 7.5 shows thermodynamic
factor Γ as a function of composition for the same binary mixture. COSMO-SAC
accurately predicts Γ when the concentration of chloroform is low. As the concen-
tration of chloroform increases, Γ computed using MD simulations is closer to the
experimental data168. Figure 7.6 shows the computed MS diffusivity Ð12 and Fick
diffusivity D from MD simulations. The Fick diffusivity D is calculated using the
computed MS diffusivity Ð12 and the thermodynamic factor Γ. We observe that the
MS diffusivity Ð12 increases as the concentration of chloroform increases. However,
the increasing chloroform concentration drives the mixture away from ideal mixing
behavior resulting in a reduced concentration dependence of Fick diffusivity D. The
Fick diffusivity D has a minimum value around a concentration of x1 = 0.7, while the
MS diffusivity Ð12 displays a maximum in the same concentration range. The MS
diffusivity Ð12 ranges from 3 to 6 · 10−9 m2·s−1 and the Fick diffusivity D ranges
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Figure 7.2: Thermodynamic factor Γ in the binary system chloroform (1) - acetone (2) at
298 K, 1 atm. Open symbols are the computed Γ in this work using MD simulations. Filled
symbols are the computed Γ using COSMO-SAC. The solid line represents Γ calculated from
the NRTL model and fitted to experimental VLE data taken from Ref.168. Fitted parameters
of the NRTL model are: τ12 = -0.40, τ21 = -0.32; α = 0.4250.
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Figure 7.3: Computed MS diffusivities Ð12 (triangles) and Fick diffusivities D (circles) in the
binary system chloroform (1) - acetone (2) at 298 K, 1 atm. Fick diffusivities are calculated
using the computed thermodynamic factor Γ and MS diffusivities Ð12 from MD simulations.
The error bars of computed diffusivities are smaller than the symbol size. Solid line represent
the experimental Fick diffusivities.
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Figure 7.4: Densities of chloroform (1) - methanol (2) mixtures at 298 K, 1 atm. Circles are
the computed densities from this work using MD simulations. Squares are the experimental
density taken from Ref.183.
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Figure 7.5: Thermodynamic factor Γ in the binary system chloroform (1) - methanol (2)
at 298 K, 1 atm. Open symbols are the computed Γ by this work using MD simulations.
Filled symbols represent Γ computed using COSMO-SAC. The solid line represents Γ calcu-
lated from the NRTL model and fitted to experimental VLE data taken from Ref.168. Fitted
parameters of the NRTL model are: τ12 = 0.51; τ21 = 0.05; α = 0.4750.
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Figure 7.6: Computed MS diffusivity Ð12 and Fick diffusivities D in the binary system
chloroform (1) - methanol (2) at 298 K, 1 atm. Fick diffusivities (circles) calculated using the
computed thermodynamic factor Γ and MS diffusivities Ð12 (triangles) from MD simulations.
The error bars of computed diffusivities are smaller than the symbol size.

from 1.5 to 2.5 · 10−9 m2·s−1.

7.4.3 Chloroform - acetone - methanol

Figure 7.7 shows the densities in chloroform - acetone - methanol mixtures at 298
K, 1 atm. We observe a linear relation between mixture densities and composition.
Figures 7.8, 7.9 and 7.10 show the thermodynamic factors Γi j in the ternary mixtures
as a function of the composition. Data are reported for Γi j as a function of xi while
keeping x j = xk (with i 6= j 6= k). Oracz et al. measured the vapor-liquid equilibrium
for this ternary mixtures at 303 K184. These VLE data were converted to the matrix of
thermodynamic factors Γi j using the NRTL model1;62. The ternary VLE data are very
well described by the NRTL model. The computed Γi j using MD simulation show
quantitative agreement with the experimental data and the results from COSMO-SAC
deviate from experiments. We feel that the agreement is very good considering the
fact that simple molecular interaction models were used in the MD simulations, i.e.
polarization effects are not accounted for.

MS diffusivities Ði j can not be measured directly in experiments. However, it is
possible to predict MS diffusivities Ði j using easily obtained self-diffusivities Di,self.
For this purpose, we have recently proposed a multicomponent Darken model as
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Figure 7.7: Densities of chloroform (1) - acetone (2) - methanol (3) mixtures at 298 K, 1 atm.
The densities are plotted as a function of the mole fraction of one of the components, while
keeping the mole fractions of the other components equal to each other. Diamonds represent
i = 1, x2 = x3. Squares represent i = 2, x1 = x3. Triangles represent i = 3, x1 = x2.

Table 7.3: Computed self-diffusivities Di,self/10−9 m2·s−1 in the ternary system chloroform
(1) - acetone (2) - methanol (3) using MD simulations. The simulations were carried out at
298 K, 1 atm. The mole fraction of component i (xi) is varied while keeping mole fraction of
components j and k equal (x j = xk, i 6= j 6= k).

x1 D1,self D2,self D3,self x2 D1,self D2,self D3,self x3 D1,self D2,self D3,self

0.1 3.96 4.58 3.38 0.1 2.74 2.91 2.02 0.1 3.19 3.61 3.26
0.2 3.65 4.18 3.02 0.2 2.94 3.22 2.33 0.2 3.15 3.51 2.78
0.3 3.28 3.73 2.78 0.3 3.12 3.51 2.55 0.3 3.24 3.67 2.77
0.4 3.07 3.38 2.57 0.4 3.35 3.83 2.92 0.4 3.19 3.57 2.64
0.5 2.89 3.17 2.39 0.5 3.61 4.18 3.28 0.5 3.24 3.59 2.59
0.6 2.71 2.86 2.23 0.6 3.94 4.61 3.77 0.6 3.28 3.79 2.69
0.7 2.62 2.74 2.17 0.7 4.18 4.92 4.32 0.7 3.19 3.73 2.50
0.8 2.50 2.54 2.13 0.8 4.49 5.28 5.00 0.8 3.17 3.67 2.41
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Figure 7.8: Thermodynamic factor Γi j in the ternary system chloroform (1) - acetone (2) -
methanol (3) at 1 atm. Open circles are the computed values of Γi j using MD simulations
at 298 K. Filled circles are the computed values of Γi j using COSMO-SAC at 298 K. Solid
lines represent Γi j calculated from the NRTL model and fitted to experimental VLE data
taken from Ref.184 at 303 K. Fitted parameters of the NRTL model are: τ12 = 0.0; τ13 =
14.49; τ21 = 0.0; τ23 = 0.0; τ31 = 0.79; τ32 = 0.76; α12 = 0.0; α13 = 0.25; α23 = 0.01050. x1 is
varied while keeping x2 = x3.
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Figure 7.9: Thermodynamic factor Γi j in the ternary system chloroform (1) - acetone (2) -
methanol (3) at 1 atm. Open circles are the computed values of Γi j using MD simulations
at 298 K. Filled circles are the computed values of Γi j using COSMO-SAC at 298 K. Solid
lines represent Γi j calculated from the NRTL model and fitted to experimental VLE data taken
from Ref.184 at 303 K. (see the caption of Figure 7.8). x2 is varied while keeping x1 = x3.
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Figure 7.10: Thermodynamic factor Γi j in the ternary system chloroform (1) - acetone (2)
- methanol (3) at 1 atm. Open circles are the computed values of Γi j using MD simulations
at 298 K. Filled circles are the computed values of Γi j using COSMO-SAC at 298 K. Solid
lines represent Γi j calculated from the NRTL model and fitted to experimental VLE data taken
from Ref.184 at 303 K. (see the caption of Figure 7.8) x3 is varied while keeping x1 = x2.
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Figure 7.11: Comparison of the computed MS diffusivities Ði j and the predicted MS dif-
fusivities Ði j in the ternary system chloroform (1) - acetone (2) - methanol (3) at 298 K, 1
atm. x1 varies while keeping x2 = x3. Circles are the computed Ði j using MD simulations.
Triangles are the predicted Ði j using multicomponent Darken equation (Eq. (7.7)). The com-
puted self-diffusivities from MD simulations are used to parametrize Eq. (7.7) and listed in
Table 7.3.
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Figure 7.12: Comparison of the computed MS diffusivities Ði j and the predicted MS dif-
fusivities Ði j in the ternary system chloroform (1) - acetone (2) - methanol (3) at 298 K, 1
atm. x2 varies while keeping x1 = x3. Circles are the computed Ði j using MD simulations.
Triangles are the predicted Ði j using multicomponent Darken equation (Eq. (7.7)). The com-
puted self-diffusivities from MD simulations are used to parametrize Eq. (7.7) and listed in
Table 7.3.
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Figure 7.13: Comparison of the computed MS diffusivities Ði j and the predicted MS dif-
fusivities Ði j in the ternary system chloroform (1) - acetone (2) - methanol (3) at 298 K, 1
atm. x3 varies while keeping x1 = x2. Circles are the computed Ði j using MD simulations.
Triangles are the predicted Ði j using multicomponent Darken equation Eq. (7.7). The com-
puted self-diffusivities from MD simulations are used to parametrize (Eq. (7.7)) and listed in
Table 7.3.
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shown in chapter 4. In this model, we neglect the velocity cross-correlations between
unlike molecules35. The resulting multicomponent Darken equation is

Ði j = Di,self ·D j,self

n

∑
i=1

xi

Di,self
, (7.7)

in which Di,self is the self-diffusivity of component i in the mixture. The computed
self-diffusivities Di,self in the ternary system chloroform - acetone - methanol can
be found in appendix F. The multicomponent Darken equation has been shown to
allow for the most robust and accurate prediction of diffusion coefficients in ideal
diffusing mixtures where the neglect of velocity cross-correlations is justified34;35.
Figures 7.11, 7.12 and 7.13 show the computed MS diffusivities Ði j and the pre-
dicted MS diffusivities Ði j. From these figures, it can be seen that the concentra-
tion dependence of MS diffusivities Ði j is not well captured by the multicomponent
Darken equation. The MS diffusivities are either underestimated or overestimated
by the multicomponent Darken equation suggesting that the correlations of differ-
ent molecules are important in the chloroform - acetone - methanol system. The
deviation of the predicted Ði j using the multicomponent Darken equation from the
computed Ði j was already observed for the binary mixtures acetone - methanol and
acetone - tetrachloromethane172;173. The comparison to the multicomponent Darken
equation demonstrates the potential of molecular simulations for the prediction of
multicomponent Fick diffusion coefficients as the molecular models also allow the
prediction of non-ideal systems.

Figure 7.14 shows the computed Fick diffusivities Di j using the computed MS
diffusivities Ði j and thermodynamic factors Γi j. It can be observed that: (1) the diag-
onal Fick diffusivities are always positive and the off-diagonal Fick diffusivities are
may be negative; (2) the diagonal Fick diffusivities are about one order of magnitude
larger than the off-diagonal Fick diffusivities suggesting the diffusion flux of com-
ponent i mainly depends on its own concentration gradient while the concentration
gradient of other components plays a minor role. This behavior is in accordance with
the bound placed on off-diagonal coefficients by the entropy production for ternary
diffusion12. It is important to note that the values of the elements of the matrices
[Γ] and [D] depend on the labeling of the components (this follows directly from
Eqs. (6.1) and (6.7)). This problem does not apply for MS diffusivities. The com-
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Figure 7.14: Fick diffusivities Di j in the ternary system chloroform (1) - acetone (2) -
methanol (3) at 298 K, 1 atm. Fick diffusivities Di j are calculated using the computed
MS diffusivities Ði j and thermodynamic factors Γi j. Stars-D11; Circles-D12; Triangles-D21;
Squares-D22. (a) x1 varies while keeping x2 = x3; (b) x2 varies while keeping x1 = x3; (c) x3
varies while keeping x1 = x2.
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puted ternary Fick diffusivities can be considered as true predictions as they directly
originate from the force field.

7.5 Conclusions

In this chapter, we present a consistent method for computing ternary Fick diffu-
sivities from equilibrium MD simulations. For this purpose, MS diffusivities and
thermodynamic factors are computed to calculate the matrix of Fick diffusivities.
Our approach is applied to a ternary mixture chloroform - acetone - methanol. Even
though a simple molecular model is used, the computed thermodynamic factors [Γ]
are in close agreement with experiments. This findings suggests that the method
outlined in section 6.2.3 (Eq. (6.18)) is well suited for computing thermodynamic
properties of mixtures in general since the framework relies on the KB coefficients
which become now accessible in practical computations. Validation data for diffu-
sion is only available for two binary sub-systems. Here, MD results and experiments
do agree well. Therefore, we expect that the computed Fick diffusivities should also
be comparable with experiments. The presented approach allows for an efficient and
consistent prediction of multicomponent Fick diffusion coefficients from molecular
models.



A

Obtaining Maxwell-Stefan Diffusivities
from Molecular Dynamics

Trajectories
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In this section, we provide the exact expressions for MS diffusivities in binary,
ternary and quaternary systems as a function of the Onsager coefficients Λi j (Eqs. (2.20)
and (2.21)). We also refer the reader to Refs.35;38.

