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Introduction
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1.1 Granular materials and jamming

Granular materials are systems consisting of a large number of interacting macro-
scopic particles, such as sand, rice or apples, in which the range of the interaction
is short compared to the particle size. These materials play an important role in ev-
eryday life. A good understanding of the physics of granular materials is desired,
for example, to predict and control landslides and avalanches [1, 2], to design ef-
ficient transport and handling of coal or chemicals [3, 4] and to make high quality
tablets (medicine), i.e. the correct amounts of active and inert ingredients [5, 6].
Unfortunately, there still remains a poor understanding of the behavior of granular
matter [7–9].

As the particles of granular materials (the grains) are larger than roughly 10 mi-
crons, the thermal energy of the grains is small compared to the gravitational and
elastic energy. Depending on the conditions, these athermal systems may behave
like a solid, liquid or gas. For example, sand behaves like a solid when standing on
it, sand behaves like a fluid in an hourglass and sand behaves like a gas when it is
shaken. The different states are in this case determined by the density and the applied
stress. Below a certain stress the system is jammed (stuck in a certain configuration)
and above this stress the system is unjammed [10].

Jamming is not limited to granular materials; colloidal suspensions of small par-
ticles jam as the packing density is raised and supercooled molecular liquids jam as
the temperature is lowered. Liu and Nagel have proposed that stress, packing fraction
and temperature are important parameters that control jamming for all systems, and
that the state of the system can be represented by a "jamming phase diagram" [10].
For the athermal granular materials, the temperature is not included in the jamming
phase diagram.

A collection of grains remains easily trapped in one of the configurations that
have a local energy minimum (metastable configurations). In this thesis, we focus
on the behavior of static granular materials, for which grains are packed in one of
the many possible metastable configurations. In particular, we are interested in the
forces between the grains. It is generally believed that forces between grains on the
microscopic scale are responsible for material properties at the macroscopic scale,
and therefore they are worth studying. In principle there can be attractive forces be-
tween grains (e.g. caused by liquid bridges), but in this study we restrict ourselves to
electrically neutral, non-magnetic grains in vacuum or air. This implies that there are
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Figure 1.1: Probability distribution P( f ) of the magnitude of the contact force f for 2D
systems of N = 500 frictionless particles that have an average coordination number z = 5.5.
All forces are normalized such that the average force 〈 f 〉= 1. If no shear stress is applied on
the system (τ = 0), P( f ) shows a peak close to the average force 〈 f 〉. The system with τ = 0.4
shows a monotonously decreasing P( f ). This suggests unjamming by shear stress [11].

no forces between the grains unless they are in contact. Such forces are called con-
tact forces. Various experimental and theoretical approaches have been used to study
contact forces in granular matter. In this thesis, computer simulations are performed
to study the contact forces.

The collection of all contact forces in a system, as considered above, is called a
force network. The central quantity to characterize force networks is the probabil-
ity distribution P( f ) of the magnitude of the contact force f . A general feature of
the force distribution of a jammed system is the peak close to the average force 〈 f 〉,
while an unjammed system shows a monotonously decreasing probability distribu-
tion [10, 12–14]. In Fig. 1.1 force distributions are shown for two-dimensional (2D)
systems without shear stress (τ = 0) and with shear stress τ = σxy/σxx = σxy/σyy =
0.4, σαβ being the elements of the stress tensor. These systems show the characteris-
tic features of jammed and unjammed systems, respectively. For each system, typical
force networks are shown in Fig. 1.2. The magnitude of the force is isotropically
distributed in the unsheared system (τ = 0). However, in a system in which τ is close
to its yield stress the force network clearly becomes anisotropic. This force network
shows that the large forces have the tendency to align and to form so-called force
chains [15].

Large contact forces, f > 5〈 f 〉, occur very infrequently. The decreasing proba-
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Figure 1.2: Force networks of the systems in Fig. 1.1. The thicknesses of the lines repre-
sent the magnitude of the force. The magnitude of forces is isotropically distributed if no
shear stress is applied (left). If the system is under shear stress, the force network becomes
anisotropic and contains chains of large forces (right). Note that the positions of the grains
are identical in both figures.

bility of these large forces forms the tail of the contact force distribution P( f ). Con-
tradicting findings about the exact shape of the tail give still rise to much debate in
literature: has the contact force distribution an exponential tail P( f ) = aexp[−b f ] or
a Gaussian tail P( f ) = aexp[−b f 2]? [8] In the next section, a summary of several
studies of the force statistics of granular materials is presented.

So far, we only considered contact forces in the direction perpendicular to the
contact surface (normal forces). However, contacting grains often experience also
tangential forces. The tangential forces can act in any direction perpendicular to
the normal force, but their magnitude is always limited. If the tangential forces get
too large, the two contacting surfaces will slip relative to each other. The Coulomb
friction law states that when two grains are pressed together with a normal force, the
contact can support any tangential friction force with

| ft | ≤ µ fn, (1.1)

where µ is the static friction coefficient, ft is the tangential force and fn is the normal
force. The friction coefficient µ is a dimensionless variable which depends on the
material. Typical values for µ are in the range of 0.05–4.00 [16, 17]. In order to
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Figure 1.3: Representation of normal and tangential contact forces (fn,i j and ft,i j respectively)
between two particles i and j.

investigate the role of friction in the system, we study systems of frictionless (µ =
0) and frictional (µ > 0) particles. In Fig. 1.3, a schematic representation of the
normal and tangential contact forces is shown. According to Newton’s third law,
forces acting on particle i are of the same magnitude but in the opposite direction as
the force acting on particle j: fn,i j =−fn, ji and ft,i j =−ft, ji.