A.1 Binary systems

In binary systems, the MS diffusivity Ð12 is related to the Onsager coefficients by23

Ð12 =
x2

x1
Λ11 +

x1

x2
Λ22−2Λ12, (A.1)

in which the Onsager coefficients Λi j are defined as

Λi j =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
N j

∑
k=1

vk, j(t + t ′)

〉
. (A.2)

In this equation, N is the total number of molecules in the simulation, Ni is the number
of molecules of component i, vl,i(t) is the center of mass velocity of the lth molecule
of component i at time t. An alternative expression for Λi j in terms of particle posi-
tions is given by Eq. (2.20).

A.2 Ternary systems

In ternary systems, a matrix [∆] is defined with elements following from the Onsager
coefficients Λi j

23

∆11 = (1− x1)

(
Λ11

x1
− Λ13

x3

)
− x1

(
Λ21

x1
− Λ23

x3
+

Λ31

x1
− Λ33

x3

)
, (A.3)

∆12 = (1− x1)

(
Λ12

x2
− Λ13

x3

)
− x1

(
Λ22

x2
− Λ23

x3
+

Λ32

x2
− Λ33

x3

)
, (A.4)

∆21 = (1− x2)

(
Λ21

x1
− Λ23

x3

)
− x2

(
Λ11

x1
− Λ13

x3
+

Λ31

x1
− Λ33

x3

)
, (A.5)

∆22 = (1− x2)

(
Λ22

x2
− Λ23

x3

)
− x2

(
Λ12

x2
− Λ13

x3
+

Λ32

x2
− Λ33

x3

)
. (A.6)

The matrix [∆] can be inverted to obtained the matrix [B]
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[B] = [∆]−1. (A.7)

The MS diffusivities follow directly from the elements of matrix [B]23

Ð13 =
1

B11 +(x2/x1)B12
, (A.8)

Ð12 =
1

B11− ((x1 + x3)/x1)B12
, (A.9)

Ð23 =
1

B22 +(x1/x2)B21
. (A.10)

The final expression for the MS diffusivity Ð12 is

Ð12 =
A+(x1 + x3)B/C

x1D
, (A.11)

in which xi is the mole fraction of component i and the terms A, B, C and D are given
by

A = −Λ11Λ23x2−Λ12x3Λ21 +Λ11x3Λ22−Λ11x3x2Λ22 +Λ11Λ23x2
2−Λ11x3x2Λ32

+Λ11Λ33x2
2−Λ13x1Λ22− x1x3Λ11Λ22 +Λ13Λ22x2

1− x1Λ31x3Λ22 +Λ33x2
1Λ22

+Λ12Λ23x1 +Λ12x3x2Λ21 +Λ13x1x2Λ22 +Λ12x3Λ31x2 +Λ13x2Λ21−Λ13x2
2Λ21

−Λ13x2
2Λ31 + x1Λ12x3Λ21− x2

1Λ12Λ23 + x1Λ32x3Λ21− x2
1Λ32Λ23 +Λ13x1x2Λ32

+x1Λ11Λ23x2 + x1Λ31Λ23x2−Λ12x1Λ23x2−Λ12x1Λ33x2− x1Λ13x2Λ21

−x1Λ33x2Λ21,

B = Λ12x3−Λ13x2− x1x3Λ12 + x1x2Λ23− x1x3Λ32 + x1x2Λ33 , (A.12)
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C = −Λ11Λ23x2−Λ12Λ21x3 + x3Λ11Λ22− x2x3Λ11Λ22 +Λ11Λ23x2
2− x2x3Λ11Λ32

+Λ11Λ33x2
2−Λ13Λ22x1− x1x3Λ11Λ22 + x2

1Λ13Λ22− x1x3Λ31Λ22 + x2
1Λ22Λ33

+x1Λ12Λ23 + x2x3Λ12Λ21 + x1x2Λ13Λ22 + x2x3Λ12Λ31 + x2Λ13Λ21− x2
2Λ13Λ21

−x2
2Λ13Λ31 + x1x3Λ12Λ21− x2

1Λ12Λ23 + x1x3Λ32Λ21− x2
1Λ32Λ23 + x1x2Λ13Λ32

+x1x2Λ11Λ23 + x1x2Λ31Λ23− x1x2Λ12Λ23− x1x2Λ12Λ33− x1x2Λ13Λ21

−x1x2Λ33Λ21,

D = Λ22x3−Λ23x2−Λ22x3x2 +Λ23x3
2− x2Λ12x3 +Λ13x2

2− x2Λ32x3 +Λ33x2
2.

The expression for Ð13 and Ð23 follow directly from a permutation of the component
labels and can be found in the Supporting Information of Ref.34.

A.3 Quaternary systems

In quaternary systems, a matrix [∆] is defined with elements following from the On-
sager coefficients Λi j

23

∆11 = (1− x1)
(

Λ11
x1
− Λ14

x4

)
− x1

(
Λ21
x1
− Λ24

x4
+ Λ31

x1
− Λ34

x4
+ Λ41

x1
− Λ44

x4

)
, (A.13)

∆12 = (1− x1)
(

Λ12
x2
− Λ14

x4

)
− x1

(
Λ22
x2
− Λ24

x4
+ Λ32

x2
− Λ34

x4
+ Λ42

x2
− Λ44

x4

)
, (A.14)

∆13 = (1− x1)
(

Λ13
x3
− Λ14

x4

)
− x1

(
Λ23
x3
− Λ24

x4
+ Λ33

x3
− Λ34

x4
+ Λ43

x3
− Λ44

x4

)
, (A.15)

∆21 = (1− x2)
(

Λ21
x1
− Λ24

x4

)
− x2

(
Λ11
x1
− Λ14

x4
+ Λ31

x1
− Λ34

x4
+ Λ41

x1
− Λ44

x4

)
, (A.16)

∆22 = (1− x2)
(

Λ22
x2
− Λ24

x4

)
− x2

(
Λ12
x2
− Λ14

x4
+ Λ32

x2
− Λ34

x4
+ Λ42

x2
− Λ44

x4

)
, (A.17)

∆23 = (1− x2)
(

Λ23
x3
− Λ24

x4

)
− x2

(
Λ13
x3
− Λ14

x4
+ Λ33

x3
− Λ34

x4
+ Λ43

x3
− Λ44

x4

)
, (A.18)

∆31 = (1− x3)
(

Λ31
x1
− Λ34

x4

)
− x3

(
Λ11
x1
− Λ14

x4
+ Λ21

x1
− Λ24

x4
+ Λ41

x1
− Λ44

x4

)
, (A.19)

∆32 = (1− x3)
(

Λ32
x2
− Λ34

x4

)
− x3

(
Λ12
x2
− Λ14

x4
+ Λ22

x2
− Λ24

x4
+ Λ42

x2
− Λ44

x4

)
, (A.20)

∆33 = (1− x3)
(

Λ33
x3
− Λ34

x4

)
− x3

(
Λ13
x3
− Λ14

x4
+ Λ23

x3
− Λ24

x4
+ Λ43

x3
− Λ44

x4

)
. (A.21)
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By inverting [∆], we obtain the matrix [B]

[B] = [∆]−1. (A.22)

The MS diffusivities follow from the elements of matrix [B]23

Ð14 =
1

B11 +(x2/x1)B12 +(x3/x1)B13
, (A.23)

Ð24 =
1

B22 +(x1/x2)B21 +(x3/x2)B23
, (A.24)

Ð34 =
1

B33 +(x1/x3)B31 +(x2/x3)B32
, (A.25)

Ð12 =
1

1/Ð24−B21/x2
, (A.26)

Ð13 =
1

1/Ð14−B13/x1
, (A.27)

Ð23 =
1

1/Ð24−B23/x2
. (A.28)





B

Obtaining a Darken Equation for
Multicomponent Systems
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MD simulations can be used to directly compute MS diffusivities Ði j from local
fluctuations using linear response theory17;18;20. First, the so-called Onsager coeffi-
cients Λi j can be obtained from MD trajectories, see section 2.3 and appendix A. We
express Λii as34

Λii =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
Ni

∑
g=1

vg,i(t + t ′)

〉

=
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) · vl,i(t + t ′)

〉
+ (B.1)

1
3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

Ni

∑
g=1,g6=l

vl,i(t) · vg,i(t + t ′)

〉
≈ xiCii + x2

i NC?
ii, (B.2)

in which xi = Ni/N and Cii and C?
ii account for self- and cross correlations of the

velocities of molecules of type i, respectively. For Λi j with i 6= j, i.e. correlations
between unlike molecules, we can write34

Λi j =
1

3N

∫
∞

0
dt ′
〈

Ni

∑
l=1

vl,i(t) ·
N j

∑
k=1

vk, j(t + t ′)

〉

≈
NiN j

3N

∫
∞

0
dt ′
〈
v1,i(t) · v1, j(t + t ′)

〉
= Nxix jCi j. (B.3)

It is important to note than all elements of the matrix [Λ] are intensive so Ci j,i 6= j and
C?

ii scale with 1/N 82. As is shown in section 4.2, Cii follows from the self-diffusivity
of component i:

Cii = Di,self. (B.4)

B.1 Binary systems

In binary systems, the MS diffusivity equals23



145

Ð12 =
x2

x1
Λ11 +

x1

x2
Λ22−2Λ12. (B.5)

Inserting Eqs. (B.2) and (B.3) into Eq. (B.5) we obtain

Ð12 = x2C11 + x1C22 + x1x2N(C?
11 +C?

22−2C12). (B.6)

Following Schoen and Hoheisel92, we assume that cross-correlations are much smaller
than self-correlations34, i.e

x1x2N(C?
11 +C?

22−2C12)� x2C11 + x1C22. (B.7)

This directly results in the well-known Darken equation for binary systems54

Ð12 = x2C11 + x1C22 = x2D1,self + x1D2,self. (B.8)

B.2 Ternary systems

In ternary systems, the MS diffusivity Ð12 is given by Eq. (A.11). Inserting Eqs.
(B.2) and (B.3) into Eq. (A.11), we obtain

Ð12 =
BD

AD−CB
, (B.9)

with the terms A, B, C, D defined as
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A = −C22− x2NC?
22 +Nx2C23 + x2C22 + x2

2NC?
22− x2

2NC23 +Nx1x2C12

−Nx1x2C13 +Nx2x3C23− x2C33− x2x3NC?
33,

B = −C11C22 + x2C11C22− x2C11C33 + x1C11C22− x1C22C33 + x1x2NC?
11C22

−x1NC?
11C22− x1x2

2N2C2
12 + x1x2N2C12− x1x2NC?

11C33 + x2
1NC?

11C22

+2x1x2NC12C33− x2
1x2N2C2

12− x2
2NC11C23− x1x2

2N2C?
11C23 + x2

1x2N2C?
11C?

22

−x1x2NC13C22 + x1x2
2N2C12C23 + x1x2

2N2C12C13− x2NC11C?
22− x1x2N2C12C23

+x2NC11C23 + x2
2NC11C?

22− x1x2N2C?
11C?

22 + x1x2N2C?
11C23 + x1x2

2N2C?
11C?

22

+x1x2x3N2C?
11C23− x1x2x3N2C?

11C?
33 + x1x2N2C13C?

22− x1x2
2N2C13C?

22

+x2
1x2N2C12C13 +2x1x2x3N2C13C23 + x1x2NC11C?

22− x1x2NC11C23

−x2
1x2N2C?

11C23− x2
1x2N2C13C?

22 + x1x2x3N2C13C?
22− x1x2C?

22C33

−x1x2x3N2C?
22C?

33 + x1NC13C22− x2
1NC13C22 + x2x3NC11C23− x2x3NC11C?

33

+x1x3NC13C22− x1x3NC22C?
33 + x1x2x3N2C2

13− x1x2N2C12C23− x1x2N2C12C13

+x1x2x3N2C2
23− x1x2x3N2C12C13 +2x1x2x3N2C12C?

33 + x2
1x2N2C12C23,

C = (x1 + x3)(−NC12 +NC13 + x1NC12− x1NC13 +C22 + x2C?
22−C33− x3NC?

33),

D = −C11C22 + x2C11C22− x2C11C33 + x1C11C22− x1C22C33 + x1x2NC?
11C22

−x1NC?
11C22− x1x2

2N2C2
12 + x1x2N2C2

12− x1x2NC?
11C33 + x2

1NC?
11C22

+2x1x2NC12C33− x2
1x2N2C2

12− x2
2NC11C23− x1x2

2N2C?
11C23− x1x2NC13C22

+x1x2
2N2C12C23 + x1x2

2N2C12C13− x2NC11C?
22− x2C11C?

22 + x2NC11C23

+x2
2NC11C?

22− x1x2N2C?
11C?

22 + x1x2N2C?
11C23 + x1x2

2N2C?
11C?

22 + x1x2x3N2C?
11C23

−x1x2x3N2C?
11C?

33 + x1x2N2C?
22C13− x1x2

2N2C13C?
22 + x2

1x2N2C13C12

−2x1x2x3N2C13C23 + x1x2NC11C?
22− x1x2NC11C23 + x2

1x2N2C?
11C?

22− x2
1x2N2C?

11C23

−x2
1x2N2C13C?

22 + x1x2x3N2C13C?
22− x1x2NC?

22C33− x1x2x3N2C?
22C?

33 + x1NC13C22

−x2
1NC13C22 + x2x3NC11C23− x2x3NC11C?

33 + x1x3NC13C22− x1x3NC22C?
33

+x1x2x3N2C2
13− x1x2N2C12C23− x1x2N2C12C13 + x1x2x3N2C2

23− x1x2x3N2C12C13

+2x1x2x3N2C12C?
33 + x2

1x2N2C12C23− x1x2x3N2C12C23.

By assuming that the leading terms in these equations are of the type Cii
34, we finally
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obtain

Ð12 =
x1C22C33 + x2C11C33 + x3C11C22

C33
,

= C11C22

(
x1

C11
+

x2

C22
+

x3

C33

)
,

= D1,selfD2,self

(
x1

D1,self
+

x2

D2,self
+

x3

D3,self

)
. (B.10)

B.3 Quaternary systems

MS diffusivities in quaternary systems follow from the Onsager coefficients accord-
ing to Eqs. (A.13)-(A.28). Using these equations, it is possible to obtain an expres-
sion for Ð12 in terms of Cii, C?

ii and Ci j, j 6=i in which i, j = 1,2,3,4. By assuming that
the leading terms in these equations are of the type Cii

34, we finally obtain

Ð12 = C11C22

(
x1

C11
+

x2

C22
+

x3

C33
+

x4

C44

)
,

= D1,selfD2,self

(
x1

D1,self
+

x2

D2,self
+

x3

D3,self
+

x4

D4,self

)
. (B.11)
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Table C.1: Computed values of self- and MS diffusivities in ternary mixtures in which parti-
cles interact with a WCA potential. We consider the case that components 1 and 2 are diluted
in component 3. All reported values are in reduced units. In all cases, the total number of
molecules is 400. The statistical errors in the computed diffusivities are less than 3%.

Self-diffusivity MS Diffusivity
D1,self D2,self D3,self Ð13 Ð23 Ð12

Number Density a

0.1 2.375 1.980 1.108 2.315 2.010 3.294
0.2 1.042 0.896 0.648 1.009 0.876 1.411
0.5 0.256 0.245 0.199 0.251 0.244 0.318
0.7 0.133 0.116 0.103 0.122 0.111 0.144
0.8 0.085 0.083 0.072 0.086 0.081 0.094

Mass of Species 3 b 5 1.042 0.896 0.648 1.009 0.876 1.411
50 0.793 0.677 0.210 0.761 0.666 2.692

ρ = 0.2
100 0.758 0.645 0.148 0.738 0.623 3.348
500 0.738 0.595 0.066 0.713 0.585 6.238

2500 0.795 0.661 0.028 0.734 0.637 17.609
5000 0.958 0.809 0.018 0.898 0.766 41.794

Mass of Species 3 c 5 0.256 0.245 0.199 0.251 0.244 0.318
10 0.208 0.187 0.142 0.203 0.182 0.270

ρ = 0.5
50 0.125 0.117 0.065 0.133 0.124 0.218

100 0.086 0.085 0.046 0.086 0.084 0.172

Ratio of x1/x2
d 1/3 0.255 0.246 0.198 0.251 0.242 0.318

1 0.256 0.245 0.199 0.251 0.244 0.318
with x3 = 0.95 3 0.256 0.246 0.199 0.252 0.246 0.318

Ratio of x1/x2
e 1/3 0.256 0.246 0.199 0.252 0.244 0.318

1 0.254 0.246 0.198 0.251 0.244 0.318
with x3 = 0.97 3 0.254 0.244 0.199 0.251 0.242 0.319

a M1 = 1; M2 = 1.5; M3 = 5; x1/x2 = 1; x3 = 0.95; T = 2
b ρ = 0.2; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T = 2
c ρ = 0.5; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T = 2
d ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x3 = 0.95; T = 2
e ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x3 = 0.97; T = 2
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Table C.2: Computed values for Ci j for a system with WCA interactions, see Eqs. (3.3) to
(3.8). We consider the case that components 1 and 2 are diluted in component 3. All reported
values are in reduced units. In all cases, the total number of molecules is 400. The statistical
errors in the computed values of Ci j are less than 3%.

C11 C22 C33 C12 C13 C23 C?
33 Cx

/10−1 /10−1 /10−1 /10−4 /10−4 /10−4 /10−3 /10−2

Number Density a

0.1 23.7 20.5 14.1 9.7 -11.4 -16.6 -3.7 3.2
0.2 10.0 8.9 6.5 2.7 -5.4 -7.9 -1.7 -3.6
0.5 2.5 2.5 2.0 2.1 -1.0 -2.0 -0.5 -0.8
0.7 1.2 1.1 1.0 0.9 -0.8 -0.8 -0.3 -1.2
0.8 0.9 0.8 0.7 0.1 -0.4 -0.6 -0.2 0.2

Mass of Species 3 b 5 10.0 8.9 6.5 2.7 -5.4 -7.9 -1.7 -3.6
50 7.9 6.9 2.1 4.2 -0.4 -0.5 -0.6 -1.5

ρ = 0.2
100 7.7 6.5 1.5 3.3 -0.2 -0.2 -0.4 -0.6
500 7.5 6.1 0.7 1.7 0.0 0.0 -0.2 0.4

Mass of Species 3 c 5 2.5 2.5 2.0 2.1 -1.0 -2.0 -0.5 -0.8
10 2.1 1.9 1.4 2.4 -0.6 -0.6 -0.4 -0.4

ρ = 0.5
50 1.4 1.3 0.7 1.8 -0.1 -0.1 -0.2 1.3

100 0.9 0.9 0.5 1.1 0.0 0.0 -0.1 -0.3

Ratio of x1/x2
d 1/3 2.5 2.4 2.0 1.3 -1.7 -1.9 -0.5 -1.2

1 2.5 2.5 2.0 2.1 -1.0 -2.0 -0.5 -0.8
with x3 = 0.95 3 2.5 2.4 2.0 1.6 -1.6 -1.6 -0.5 -1.6

Ratio of x1/x2
e 1/3 2.5 2.4 2.0 1.3 -1.7 -1.9 -0.5 -1.2

1 2.5 2.5 2.0 1.8 -1.3 -1.9 -0.5 -1.1
with x3 = 0.97 3 2.5 2.4 2.0 1.8 -1.3 -1.9 -0.5 -1.1

a M1 = 1; M2 = 1.5; M3 = 5; x1/x2 = 1; x3 = 0.95; T = 2
b ρ = 0.2; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T = 2
c ρ = 0.5; M1 = 1; M2 = 1.5; x1/x2 = 1; x3 = 0.95; T = 2
d ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x3 = 0.95; T = 2
e ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; x3 = 0.97; T = 2
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Table C.3: Computed self- and MS diffusivities for binary mixtures in which the particles
interact with a WCA potential. We consider the case that component i is diluted in component
j (10 molecules of i, 390 molecules of j). All reported values are in reduced units. The
statistical errors in the computed diffusivities are less than 3%.

i− ja Di,self D j,self Ði j

1 - 2 1.279 1.158 1.279
2 - 1 1.314 1.414 1.314
1 - 3 1.032 0.638 1.032
2 - 3 0.879 0.640 0.879
i− jb Di,self D j,self Ði j

1 - 2 0.365 0.355 0.365
2 - 1 0.414 0.431 0.414
1 - 3 0.255 0.196 0.255
2 - 3 0.241 0.201 0.241
i− jc Di,self D j,self Ði j

1 - 2 1.279 1.158 1.279
2 - 1 1.314 1.414 1.314
1 - 3 0.725 0.145 0.725
2 - 3 0.641 0.145 0.641
i− jd Di,self D j,self Ði j

1 - 2 0.365 0.355 0.365
2 - 1 0.414 0.431 0.414
1 - 3 0.086 0.045 0.101
2 - 3 0.085 0.044 0.100

a ρ = 0.2; M1 = 1; M2 = 1.5; M3 = 5; T = 2
b ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 5; T = 2
c ρ = 0.2; M1 = 1; M2 = 1.5; M3 = 100; T = 2
d ρ = 0.5; M1 = 1; M2 = 1.5; M3 = 100; T = 2
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Table C.4: Computed self- and MS diffusivities in ternary mixtures of n-hexane(1)-
cyclohexane(2)-toluene(3) at 298 K, 1 atm. The statistical errors in the computed diffusivities
are less than 5%.

Self-diffusivity/(10−9 m2s−1) MS diffusivity/(10−9 m2s−1)
D1,self D2,self D3,self Ð12 Ð13 Ð23

x1→ 1a 5.50 4.30 4.84 4.19 4.42 4.07
D1,self D2,self D3,self Ð12 Ð23 Ð13

x2→ 1b 2.63 2.05 2.10 2.56 2.10 2.19
D1,self D2,self D3,self Ð13 Ð23 Ð12

x3→ 1c 2.98 2.73 2.89 2.89 2.68 2.99

a 598 n-hexane molecules; 1 cyclohexane molecule; 1 toluene molecule
b 1 n-hexane molecule; 598 cyclohexane molecules; 1 toluene molecule
c 1 n-hexane molecule; 1 cyclohexane molecule; 598 toluene molecules

Table C.5: Computed values for Ci j/(m2s−1) for the system n-hexane(1)-cyclohexane(2)-
toluene(3) system at 298 K and 1 atm., see Eqs. (3.3) to (3.8). The statistical errors in the
computed diffusivities are less than 5%.

C11 C22 C33 C12 C13 C23 C?
11 Cx

/10−9 /10−9 /10−9 /10−11 /10−11 /10−11 /10−11 /10−10

x1→ 1a 5.50 4.28 4.84 -0.45 -0.51 3.96 -5.40 -4.76
C11 C22 C33 C12 C13 C23 C?

22 Cx

/10−9 /10−9 /10−9 /10−11 /10−11 /10−11 /10−11 /10−10

x2→ 1b 2.56 2.10 2.10 -0.02 0.38 0.0 -0.35 3.33
C11 C22 C33 C12 C13 C23 C?

33 Cx

/10−9 /10−9 /10−9 /10−11 /10−11 /10−11 /10−11 /10−10

x3→ 1c 2.92 2.68 2.89 0.05 -0.02 -0.38 -0.48 -2.20

a 598 n-hexane molecules; 1 cyclohexane molecule; 1 toluene molecule
b 1 n-hexane molecule; 598 cyclohexane molecules; 1 toluene molecule
c 1 n-hexane molecule; 1 cyclohexane molecule; 598 toluene molecules
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Table C.6: Computed MS diffusivities in ternary mixtures of methanol(1)-ethanol(2)-
water(3) at 298 K, 1 atm. The statistical errors in computed diffusivities are less than 5%.

Self-diffusivity/(10−9 m2s−1) MS diffusivity/(10−9 m2s−1)
D1,self D2,self D3,self Ð12 Ð13 Ð23

x1→ 1a 1.01 1.73 0.91 1.71 0.91 2.68
D1,self D2,self D3,self Ð12 Ð23 Ð13

x2→ 1b 1.84 2.03 2.29 1.84 2.31 3.24
D1,self D2,self D3,self Ð13 Ð23 Ð12

x3→ 1c 1.55 1.89 2.78 1.54 1.90 4.76

a 168 ethanol molecules; 1 methanol molecule; 1 water molecule
b 1 ethanol molecule; 248 methanol molecules; 1 water molecule
c 1 ethanol molecule; 1 methanol molecule; 598 water molecules

Table C.7: Computed values for Ci j/(m2s−1) for the system ethanol(1)-methanol(2)-
water(3) at 298 K, 1 atm., see Eqs. (3.3) to (3.8). The statistical errors in the computed
values are less than 5%.

C11 C22 C33 C12 C13 C23 C?
11 Cx

/10−9 /10−9 /10−9 /10−11 /10−11 /10−11 /10−12 /10−10

x1→ 1a 1.01 1.72 0.92 0.00 0.00 0.33 -5.96 -4.17
C11 C22 C33 C12 C13 C23 C?

22 Cx

/10−9 /10−9 /10−9 /10−11 /10−11 /10−11 /10−12 /10−10

x2→ 1b 1.83 2.03 2.32 -1.25 -1.09 -0.36 -8.04 -6.95
C11 C22 C33 C12 C13 C23 C?

33 Cx

/10−9 /10−9 /10−9 /10−11 /10−11 /10−11 /10−12 /10−9

x3→ 1c 1.53 1.89 2.78 -1.20 -0.71 -0.58 -4.58 -2.20

a 168 ethanol molecules; 1 methanol molecule; 1 water molecule
b 1 ethanol molecule; 248 methanol molecules; 1 water molecule
c 1 ethanol molecule; 1 methanol molecule; 598 water molecules
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Table C.8: Computed self-diffusivities (in units of 10−9 m2s−1) for binary mixtures con-
taining ethanol, methanol and/or water. Component i is diluted in component j, so Ði j =
Di,self. Here, “1”: ethanol; “2”: methanol; “3”: water. The statistical errors in the computed
diffusivities are less than 5%.

i− j Di,self D j,self Ði j

1 - 2a 1.83 2.00 1.83
2 - 1b 1.73 1.01 1.73
1 - 3c 1.57 2.79 1.57
3 - 1d 0.91 1.02 0.91
2 - 3e 1.88 2.78 1.88
3 - 2 f 2.28 2.02 2.28

a 1 ethanol molecule; 249 methanol molecules
b 169 ethanol molecules; 1 methanol molecule
c 1 ethanol molecule; 599 water molecules
d 169 ethanol molecules; 1 water molecule
e 1 methanol molecule; 599 water molecules
f 249 methanol molecules; 1 water molecule
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Table D.1: Computed and predicted MS diffusivities in ternary mixtures in which particles
interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400. The statistic errors of computed
diffusivities are less than 5%.

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.2 0.32 Ð12 1.01 1.01 0% 1.01 0% 1.06 5% 0.80 21%

Ð13 0.93 0.88 5% 0.87 6% 0.93 0% 0.81 13%
Ð23 0.55 0.55 0% 0.55 0% 0.61 11% 0.55 0%

0.2 0.48 Ð12 1.03 1.00 3% 1.00 3% 1.05 2% 0.85 17%
Ð13 0.97 0.88 9% 0.87 10% 0.92 5% 0.79 19%
Ð23 0.57 0.56 2% 0.56 2% 0.61 7% 0.55 4%

0.4 0.36 Ð12 1.04 0.98 6% 0.99 5% 1.08 4% 0.80 23%
Ð13 1.00 0.88 12% 0.87 13% 0.96 4% 0.71 29%
Ð23 0.58 0.59 2% 0.59 2% 0.67 16% 0.58 0%

0.4 0.48 Ð12 1.09 0.98 10% 0.99 9% 1.07 2% 0.85 22%
Ð13 1.04 0.90 13% 0.87 16% 0.96 8% 0.68 35%
Ð23 0.59 0.61 3% 0.60 2% 0.68 15% 0.60 2%

0.6 0.08 Ð12 1.07 0.99 7% 1.00 7% 1.12 5% 0.68 36%
Ð13 1.05 0.90 14% 1.01 4% 0.70 33% 0.70 33%
Ð23 0.58 0.62 7% 0.74 28% 0.62 7% 0.62 7%

0.6 0.24 Ð12 1.14 1.00 12% 1.00 12% 1.11 3% 0.78 32%
Ð13 1.10 0.92 16% 0.89 19% 1.01 8% 0.69 37%
Ð23 0.59 0.65 10% 0.64 8% 0.75 27% 0.64 8%

0.8 0.04 Ð12 1.13 1.07 5% 1.04 8% 1.15 2% 0.76 33%
Ð13 1.11 1.01 9% 0.94 15% 1.06 5% 0.73 34%
Ð23 0.60 0.77 28% 0.71 18% 0.83 38% 0.72 20%

0.8 0.16 Ð12 1.16 1.06 9% 1.06 9% 1.14 2% 0.88 24%
Ð13 1.12 1.01 10% 0.97 13% 1.05 6% 0.77 31%
Ð23 0.61 0.77 26% 0.74 21% 0.83 36% 0.77 26%

AADe 9% 9% 10% 21%
MaxD f 28% 28% 38% 37%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14).
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Table D.2: Computed and predicted MS diffusivities in ternary mixtures in which particles
interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400. The statistic errors of computed
diffusivities are less than 5%.

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.2 0.16 Ð12 0.25 0.24 4% 0.25 0% 0.26 4% 0.19 24%

Ð13 0.23 0.22 4% 0.21 9% 0.23 0% 0.20 13%
Ð23 0.17 0.17 0% 0.18 6% 0.19 12% 0.17 0%

0.2 0.32 Ð12 0.26 0.25 4% 0.25 4% 0.26 0% 0.24 8%
Ð13 0.24 0.23 4% 0.21 13% 0.23 4% 0.20 17%
Ð23 0.17 0.17 0% 0.18 6% 0.19 12% 0.17 0%

0.4 0.24 Ð12 0.30 0.27 10% 0.26 13% 0.29 3% 0.28 7%
Ð13 0.29 0.25 14% 0.23 21% 0.25 14% 0.19 34%
Ð23 0.19 0.19 0% 0.19 0% 0.22 16% 0.18 5%

0.4 0.36 Ð12 0.32 0.27 16% 0.26 19% 0.29 9% 0.28 13%
Ð13 0.27 0.25 7% 0.23 15% 0.25 7% 0.19 30%
Ð23 0.20 0.20 0% 0.20 0% 0.22 10% 0.18 10%

0.4 0.48 Ð12 0.29 0.28 3% 0.26 10% 0.28 3% 0.29 0%
Ð13 0.28 0.26 7% 0.23 18% 0.25 11% 0.19 32%
Ð23 0.21 0.20 5% 0.20 5% 0.22 5% 0.18 14%

0.6 0.08 Ð12 0.32 0.29 9% 0.29 9% 0.32 0% 0.31 3%
Ð13 0.32 0.27 16% 0.25 22% 0.29 9% 0.20 38%
Ð23 0.19 0.21 11% 0.21 11% 0.25 32% 0.19 0%

0.6 0.16 Ð12 0.32 0.29 9% 0.29 9% 0.32 0% 0.31 3%
Ð13 0.31 0.27 13% 0.25 19% 0.29 6% 0.20 35%
Ð23 0.20 0.22 10% 0.22 10% 0.25 25% 0.20 0%

0.6 0.24 Ð12 0.32 0.30 6% 0.29 9% 0.32 0% 0.32 0%
Ð13 0.31 0.28 10% 0.26 16% 0.29 6% 0.20 35%
Ð23 0.20 0.22 10% 0.22 10% 0.25 25% 0.20 0%

AADe 7% 11% 9% 13%
MaxD f 16% 22% 32% 38%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14).
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Table D.3: Computed and predicted self-diffusivities in ternary mixtures in which particles
interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.2 (top) and 0.5 (bottom); M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400. The
statistical errors of computed diffusivities are less than 2%.

x1 x2 Da
1,self Da

2,self Da
3,self Db

1,self Db
2,self Db

3,self Dc
1,self Dc

2,self Dc
3,self

0.2 0.32 1.01 0.63 0.55 1.00 0.64 0.55 0.94 0.58 0.50
0.2 0.48 1.03 0.66 0.58 1.02 0.66 0.57 0.96 0.60 0.52
0.4 0.36 1.10 0.74 0.66 1.09 0.74 0.65 0.98 0.63 0.55
0.4 0.48 1.11 0.76 0.69 1.11 0.76 0.67 1.01 0.66 0.58
0.6 0.08 1.17 0.81 0.73 1.16 0.81 0.72 0.98 0.64 0.55
0.6 0.24 1.19 0.84 0.78 1.18 0.84 0.75 1.02 0.69 0.60
0.8 0.04 1.30 1.00 0.94 1.27 0.96 0.81 1.06 0.74 0.66
0.8 0.16 1.31 1.00 0.94 1.29 0.99 0.91 1.14 0.83 0.75

AADd - 2% 16%

0.2 0.16 0.24 0.18 0.17 0.23 0.19 0.16 0.21 0.18 0.15
0.2 0.32 0.25 0.19 0.17 0.23 0.20 0.17 0.21 0.18 0.15
0.4 0.24 0.29 0.22 0.20 0.27 0.23 0.19 0.23 0.19 0.16
0.4 0.36 0.29 0.23 0.21 0.27 0.23 0.20 0.23 0.20 0.17
0.4 0.48 0.30 0.24 0.22 0.27 0.24 0.21 0.24 0.20 0.18
0.6 0.08 0.32 0.25 0.24 0.30 0.26 0.22 0.24 0.20 0.17
0.6 0.16 0.33 0.26 0.24 0.31 0.26 0.23 0.24 0.21 0.18
0.6 0.24 0.33 0.27 0.25 0.31 0.27 0.24 0.24 0.21 0.19

AADd - 5% 18%

a Computed self-diffusivities using MD
b Predicted self-diffusivities using Eq. (4.14)
c Predicted self-diffusivities using Eq. (4.6)
d Averaged absolute difference normalized with MD results
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Table D.4: Computed self- and MS diffusivities in binary mixtures in which particles interact
with a WCA potential. We consider the case that component i is diluted in component j, so
here Ði j = Di,self. Note that D

x j→1
j,self is the self-diffusivity of the pure component j. All reported

quantities are in reduced units. The statistical errors in the computed diffusivities are less than
2%. Simulation details: ρ = 0.2 (top) and 0.5 (bottom); M1 = 1; M2 = 5; M3 = 10; M4 = 20;
T = 2; N = 400.

i− j Dx j→1
i,self Dx j→1

j,self Ðx j→1
i j

2 - 1 1.17 1.41 1.17
3 - 1 1.10 1.41 1.10
4 - 1 1.06 1.41 1.06
1 - 2 0.99 0.64 0.99
3 - 2 0.56 0.64 0.56
4 - 2 0.51 0.64 0.51
1 - 3 0.90 0.45 0.90
2 - 3 0.54 0.45 0.54
4 - 3 0.38 0.45 0.38
1 - 4 0.82 0.32 0.82
2 - 4 0.47 0.32 0.47
3 - 4 0.37 0.32 0.37

2 - 1 0.39 0.44 0.39
3 - 1 0.36 0.44 0.36
4 - 1 0.35 0.44 0.35
1 - 2 0.23 0.19 0.23
3 - 2 0.17 0.19 0.17
4 - 2 0.16 0.19 0.16
1 - 3 0.20 0.14 0.20
2 - 3 0.17 0.14 0.17
4 - 3 0.13 0.14 0.13
1 - 4 0.15 0.10 0.15
2 - 4 0.13 0.10 0.13
3 - 4 0.11 0.10 0.11
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Table D.5: Computed and predicted MS diffusivities in ternary mixtures in which particles
interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400. The statistical errors of computed
diffusivities are less than 5%.

Generalized Darken
x1 x2 Ði j MD Eq. (4.6)a AD
0.2 0.32 Ð12 1.01 0.87 14%

Ð13 0.93 0.88 5%
Ð23 0.55 0.60 9%

0.2 0.48 Ð12 1.03 0.92 11%
Ð13 0.97 0.86 11%
Ð23 0.57 0.60 5%

0.4 0.36 Ð12 1.04 0.91 13%
Ð13 1.00 0.83 17%
Ð23 0.58 0.69 19%

0.4 0.48 Ð12 1.09 0.95 13%
Ð13 1.04 0.79 24%
Ð23 0.59 0.70 19%

0.6 0.08 Ð12 1.07 0.85 21%
Ð13 1.05 0.89 15%
Ð23 0.58 0.79 36%

0.6 0.24 Ð12 1.14 0.94 18%
Ð13 1.10 0.86 22%
Ð23 0.59 0.80 36%

0.8 0.04 Ð12 1.13 1.01 11%
Ð13 1.11 1.00 10%
Ð23 0.60 0.99 65%

0.8 0.16 Ð12 1.16 1.05 9%
Ð13 1.12 0.96 14%
Ð23 0.61 0.96 57%

AADb 20%

a Eq. (4.6) is parametrized with the computed self-diffusivities from MD
b Averaged absolute difference
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Table D.6: Computed and predicted MS diffusivities in ternary mixtures in which particles
interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400. The statistical errors of computed
diffusivities are less than 5%.

Generalized Darken
x1 x2 Ði j MD Eq. (4.6)a AD
0.2 0.32 Ð12 0.25 0.21 16%

Ð13 0.23 0.22 4%
Ð23 0.17 0.18 6%

0.2 0.48 Ð12 0.26 0.23 12%
Ð13 0.24 0.23 4%
Ð23 0.17 0.18 6%

0.4 0.36 Ð12 0.30 0.25 17%
Ð13 0.29 0.24 17%
Ð23 0.19 0.22 16%

0.4 0.48 Ð12 0.32 0.26 19%
Ð13 0.27 0.24 11%
Ð23 0.20 0.22 10%

0.6 0.08 Ð12 0.29 0.27 7%
Ð13 0.28 0.24 14%
Ð23 0.21 0.22 5%

0.6 0.24 Ð12 0.32 0.26 19%
Ð13 0.32 0.27 16%
Ð23 0.19 0.25 32%

0.8 0.04 Ð12 0.32 0.27 16%
Ð13 0.31 0.27 13%
Ð23 0.20 0.25 25%

0.8 0.16 Ð12 0.32 0.28 13%
Ð13 0.31 0.27 13%
Ð23 0.20 0.26 30%

AADb 14%

a Eq. (4.6) is parametrized with the computed self-diffusivities from MD
b Averaged absolute difference
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Table D.7: Computed and predicted self-diffusivities in quaternary mixtures in which parti-
cles interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.2 (top) and 0.5 (bottom); M1 = 1; M2 = 5; M3 = 10; M4 = 20; T = 2; N = 400.
The statistical errors of computed diffusivities are less than 2%.

x1 x2 x3 Da
1,selfD

a
2,selfD

a
3,selfD

a
4,selfD

b
1,selfD

b
2,selfD

b
3,selfD

b
4,selfD

c
1,selfD

c
2,selfD

c
3,selfD

c
4,self

0.1 0.2 0.14 0.90 0.53 0.45 0.39 0.90 0.54 0.44 0.38 0.84 0.49 0.40 0.34
0.1 0.2 0.56 0.94 0.57 0.49 0.44 0.94 0.57 0.48 0.42 0.89 0.53 0.45 0.38
0.1 0.6 0.24 0.99 0.62 0.55 0.50 0.99 0.63 0.54 0.48 0.93 0.58 0.49 0.44
0.2 0.4 0.16 0.99 0.62 0.54 0.48 0.98 0.62 0.53 0.47 0.89 0.54 0.45 0.39
0.2 0.4 0.32 1.00 0.63 0.55 0.51 1.00 0.64 0.55 0.48 0.92 0.57 0.48 0.42
0.3 0.2 0.20 1.02 0.63 0.54 0.48 1.00 0.63 0.53 0.47 0.87 0.52 0.43 0.38
0.3 0.2 0.30 1.02 0.64 0.56 0.50 1.01 0.64 0.54 0.48 0.89 0.54 0.45 0.39
0.3 0.2 0.40 1.03 0.65 0.57 0.52 1.02 0.65 0.56 0.49 0.91 0.56 0.47 0.41

AADd - 2% 13%

0.1 0.2 0.14 0.20 0.15 0.13 0.12 0.18 0.15 0.13 0.12 0.16 0.14 0.12 0.11
0.1 0.2 0.56 0.22 0.17 0.15 0.14 0.21 0.17 0.15 0.14 0.19 0.16 0.14 0.13
0.1 0.6 0.24 0.24 0.19 0.17 0.16 0.22 0.19 0.17 0.16 0.21 0.17 0.15 0.14
0.2 0.4 0.24 0.25 0.19 0.17 0.16 0.22 0.19 0.17 0.15 0.19 0.16 0.14 0.13
0.2 0.4 0.32 0.25 0.19 0.18 0.16 0.23 0.19 0.17 0.16 0.20 0.17 0.15 0.14
0.3 0.2 0.20 0.25 0.19 0.17 0.16 0.22 0.19 0.16 0.15 0.18 0.15 0.13 0.12
0.3 0.2 0.30 0.25 0.19 0.17 0.16 0.23 0.19 0.17 0.16 0.19 0.16 0.14 0.13
0.3 0.2 0.40 0.26 0.20 0.18 0.17 0.24 0.20 0.17 0.16 0.20 0.17 0.14 0.14

AADd - 3% 16%

a Computed self-diffusivities using MD
b Predicted self-diffusivities using Eq. (4.14)
c Predicted self-diffusivities using Eq. (4.7)
d Averaged absolute difference normalized with MD results
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Table D.8: Computed and predicted MS diffusivities in quaternary mixtures in which parti-
cles interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; M4 = 40; T = 2; N = 400. The statistic errors of
computed diffusivities are less than 5%.

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 x3 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.1 0.2 0.14 Ð12 1.50 1.07 29% 1.10 27% 1.13 25% 0.73 51%

Ð13 1.03 0.90 13% 0.89 14% 0.94 9% 0.66 36%
Ð14 0.79 0.79 0% 0.79 0% 0.82 4% 0.77 3%
Ð23 0.50 0.53 6% 0.54 8% 0.57 14% 0.44 12%
Ð24 0.49 0.46 6% 0.47 4% 0.50 2% 0.45 8%
Ð34 0.41 0.39 5% 0.38 7% 0.42 2% 0.39 5%

0.1 0.2 0.56 Ð12 1.17 1.03 12% 1.05 10% 1.08 8% 0.77 34%
Ð13 0.83 0.88 6% 0.88 6% 0.92 11% 0.82 1%
Ð14 0.78 0.79 1% 0.76 3% 0.80 3% 0.68 13%
Ð23 0.53 0.53 0% 0.54 2% 0.57 8% 0.51 4%
Ð24 0.48 0.48 0% 0.47 2% 0.50 4% 0.45 6%
Ð34 0.42 0.41 2% 0.39 7% 0.42 0% 0.40 5%

0.1 0.6 0.24 Ð12 1.33 1.00 25% 1.01 24% 1.04 22% 0.88 34%
Ð13 0.90 0.88 2% 0.86 4% 0.90 0% 0.81 10%
Ð14 0.82 0.81 1% 0.77 6% 0.81 1% 0.62 24%
Ð23 0.56 0.55 2% 0.55 2% 0.58 4% 0.52 7%
Ð24 0.54 0.51 6% 0.49 9% 0.52 4% 0.45 17%
Ð34 0.43 0.45 5% 0.42 2% 0.45 5% 0.45 5%

0.2 0.4 0.16 Ð12 0.99 1.01 2% 1.02 3% 1.09 10% 0.77 22%
Ð13 0.96 0.87 9% 0.86 10% 0.93 3% 0.64 33%
Ð14 0.95 0.79 17% 0.76 20% 0.84 12% 0.66 31%
Ð23 0.53 0.54 2% 0.54 2% 0.61 15% 0.47 11%
Ð24 0.53 0.49 8% 0.48 9% 0.55 4% 0.45 15%
Ð34 0.42 0.43 2% 0.41 2% 0.47 12% 0.42 0%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14)
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Table D.8 (continued):

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 x3 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.2 0.4 0.32 Ð12 1.04 1.00 4% 1.01 3% 1.07 3% 0.80 22%

Ð13 0.95 0.87 8% 0.86 9% 0.93 2% 0.75 21%
Ð14 0.87 0.80 8% 0.76 13% 0.83 5% 0.57 34%
Ð23 0.56 0.55 2% 0.55 2% 0.61 9% 0.52 7%
Ð24 0.55 0.51 7% 0.49 11% 0.54 2% 0.45 18%
Ð34 0.41 0.44 7% 0.42 2% 0.47 15% 0.43 5%

0.3 0.2 0.20 Ð12 1.06 1.02 4% 1.03 3% 1.12 6% 0.66 38%
Ð13 0.99 0.88 11% 0.87 12% 0.96 3% 0.61 38%
Ð14 0.94 0.79 16% 0.76 19% 0.87 7% 0.62 34%
Ð23 0.53 0.55 4% 0.55 4% 0.64 21% 0.48 9%
Ð24 0.54 0.49 9% 0.48 11% 0.57 6% 0.46 15%
Ð34 0.40 0.42 5% 0.41 2% 0.49 23% 0.41 2%

0.3 0.2 0.30 Ð12 1.05 1.01 4% 1.02 3% 1.11 6% 0.68 35%
Ð13 0.97 0.88 9% 0.87 10% 0.96 1% 0.67 31%
Ð14 0.96 0.79 18% 0.76 21% 0.86 10% 0.59 39%
Ð23 0.52 0.55 6% 0.55 6% 0.64 23% 0.50 4%
Ð24 0.56 0.50 11% 0.49 13% 0.57 2% 0.46 18%
Ð34 0.42 0.43 2% 0.41 2% 0.49 17% 0.41 2%

0.3 0.2 0.40 Ð12 1.08 1.00 7% 1.01 6% 1.10 2% 0.70 35%
Ð13 1.00 0.87 13% 0.87 13% 0.95 5% 0.72 28%
Ð14 0.95 0.80 16% 0.76 20% 0.85 11% 0.54 43%
Ð23 0.57 0.55 4% 0.56 2% 0.64 12% 0.53 7%
Ð24 0.50 0.50 0% 0.49 2% 0.57 14% 0.46 8%
Ð34 0.42 0.44 5% 0.42 0% 0.49 17% 0.42 0%

AADe 7% 8% 8% 18%
MaxD f 29% 27% 25% 51%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14)
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Table D.9: Computed and predicted MS diffusivities in quaternary mixtures in which parti-
cles interact with a WCA potential. All reported quantities are in reduced units. Simulation
details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; M4 = 20; T = 2; N = 400. The statistic errors of
computed diffusivities are less than 5%.

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 x3 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.1 0.2 0.14 Ð12 0.21 0.22 5% 0.21 0% 0.22 5% 0.15 29%

Ð13 0.19 0.20 5% 0.18 5% 0.19 0% 0.14 26%
Ð14 0.19 0.18 5% 0.16 16% 0.18 5% 0.15 21%
Ð23 0.15 0.15 0% 0.16 7% 0.17 13% 0.13 13%
Ð24 0.15 0.14 7% 0.14 7% 0.15 0% 0.13 13%
Ð34 0.13 0.12 8% 0.12 8% 0.13 0% 0.12 8%

0.1 0.2 0.56 Ð12 0.25 0.23 8% 0.23 8% 0.24 4% 0.18 28%
Ð13 0.19 0.21 11% 0.20 5% 0.21 11% 0.18 5%
Ð14 0.19 0.19 0% 0.18 5% 0.20 5% 0.16 16%
Ð23 0.16 0.16 0% 0.17 6% 0.18 13% 0.15 6%
Ð24 0.18 0.15 17% 0.16 11% 0.17 6% 0.14 22%
Ð34 0.13 0.13 0% 0.13 0% 0.14 8% 0.13 0%

0.1 0.6 0.24 Ð12 0.28 0.24 14% 0.23 18% 0.24 14% 0.20 29%
Ð13 0.25 0.22 12% 0.20 20% 0.21 16% 0.19 24%
Ð14 0.18 0.21 17% 0.19 6% 0.20 11% 0.17 6%
Ð23 0.18 0.17 6% 0.17 6% 0.18 0% 0.16 11%
Ð24 0.16 0.16 0% 0.16 0% 0.17 6% 0.15 6%
Ð34 0.14 0.15 7% 0.14 0% 0.15 7% 0.15 7%

0.2 0.4 0.24 Ð12 0.31 0.25 19% 0.23 26% 0.25 19% 0.18 42%
Ð13 0.26 0.23 12% 0.20 23% 0.22 15% 0.17 35%
Ð14 0.23 0.21 9% 0.19 17% 0.21 9% 0.16 30%
Ð23 0.17 0.17 0% 0.17 0% 0.19 12% 0.15 12%
Ð24 0.17 0.16 6% 0.16 6% 0.18 6% 0.14 18%
Ð34 0.14 0.15 7% 0.14 0% 0.16 14% 0.14 0%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14)
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Table D.9 (continued):

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 x3 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.2 0.4 0.32 Ð12 0.26 0.25 4% 0.24 8% 0.25 4% 0.19 27%

Ð13 0.26 0.23 12% 0.21 19% 0.22 15% 0.18 31%
Ð14 0.21 0.21 0% 0.20 5% 0.21 0% 0.16 24%
Ð23 0.17 0.18 6% 0.17 0% 0.19 12% 0.16 6%
Ð24 0.18 0.16 11% 0.17 6% 0.18 0% 0.14 22%
Ð34 0.14 0.15 7% 0.14 0% 0.16 14% 0.14 0%

0.3 0.2 0.20 Ð12 0.25 0.25 0% 0.23 8% 0.26 4% 0.16 36%
Ð13 0.24 0.23 4% 0.20 17% 0.23 4% 0.15 38%
Ð14 0.24 0.21 13% 0.19 21% 0.21 13% 0.15 38%
Ð23 0.18 0.17 6% 0.17 6% 0.20 11% 0.14 22%
Ð24 0.16 0.16 0% 0.16 0% 0.18 13% 0.14 13%
Ð34 0.14 0.14 0% 0.14 0% 0.16 14% 0.13 7%

0.3 0.2 0.30 Ð12 0.27 0.25 7% 0.24 11% 0.26 4% 0.17 37%
Ð13 0.25 0.23 8% 0.21 16% 0.23 8% 0.16 36%
Ð14 0.25 0.21 16% 0.19 24% 0.22 12% 0.15 40%
Ð23 0.17 0.17 0% 0.18 6% 0.20 18% 0.15 12%
Ð24 0.17 0.16 6% 0.16 6% 0.19 12% 0.14 18%
Ð34 0.14 0.15 7% 0.14 0% 0.17 21% 0.13 7%

0.3 0.2 0.40 Ð12 0.28 0.25 11% 0.25 11% 0.27 4% 0.18 36%
Ð13 0.23 0.23 0% 0.21 9% 0.24 4% 0.18 22%
Ð14 0.21 0.21 0% 0.20 5% 0.22 5% 0.15 29%
Ð23 0.18 0.18 0% 0.18 0% 0.20 11% 0.16 11%
Ð24 0.17 0.16 6% 0.17 0% 0.19 12% 0.15 12%
Ð34 0.14 0.15 7% 0.15 7% 0.17 21% 0.14 0%

AADe 6% 8% 9% 19%
MaxD f 19% 26% 21% 42%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14)
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Table D.10: Computed and predicted self-diffusivities/(10−8 m2 s−1) in ternary mixtures
of n-hexane(1)-cyclohexane(2)-toluene(3) at 298 K, 1 atm. The statistic errors of computed
diffusivities are less than 5%.

x1 x2 Da
1,self Da

2,self Da
3,self Db

1,self Db
2,self Db

3,self Dc
1,self Dc

2,self Dc
3,self

0.2 0.40 0.273 0.241 0.255 0.310 0.258 0.270 0.334 0.278 0.297
0.2 0.20 0.277 0.244 0.265 0.319 0.275 0.291 0.340 0.290 0.312
0.2 0.60 0.260 0.226 0.238 0.302 0.242 0.252 0.328 0.265 0.282
0.4 0.30 0.342 0.298 0.325 0.345 0.286 0.304 0.387 0.315 0.343
0.4 0.15 0.343 0.319 0.331 0.356 0.302 0.323 0.391 0.324 0.354
0.6 0.10 0.352 0.294 0.340 0.404 0.335 0.363 0.443 0.359 0.396

AADd - 8% 16%

a Computed self-diffusivities using MD
b Predicted self-diffusivities using Eq. (4.14)
c Predicted self-diffusivities using Eq. (4.7)
d Averaged absolute difference normalized with MD results
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Table D.11: Computed and predicted MS diffusivities/(10−8 m2 s−1) in ternary mixtures
of n-hexane(1)-cyclohexane(2)-toluene(3) at 298 K, 1 atm. The statistic errors of computed
diffusivities are less than 5%.

Multicomp. Darken Darken-LBV Vignes-LBV Generalized Darken
x1 x2 Ði j MD Eq. (4.12)a ADb Eq. (4.12)c AD Eq. (4.4) AD Eq. (4.6)d AD
0.2 0.40 Ð12 0.284 0.261 8% 0.294 4% 0.303 7% 0.315 11%

Ð13 0.310 0.276 11% 0.308 1% 0.290 6% 0.322 4%
Ð23 0.264 0.244 8% 0.256 3% 0.260 1% 0.287 9%

0.2 0.20 Ð12 0.255 0.257 1% 0.300 18% 0.310 22% 0.315 24%
Ð13 0.284 0.279 2% 0.317 12% 0.309 9% 0.333 17%
Ð23 0.206 0.246 9% 0.273 21% 0.280 24% 0.296 30%

0.2 0.60 Ð12 0.266 0.250 6% 0.287 8% 0.297 12% 0.312 17%
Ð13 0.320 0.264 18% 0.299 7% 0.273 15% 0.305 5%
Ð23 0.227 0.229 1% 0.240 6% 0.253 11% 0.277 22%

0.4 0.30 Ð12 0.284 0.316 11% 0.317 12% 0.331 17% 0.346 22%
Ð13 0.363 0.344 5% 0.337 7% 0.330 9% 0.362 0%
Ð23 0.277 0.300 8% 0.277 0% 0.296 7% 0.329 19%

0.4 0.15 Ð12 0.355 0.327 8% 0.324 9% 0.337 5% 0.343 3%
Ð13 0.360 0.340 6% 0.346 4% 0.345 4% 0.375 4%
Ð23 0.299 0.316 6% 0.294 2% 0.308 3% 0.333 11%

0.6 0.10 Ð12 0.317 0.303 4% 0.353 11% 0.365 15% 0.371 17%
Ð13 0.336 0.351 9% 0.383 14% 0.387 15% 0.412 23%
Ð23 0.269 0.293 9% 0.318 18% 0.337 25% 0.368 37%

AADe 7% 9% 11% 15%
MaxD f 18% 21% 25% 37%

a Eq. (4.12) is parametrized with computed self-diffusivities from MD
b Absolute difference normalized with corresponding value from MD simulations
c Darken-LBV, all self-diffusivities in Eq. (4.12) are parametrized using Eq. (4.14)
d Eq. (4.6) is parametrized with predicted self-diffusivities using Eq. (4.7)
e Averaged absolute difference
f Maximum deviation
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Figure D.1: Computed and predicted MS diffusivities in ternary systems in which particles
interact with a WCA potential. Triangles represent computed MS diffusivities using MD.
Solid lines represent predictions using the Vignes-LBV equation (Eq. (4.4)). Dashed lines
represent predictions using the generalized Darken equation (Eqs. (4.6) and (4.7)). Squares
represent predictions using the generalized Darken equation with the self-diffusivities ob-
tained from MD simulation (Eq. (4.6)+MD). Dotted lines represent predictions using the
Darken-LBV equation (Eqs. (4.12) and (4.14)). Circles represent predictions using the mul-
ticomponent Darken equation with the self-diffusivities obtained from MD simulation (Eq.
(4.12)+MD). Simulation details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400, x1/x3 =
1.
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Figure D.2: Computed and predicted MS diffusivities in ternary systems in which particles
interact with a WCA potential. Triangles represent computed MS diffusivities using MD.
Solid lines represent predictions using the Vignes-LBV equation (Eq. (4.4)). Dashed lines
represent predictions using the generalized Darken equation (Eqs. (4.6) and (4.7)). Squares
represent predictions using the generalized Darken equation with the self-diffusivities ob-
tained from MD simulation (Eq. (4.6)+MD). Dotted lines represent predictions using the
Darken-LBV equation (Eqs. (4.12) and (4.14)). Circles represent predictions using the
multicomponent Darken equation with the self-diffusivities obtained from MD simulation
(Eq. (4.12)+MD). Simulation details: ρ = 0.2; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400,
x1/x2 = 1.
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Figure D.3: Computed and predicted MS diffusivities in ternary systems in which particles
interact with a WCA potential. Triangles represent computed MS diffusivities using MD.
Solid lines represent predictions using the Vignes-LBV equation (Eq. (4.4)). Dashed lines
represent predictions using the generalized Darken equation (Eqs. (4.6) and (4.7)). Squares
represent predictions using the generalized Darken equation with the self-diffusivities ob-
tained from MD simulation (Eq. (4.6)+MD). Dotted lines represent predictions using the
Darken-LBV equation (Eqs. (4.12) and (4.14)). Circles represent predictions using the
multicomponent Darken equation with the self-diffusivities obtained from MD simulation
(Eq. (4.12)+MD). Simulation details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400,
x1/x3 = 1.
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Figure D.4: Computed and predicted MS diffusivities in ternary systems in which particles
interact with a WCA potential. Triangles represent computed MS diffusivities using MD.
Solid lines represent predictions using the Vignes-LBV equation (Eq. (4.4)). Dashed lines
represent predictions using the generalized Darken equation (Eqs. (4.6) and (4.7)). Squares
represent predictions using the generalized Darken equation with the self-diffusivities ob-
tained from MD simulation (Eq. (4.6)+MD). Dotted lines represent predictions using the
Darken-LBV equation (Eqs. (4.12) and (4.14)). Circles represent predictions using the mul-
ticomponent Darken equation with the self-diffusivities obtained from MD simulation (Eq.
(4.12)+MD). Simulation details: ρ = 0.5; M1 = 1; M2 = 5; M3 = 10; T = 2; N = 400, x1/x2 =
1.
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Table E.1: LJ parameters and partial charges used for CnmimCl (see Ref.110). The LJ in-
teractions between unlike pseudo-atoms are calculated using the Lorentz-Berthelot mixing
rules18. The LJ interactions are truncated and shifted at 12 Å. Electrostatic interactions are
handled by Ewald summation using a relative precision85 of 10−5.

LJ Parameters q/e
Atom σ/Å ε/kB [K] C1mimCl CnmimCl (n ≥ 2)
NAa 3.250 85.68 0.0276 0.015
CR 3.500 43.34 0.0050 0.00
CW 3.400 43.34 -0.1734 -0.16
H5 1.247 15.12 0.1544 0.15
H4 1.604 15.12 0.2118 0.20
CN3 3.813 95.75 0.2543 0.26
CN2 3.822 71.56 0.2543 0.23
CT2 3.947 67.03 - 0.05b

CT3 3.902 93.23 - 0.00
Cl 3.742 75.60 -0.80 -0.80

a The notation is explained in Fig. 5.1
b The reported value is for CT2 connected to CN2. For other CT2 groups, the charge is zero,
see Ref.110.

Table E.2: The LJ parameters and partial charges used for DMSO and water87;119. The LJ
interactions between unlike pseudo-atoms are calculated using the Lorentz-Berthelot mixing
rules18. The LJ interactions are truncated and shifted at 12 Å. Electrostatic interactions are
handled by Ewald summation using a relative precision85 of 10−5.

pseudo-atom σ /[Å] ε/kB [K] q/e
O (in DMSO) 2.92 185 -0.459
S (in DMSO) 3.60 139 0.139
CH3 (in DMSO) 3.80 98.95 0.160
O (in H2O) 3.16 90.48 -0.820
H (in H2O) - - 0.410
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Table E.3: Computed self-diffusivities Di,self/(10−9 m2· s−1) and MS diffusivities
Ði j/(10−9 m2· s−1) in CnmimCl-H2O mixtures at 1 atm. ÐIL is the MS diffusivity of IL
molecules defined by Eq. (5.9). The total number of molecules ranges from 100 (IL rich) to
600 (water rich).

C1mimCl (1) + H2O (2) at 298 K
x1 D+,self D−,self DH2O,self Ð+− Ð+H2O Ð−H2O ÐIL
0.1 0.30 0.43 0.68 0.39 0.35 0.37 0.36
0.2 0.08 0.10 0.16 0.10 0.12 0.10 0.11
0.3 0.03 0.04 0.06 0.02 0.04 0.04 0.04

C2mimCl (1) + H2O (2) at 368K
x1 D+,self D−,self DH2O,self Ð+− Ð+H2O Ð−H2O ÐIL

0.1 1.15 1.68 2.95 0.85 1.68 1.80 1.74
0.2 0.54 0.69 1.17 0.51 0.95 0.66 0.78
0.3 0.31 0.37 0.62 0.28 0.71 0.27 0.39
0.4 0.26 0.30 0.51 0.23 0.78 0.21 0.33
0.5 0.16 0.16 0.29 0.16 0.65 0.14 0.23
0.6 0.15 0.14 0.24 0.15 0.97 0.13 0.22
0.7 0.14 0.12 0.21 0.12 1.07 0.12 0.21
0.8 0.12 0.11 0.17 0.13 0.66 0.12 0.21
0.9 0.11 0.09 0.13 0.09 0.89 0.09 0.17

C4mimCl (1) + H2O (2) at 368 K
x1 D+,self D−,self DH2O,self Ð+− Ð+H2O Ð−H2O ÐIL

0.1 0.87 1.47 2.57 0.73 1.29 1.39 1.34
0.2 0.35 0.58 1.04 0.24 0.77 0.62 0.68
0.3 0.17 0.26 0.52 0.15 0.51 0.25 0.33
0.4 0.11 0.18 0.39 0.10 0.64 0.17 0.27
0.5 0.06 0.10 0.20 0.05 0.52 0.09 0.16
0.6 0.05 0.06 0.12 0.04 0.52 0.09 0.15
0.7 0.04 0.05 0.12 0.04 0.55 0.09 0.16
0.8 0.04 0.04 0.10 0.03 0.41 0.10 0.16
0.9 0.03 0.03 0.08 0.03 0.42 0.07 0.13

C8mimCl (1) + H2O (2) at 368 K
x1 D+,self D−,self DH2O,self Ð+− Ð+H2O Ð−H2O ÐIL

0.1 0.30 1.29 2.23 0.44 1.53 1.61 1.57
0.2 0.11 0.46 0.88 0.23 0.81 0.47 0.60
0.3 0.06 0.16 0.39 0.07 0.63 0.22 0.33
0.4 0.03 0.09 0.23 0.05 0.36 0.13 0.19
0.5 0.03 0.06 0.16 0.04 0.32 0.11 0.16
0.6 0.02 0.03 0.10 0.03 0.29 0.08 0.13
0.7 0.02 0.03 0.07 0.03 0.25 0.06 0.09
0.8 0.01 0.02 0.06 0.02 0.31 0.04 0.07
0.9 0.01 0.01 0.05 0.02 0.28 0.03 0.06
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Table E.4: Computed self-diffusivities Di,self/(10−9 m2· s−1) and MS diffusivities Ði j/(10−9

m2· s−1) in CnmimCl-DMSO mixtures at 1 atm. ÐIL is the MS diffusivity of IL molecules
defined by Eq. (5.9). The total number of molecules ranges from 100 (IL rich) to 600 (water
rich).

C1mimCl (1) + DMSO (2) at 298K
x1 D+,self D−,self DDMSO,self Ð+− Ð+DMSO Ð−DMSO ÐIL

0.1 0.25 0.23 0.60 0.03 0.47 1.42 0.71
0.2 0.12 0.12 0.39 0.02 0.40 1.11 0.59

C2mimCl (1) + DMSO (2) at 368K
x1 D+,self D−,self DDMSO,self Ð+− Ð+DMSO Ð−DMSO ÐIL

0.1 0.82 0.95 1.75 0.10 2.08 3.52 2.61
0.2 0.62 0.70 1.42 0.13 1.34 2.69 1.79
0.3 0.49 0.49 1.02 0.14 1.49 2.31 1.81
0.4 0.31 0.33 0.81 0.13 1.00 1.50 1.20
0.5 0.22 0.22 0.59 0.12 0.59 1.39 0.83
0.6 0.21 0.19 0.41 0.16 0.52 0.86 0.65
0.7 0.19 0.16 0.40 0.13 0.37 0.65 0.47
0.8 0.13 0.12 0.25 0.11 0.28 0.51 0.36
0.9 0.10 0.09 0.21 0.10 0.24 0.32 0.27

C4mimCl (1) + DMSO (2) at 368K
x1 D+,self D−,self DDMSO,self Ð+− Ð+DMSO Ð−DMSO ÐIL

0.1 0.67 0.86 1.75 0.09 1.32 2.82 1.80
0.2 0.43 0.52 1.23 0.09 0.83 2.46 1.24
0.3 0.30 0.35 0.92 0.09 0.78 2.20 1.13
0.4 0.22 0.26 0.70 0.09 0.78 2.20 0.81
0.5 0.17 0.17 0.50 0.08 0.43 1.17 0.62
0.6 0.10 0.12 0.41 0.07 0.38 0.75 0.50
0.7 0.07 0.07 0.26 0.06 0.26 0.41 0.32
0.8 0.06 0.06 0.20 0.05 0.17 0.35 0.23
0.9 0.04 0.04 0.14 0.04 0.16 0.30 0.21
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Table E.5: Computed self-diffusivities Di,self/(10−9 m2· s−1) and MS diffusivities Ði j/(10−9

m2· s−1) at infinite dilution. The simulations were carried out at 368 K, 1 atm. Here, we
consider a case which component i is diluted in component j.

i− j D+,self D−,self DH2O,self Ð+− Ð+ j Ð− j

C2mimCl-H2O a 3.52 5.39 8.27 1.08 3.52 5.39
C4mimCl-H2O b 3.10 5.45 8.27 0.84 3.10 5.45
C8mimCl-H2O c 2.40 5.34 8.27 0.56 2.40 5.34
C2mimCl-DMSO d 1.62 3.62 2.38 0.11 1.62 3.62
C4mimCl-DMSO e 1.14 2.26 2.38 0.07 1.14 2.26
i− j D+,self D−,self DH2O,self Ð+− Ð+i Ð−i

H2O-C2mimCl f 0.109 0.074 0.13 0.07 0.80 0.08
H2O-C4mimCl g 0.027 0.026 0.04 0.02 0.42 0.07
H2O-C8mimCl h 0.007 0.008 0.02 0.01 0.25 0.03
DMSO-C2mimCl i 0.109 0.074 0.19 0.10 0.24 0.32
DMSO-C4mimCl j 0.027 0.026 0.15 0.03 0.07 0.28

a 1 molecule of C2mimCl; 599 water molecules
b 1 molecule of C4mimCl; 599 water molecules
c 1 molecule of C8mimCl; 599 water molecules
d 1 molecule of C2mimCl; 199 DMSO molecules
e 1 molecule of C4mimCl; 199 DMSO molecules
f 99 molecules of C2mimCl; 1 water molecule
g 99 molecules of C4mimCl; 1 water molecule
h 99 molecules of C8mimCl; 1 water molecule
i 99 molecules of C2mimCl; 1 DMSO molecule
j 99 molecules of C4mimCl; 1 DMSO molecule



180

Table E.6: Computed values for Dk,self/(10−9m2s−1) and Cx/(10−9m2s−1) for the system
CnmimCl-water and CnmimCl-DMSO mixtures at 368K, 1atm. See Eq. (5.6).

i− k Dk,self Cx Cx/Dk,self

C2mimCl-H2O a 8.27 9.36 1
C4mimCl-H2O b 8.27 8.63 1
C8mimCl-H2O c 8.27 14.5 2
C2mimCl-DMSO d 2.38 52.1 22
C4mimCl-DMSO e 2.38 34.1 14

a 1 molecule of C2mimCl; 599 water molecules
b 1 molecule of C4mimCl; 599 water molecules
c 1 molecule of C8mimCl; 599 water molecules
d 1 molecule of C2mimCl; 199 DMSO molecules
e 1 molecule of C4mimCl; 199 DMSO molecules



F

Kirkwood-Buff Coefficients from
Sampling Fluctuations in

Subvolumes

In MD simulations, we obtained the KB coefficients Gi j by computing density fluc-
tuations in subvolumes of the simulation box, see section 6.2.3. Figure F.1 shows
typical results for the scaling of Gi j with 1/L using this method (L being the linear
length of subvolumes). Only the linear part of 1/L can be used to obtain G∞

i j as: (1)
for 1/L→ 1 Å−1, number of molecules within subvolumes is too small to sample
accurately; (2) for 1/L→ 0, the large simulation box is not sufficiently large to act as
a grand-canonical reservoir leading to corrections for Eq. (6.18)158. The fitting range
for obtaining G∞

i j is determined by calculating the squared correlation coefficient R2

defined as

R2 = 1−
∑i(Gi j−Gp

i j)
2

∑i(Gi j− Ḡi j)
2 , (F.1)

Gp
i j is the predicted value and Ḡi j is the average value of Gi j over the selected range.

R2→ 1 indicates that the linear model fits well to the simulations within the selected
range. The range of 1/L where the squared correlation coefficient R2 is larger than
0.9 for the corresponding Gi j is selected to obtain G∞

i j. Figure F.1 shows the computed
KB coefficients Gi j in an acetone - methanol mixture at equimolar composition using
both cubic and spherical subvolumes158. In case of cubic subvolumes, L is the length
of subvolume in one dimension. In case of spherical subvolumes, L is the diameter
of the subvolume. We observed that the linear regime of Gi j is a bit more difficult
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Figure F.1: Kirkwood-Buff coefficients Gi j in the binary equimolar system acetone (1) -
methanol (2) at 298 K, 1 atm. Gi j is computed by the fluctuation method (Eq.(6.17)). Solid
lines represent the data for spherical subvolumes. Dashed lines represent the data for the cubic
subvolumes. Data between vertical dotted lines are used for extrapolating the KB coefficients
in the thermodynamic limit.

to identify when cubic subvolumes are used. Using spherical subvolumes, the linear
regime of computed Gi j is much wider. In our previous work172, we used cubic sub-
volumes for computing the KB coefficients Gi j. Here, we used spherical subvolumes
for computing the KB coefficients Gi j. In the studied systems, the linear regime of
Gi j occurs between 1/L = 0.07 Å−1 and 1/L = 0.10 Å−1.

Figure F.2 shows the thermodynamic factor Γ in the binary systems acetone -
methanol and acetone - tetrachloromethane. The MD results with cubic subvolumes
are taken from our previous work172. Compared to the experimental data, Γ obtained
from MD simulations using the fluctuation method agrees very well with the result
obtained from COSMO-SAC. The concentration dependence of Γ is correctly cap-
tured and the local minimum is reproduced. Although the linear regime is easier to
identify using spherical subvolumes, our results computed using the cubic subvol-
umes do not significantly deviate from the ones with spherical subvolumes.
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Figure F.2: The thermodynamic factor Γ for the binary mixtures (a) acetone (1) - methanol
(2) and (b) acetone (1) - tetrachloromethane (2) at 298K, 1atm. Solid lines represents Γ calcu-
lated from experimental VLE data taken from Ref.168. Filled symbols represent Γ computed
by this work using COSMO-SAC. Open symbols represent the computed Γ using MD sim-
ulations. Triangles represent the cubic subvolumes were used in MD simulations. Squares
represent the spherical subvolumes were used in MD simulations. The MD data with cubic
subvolumes are taken from our previous work172.
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Summary

The aim of this thesis is to study multicomponent diffusion in liquids using Molecu-
lar Dynamics (MD) simulations. Diffusion plays an important role in mass transport
processes. In binary systems, mass transfer processes have been studied extensively
using both experiments and molecular simulations. From a practical point of view,
systems consisting more than two components are more interesting. However, ex-
perimental and simulation data on transport diffusion for such systems are scarce.
Therefore, a more detailed knowledge on mass transfer in multicomponent systems
is required. The presence of multiple components in a system introduces difficul-
ties in studying diffusion in experiments. Investigating the concentration dependence
of diffusion coefficients seriously increases the required experimental effort. In this
thesis, we will use MD simulation based on classical force fields to study multicom-
ponent diffusion in liquids. Diffusion can be described using both Fick and Maxwell-
Stefan (MS) diffusion coefficients. Experiments provide Fick diffusion coefficients
while simulations usually provide MS diffusion coefficients. Fick and MS diffusivi-
ties are related via the matrix of thermodynamic factors. A brief survey on methods
for studying liquid diffusion and their limitations is presented in chapter 1

In chapter 2, we study the diffusion in the ternary system n-hexane-cyclohexane-
toluene. The existing models for predicting MS diffusivities at finite concentrations
(i.e. the Vignes equation) as well as the predictions at infinite dilution (i.e. predictions
of Ðxk→1

i j using the so-called WK, KT, VKB, DKB and RS models) are tested using
MD simulations. We find that (1) the Vignes equation only results in reasonable
predictions for MS diffusivities yielding differences of 13% compared to the actual
diffusion coefficients; (2) the best predictive model (the KT model) for calculating
MS diffusivities at infinite dilution results in differences of 8% compared to the actual
diffusion coefficients. It is important to note that the differences of 8% can be a
coincidence since KT model is empirical and does not have a theoretical basis. This
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limitation makes KT model unreliable for other systems.
To overcome the difficulties in predicting ternary MS diffusivities at infinite dilu-

tion (i.e. Ðxk→1
i j ), we derive the so-called LBV model based on the Onsager relations.

MS diffusivities at infinite dilution can be expressed in terms of binary and pure com-
ponent self-diffusivities and integrals over velocity cross-correlation functions. By
neglecting the latter terms, we obtain the LBV model. In chapter 3, the LBV model
is validated for WCA fluids and the ternary systems n-hexane-cyclohexane-toluene
and methanol-ethanol-water. We find that: (1) for ideal mixtures i.e. the WCA sys-
tem, as well as the n-hexane-cyclohexane-toluene system, the LBV model is accurate
and superior compared to the existing models for predicting ternary MS diffusivi-
ties at infinite dilution (i.e. the WK, KT, VKB, DKB and RS models); (2) in mixtures
containing associating components, i.e. the ethanol-methanol-water system, the LBV
model indicates that in this system the integrals over velocity cross-correlation func-
tions are important and cannot be neglected. Moreover, the LBV model provides an
explanation why the MS diffusivity describing the friction between adsorbed compo-
nents in a porous material is usually very large.

In chapter 4, we focus on describing the values of MS diffusivities at finite con-
centration. A multicomponent Darken model for describing the concentration de-
pendence of MS diffusivities is derived from linear response theory and the Onsager
relations. In addition, a predictive model for the required self-diffusivities in the mix-
ture is proposed leading to the so-called predictive Darken-LBV model. We compare
our novel models to the existing generalized Vignes equation and the generalized
Darken equation. Two systems are considered: (1) ternary and quaternary WCA sys-
tems; (2) the ternary system n-hexane-cyclohexane-toluene. Our results show that
in all studied systems, our predictive Darken-LBV equation describes the concentra-
tion dependence better than the existing models. The physically-based Darken-LBV
model provides a sound and robust framework for prediction of MS diffusion coeffi-
cients in multicomponent mixtures.

In chapter 5, diffusion in more complex ionic liquid (IL) systems are investi-
gated. Previous research reported in literature has largely focused on self-diffusion
in ILs. For practical applications, mutual (transport) diffusion is by far more im-
portant than self-diffusion. We compute the MS diffusivities in binary systems con-
taining 1-alkyl- 3- methylimidazolium chloride (CnmimCl), water and/or dimethyl
sulfoxide (DMSO). The dependence of MS diffusivities on mixture composition are
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investigated. Our results show that: (1) For solutions of ILs in water and DMSO,
self-diffusivities decrease strongly with increasing IL concentration. For the sys-
tem DMSO-IL, an exponential decay is observed for this; (2) For both water-IL and
DMSO-IL, MS diffusivities vary by a factor of 10 within the concentration range
which is still significantly smaller than the variation of the self diffusivities; (3) The
MS diffusivities of the investigated IL are almost independent of the alkyl chain
length; (4) ILs stay in a form of isolated ions in CnmimCl-H2O mixtures, however,
dissociation into ions is much less observed in CnmimCl-DMSO systems. This has a
large effect on the concentration dependence of MS diffusivities; (5) The LBV model
for predicting the MS diffusivity at infinite dilution described in chapter 3 suggests
that velocity cross-correlation functions in ionic liquids cannot be neglected and that
the dissociation of ILs into ion pairs has a very strong influence on diffusion.

In experiments, Fick diffusion coefficients are measured and molecular simula-
tion usually provides MS diffusivities. These approaches are related via the matrix
of thermodynamic factors which is usually known only with large uncertainties. This
leaves a gap between theory and application. In chapter 6, we introduce a consistent
and efficient framework for the determination of Fick diffusivities in liquid mixtures
directly from equilibrium MD simulations by calculating both the thermodynamic
factor and the MS diffusivity. This provides the missing step to extract Fick diffusion
coefficients directly from equilibrium MD simulations. The computed Fick diffusiv-
ities of acetone-methanol and acetone-tetrachloromethane mixtures are in excellent
agreement with experimental values. The suggested framework thus provides an ef-
ficient route to model diffusion in liquids based on a consistent molecular picture.

In chapter 7, we validate our method for computing Fick diffusivities using equi-
librium MD simulations for the ternary system chloroform - acetone - methanol.
Even though a simple molecular model is used (i.e. rigid molecules that interact by
Lennard-Jones and electrostatic interactions), the computed thermodynamic factors
are in close agreement with experiments. Validation data for diffusion coefficients is
only available for two binary sub-systems. In these binary systems, MD results and
experiments do agree well. For the ternary system, the computed thermodynamic
factors using Molecular Dynamics simulation are in excellent agreement with ex-
perimental data and better than the ones obtained from COSMO-SAC calculations.
Therefore, we expect that the computed Fick diffusivities should also be comparable
with experiments. Our results suggest that the presented approach allows for an ef-
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ficient and consistent prediction of multicomponent Fick diffusion coefficients from
MD simulations. Now, a tool for guiding experiments and interpreting multicompo-
nent mass transfer is available.



Samenvatting

Het doel van dit proefschrift is het bestuderen van diffusie in ternaire vloeistoffen met
behulp van Moleculaire Dynamica (MD) simulaties. Diffusie speelt een belangrijke
rol bij de beschrijving van massatransport. In binaire systemen is massatransport
door diffusie uitvoerig bestudeerd door zowel experimenten als door moleculaire si-
mulaties. Vanuit een praktisch oogpunt zijn systemen bestaande uit meer dan twee
componenten interessanter dan binaire systemen. Nauwkeurige gegevens uit expe-
rimenten en simulaties zijn vaak niet beschikbaar voor deze systemen. Derhalve is
meer gedetailleerde kennis op het gebied van diffusie in systemen bestaande uit mi-
nimaal drie componenten noodzakelijk. De aanwezigheid van meerdere componen-
ten in een systeem leidt tot complicaties bij diffusie experimenten. Het onderzoeken
van de concentratie afhankelijkheid van diffusiecoëfficiënten door middel van experi-
menten vergt aanzienlijk meer inspanning. In dit proefschrift worden MD simulaties
gebaseerd op klassieke “force fields” gebruikt om diffusie in binaire en ternaire vloei-
stoffen te bestuderen. Diffusie kan worden beschreven door Fick en Maxwell-Stefan
(MS) diffusiecoëfficiënten. Experimenten resulteren in Fick diffusie coëfficiënten,
terwijl simulaties doorgaans MS diffusiecoëfficiënten opleveren. Fick and MS diffu-
siecoëfficiënten zijn aan elkaar gekoppeld via de zogenaamde matrix van thermody-
namische factoren. Een kort overzicht van methoden om diffusie in vloeistoffen te
bestuderen en de bijbehorende beperkingen hiervan wordt beschreven in hoofdstuk
1.

In hoofdstuk 2 wordt diffusie in het ternaire systeem n-hexane-cyclohexane-toluene
bestudeerd. De bestaande modellen voor het voorspellen van MS diffusiecoëfficiën-
ten bij eindige concentraties (d.w.z. de Vignes vergelijking) en bij oneindig verdunde
oplossingen (d.w.z. voorspellingen van Ðxk→1

i j op basis van de zogenaamde WK, KT,
VKB, DKB en RS modellen) zijn onderzocht met behulp van MD simulaties. Hieruit
kunnen we concluderen dat: (1) De voorspellingen met de Vignes vergelijking zijn
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redelijk en leveren een verschil op van gemiddeld 13% vergeleken met de berekende
diffusiecoëfficiënten uit MD; (2) Het best voorspellende model (het KT model) voor
het bepalen van MS diffusiecoëfficiënten bij oneindige verdunning resulteert in ver-
schillen van 8% vergeleken met de berekende diffusiecoëfficiënten. Hierbij dient te
worden opgemerkt dat de verschillen van 8% toeval kunnen zijn, aangezien het KT
model geen theoretische basis heeft en dus empirisch is. Deze beperking maakt het
KT model onbetrouwbaar voor andere systemen.

Om ternaire MS diffusiecoëfficiënten bij oneindige verdunning Ðxk→1
i j te kun-

nen voorspellen hebben wij het zogenaamde LBV model afgeleid. Dit model is ge-
baseerd op de Onsager relaties. MS diffusiecoëfficiënten bij oneindige verdunning
kunnen worden uitgedrukt in termen van zelf-diffusiecoëfficiënten van de correspon-
derende zuivere stoffen en binaire systemen, alsmede uit de integralen van snelheid
“cross correlation” functies. Bij het verwaarlozen van de laatste genoemde termen
wordt het LBV model verkregen. In hoofdstuk 3 wordt het LBV model gevalideerd
voor WCA vloeistoffen en de ternaire systemen n-hexaan-cyclohexaan-tolueen en
methanol-ethanol-water. Uit de simulaties kan geconcludeerd worden dat: (1) Voor
ideale mengsels (d.w.z. het WCA systeem en het n-hexaan-cyclohexaan-tolueen sys-
teem) is het LBV model accuraat en superieur aan de bestaande modellen voor het
voorspellen van ternaire diffusiecoëfficiënten bij oneindige verdunning (d.w.z. de
WK, KT, VKB, DKW en RS modellen); (2) In mengsels die associërende compo-
nenten bevatten (b.v. methanol-ethanol-water) zijn de integralen van de snelheid
“cross-correlation” functies belangrijk en kunnen niet worden verwaarloosd. Bo-
vendien geeft het LBV model een verklaring waarom de MS diffusiecoëfficiënt die
de frictie tussen geadsorbeerde componenten in een poreuze media beschrijft, vrijwel
altijd erg groot is.

In hoofdstuk 4 richten we ons op het beschrijven en voorspellen van MS diffusie-
coëfficiënten bij eindige concentraties. Een Darken model voor het beschrijven van
de concentratie afhankelijkheid van MS diffusiecoëfficiënten in systemen bestaande
uit drie of meer componenten is afgeleid met behulp van lineaire respons theorie en
de Onsager relaties. Daarnaast wordt voor deze mengsels een voorspellende model
voor de benodigde zelf- diffusiecoëfficiënten voorgesteld, hetgeen uiteindelijk leidt
tot het voorspellende Darken-LBV model. We vergelijken onze nieuwe modellen
met de bestaande Vignes vergelijking voor ternaire systemen en de zogenaamde “ge-
neralized Darken” vergelijking. Twee systemen worden bestudeerd: (1) ternaire en
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quaternaire WCA systemen; (2) het ternaire systeem n-hexane-cyclohexane-toluene.
Onze resultaten wijzen uit dat in alle bestudeerde systemen de voorspellende Darken-
LBV vergelijking de concentratie afhankelijkheid beter omschrijft dan de bestaande
modellen. Het fysisch gebaseerde Darken-LBV model geeft een solide en robuust
kader voor het voorspellen van de MS diffusiecoëfficiënten in systemen bestaande
uit meer dan 2 componenten.

In hoofdstuk 5 wordt diffusie (meer complexe) ionische vloeistoffen (Ionic Li-
quids, ILs) onderzocht. Reeds bestaand onderzoek was voornamelijk gericht op zelf-
diffusie in ILs. Voor praktische toepassingen is transport diffusie veel belangrijker
dan zelf-diffusie. We hebben de MS diffusiecoëfficiënten berekend voor de binaire
systemen 1-alkyl- 3-methylimidazolium chloride (CnmimCl) met water of dimethyl-
sulfoxide (DMSO). De afhankelijkheid van MS diffusiecoëfficiënten voor de samen-
stelling van het mengsel is onderzocht. Onze resultaten laten zien dat: (1) Voor
oplossingen van ILs in water en DMSO nemen de zelf- diffusiecoëfficiënten sterk af
bij verhoogde IL concentraties. Voor het systeem DMSO-CnmimCl is een exponenti-
ële afname hiervoor zichtbaar; (2) Zowel bij water-CnmimCl als bij DMSO-CnmimCl
variëren de MS diffusiecoëfficiënten met een factor 10 binnen het concentratiebereik.
Dit is kleiner is dan de verandering van zelf-diffusiecoëfficiënten; (3) MS diffusieco-
ëfficiënten van de onderzochte ILs zijn vrijwel onafhankelijk van de lengte van de al-
kylketen; (4) ILs blijven in een vorm van geïsoleerde ionen in CnmimCl-H2O meng-
sels, maar deze dissociatie is veel minder voor CnmimCl-DMSO systemen. Dit heeft
een groot effect op de concentratieafhankelijkheid van MS diffusiecoëfficiënten; (5)
Het LBV model voor het voorspellen van MS diffusiecoëfficiënten bij oneindige ver-
dunning zoals beschreven in hoofdstuk 3 suggereert dat snelheid “cross-correlation”
functies in ILs niet kunnen worden verwaarloosd en dat de dissociatie van ILs tot ion
paren een sterke invloed heeft op diffusie.

In experimenten worden Fick diffusiecoëfficiënten gemeten, terwijl MD simu-
laties MS diffusiecoëfficiënten opleveren. Deze verschillende beschrijvingen kun-
nen in elkaar worden omgerekend door middel van de matrix van thermodynamische
factoren, welke meestal een hoge onnauwkeurigheid bevat. Hierdoor is het lastig
om simulaties en theorie met elkaar te vergelijken. In hoofdstuk 6 introduceren
wij een consistente en efficiënte methode voor het bepalen van Fick diffusiecoëffi-
ciënten in vloeistof mengsels uit MD simulaties. Dit kan door het direct berekenen
van de matrix van thermodynamische factoren en de MS diffusiecoëfficiënten. Dit
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is de onbrekende stap om Fick diffusiecoëfficiënten direct te berekenen uit MD si-
mulaties. De berekende Fick diffusiecoëfficiënten van aceton-methanol en aceton-
tetrachloromethaan mengsels komen uitstekend overeen met experimentele waarden.
De methode resulteert in een efficiënte route om diffusie in vloeistoffen te bestuderen,
gebaseerd op consistente moleculaire voorstellingen.

In hoofdstuk 7 valideren wij de methode uit hoofdstuk 6 voor het ternaire systeem
chloroform-aceton-methanol. Ondanks het gebruik van een simpel moleculair model
(d.w.z. rigide moleculen met een Lennard-Jones en elektrostatisch interacties) komen
de berekende thermodynamische factoren uitstekend overeen met de experimentele
waardes. Experimentele gegevens voor de diffusiecoëfficiënten is alleen beschikbaar
voor de twee binaire subsystemen. In deze binaire systemen zijn MD resultaten en
experimenten in overeenstemming. Voor het ternaire systeem zijn de uit MD simu-
laties berekende thermodynamische factoren in overeenstemming met de experimen-
tele waardes. Bovendien blijken onze MD berekeningen een betere voorspelling te
geven dan zogenaamde COSMO-SAC berekeningen. Derhalve verwachten we dat
de berekende Fick diffusiecoëfficiënten voor het ternaire systeem eveneens overeen-
komen met experimenten. Onze resultaten laten zien dat de gebruikte methode resul-
teert in een efficiënte en consistente voorspelling van Fick diffusiecoëfficiënten uit
MD simulaties.
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