1.2 Studying force statistics

In recent years, the behavior of granular matter has been studied by many physi-
cists [18, 19]. The contact force distribution is found to be a structural signature
that distinguishes the jammed granular state from its flowing counterpart [20]. The
contact force distribution P( f ) of normal forces above the average force 〈 f 〉 decays
quickly and in the jammed state P( f ) has a plateau or small peak at force magnitudes
around or below 〈 f 〉. However, the exact shape of the distribution is still under dis-
cussion. In this thesis we focus on the statistics of large contact forces, especially the
tail of the contact force distribution. We will summarize some experimental studies,
simulations and theories on this subject.
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1.2.1 Experiments: boundary forces

The first experiments to study contact forces in granular materials used the carbon-
paper technique [15, 21–23]. The experimental setup usually contains a cylinder
with close-fitting pistons at the top and bottom surfaces. The piston at the bottom is
covered with white and carbon paper. When grains are confined in the cylinder, all
bottom grains press the carbon paper into the white paper. The size and the intensity
of the mark left on the white paper depend on the magnitude of the normal force on
the corresponding grain. Using image analysis software and calibration curves, the
contact forces at the surface can be extracted. Note that only boundary forces are
extracted and not the forces in the bulk of the system. In these studies, the obtained
contact force distribution P( f ) displays an exponential decay for large forces. Little
or no dependence on crystallinity, friction or deformation is observed.

Løvoll et al. [24] used an electronic balance to measure normal forces on indi-
vidual grains at the bottom of a granular system without applying any external load.
With this method it is possible to investigate systems which are under gravity like
regular silo systems or sand piles. The resulting P( f ) also shows an exponential
decay.

Corwin et al. [20] measured P( f ) with a photoelastic (birefringent under strain)
plate at the bottom surface of a three-dimensional (3D) cylindrical pack. This plate
rotates the polarization of light in proportion to the applied local pressure. The posi-
tion and magnitude of the local pressure is detected by a video camera that views the
transducer through an analyzer oriented to block any unrotated light. A roughened
piston that applies a fixed normal load to the top surface, was rotated at a constant
rate. In this way, the local pressures on the bottom surface vary with time. The
boundary forces show a slower than exponential distribution for short packs (height
< 20 beads) and an exponential contact force distribution for taller packs (height
≥ 20 beads). The shape of this distribution does not change when a shear stress be-
low the yield stress is applied. However, at the outer edge of the pack, within the
shear band P( f ) exhibits markedly different behavior: the slope on a triple-log plot
(see Section 1.7) is 5

3 suggesting that for large f , P( f )∼ exp[−c f 5/3].

1.2.2 Experiments: bulk forces

Majmudar et al. [25] measured the normal and tangential forces inside a 2D sys-
tem of N = 2500 bidisperse photoelastic disks that were subjected to pure shear and
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isotropic compression. The experimental setup contains a biaxial cell with walls that
can be moved by motorized linear slides. The cell rests horizontally on a sheet of
Plexiglas and is placed between crossed circular polarizers. From below the system
was illuminated and from above digital images of the internal stresses were made
with a high-resolution camera. The frictional disks (µ = 0.8) are either 0.8 cm or
0.9 cm in diameter with a number ratio 4:1. The sheared states were created by
compressing in one direction and expanding by an equal amount in the other direc-
tion. Isotropically compressed states were created by compressing in both directions.
Both systems shows a tangential force distribution P( ft) with an exponential tail. In
contrast, the normal force distribution P( fn) shows a nearly exponential tail for the
sheared system and a Gaussian tail for the isotropically compressed system.

Brujić et al. [26] presented a method for measuring the contact force distribution
within the bulk of a 3D compressed emulsion system using confocal microscopy. The
dispersed oil phase of the emulsion was fluorescently labeled and consisted of 450
droplets. The emulsion droplets were compressed by an external pressure through
centrifugation, resulting in a system which is close to the jamming transition. The
degree of deformation, extracted from image analysis, was used to calculate the in-
terdroplet normal force

f =
σA
R

, (1.2)

where A is the area of the deformation, σ is the interfacial tension of the droplets and
R is the geometric mean of the radii of curvature of the undeformed droplets. The
large forces show an exponential force distribution, which is consistent with results
of many previous experimental and simulation data on granular matter, foams and
glasses [12, 22, 27, 28]. However, at large pressures, the probability distribution
shows a crossover to a Gaussian-like distribution.

Zhou et al. [29] measured the interparticle contact forces inside 3D piles of
frictionless liquid droplets with no Brownian motion. Three different systems were
studied: (1) a monodisperse pile, (2) a polydisperse pile subjected to its own weight,
and (3) a polydisperse pile with a Teflon disk immersed in fluid on top. The droplet
surfaces were labeled with a monolayer of fluorescent nanoparticles to obtain 3D
images with confocal fluorescence microscopy. The systems contain on the order of
107 droplets; ca.103 droplets near the bottom of the piles were imaged. The contact
forces were calculated with Eq. (1.2) and its probability distribution approximates a
Gaussian decay.
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1.2.3 Simulations

Granular dynamics simulations were performed by Makse et al. [27]. The authors
used the discrete element method which was developed by Cundall and Strack [30].
The simulated system with periodic boundary conditions contains deformable elastic
grains (N = 10000) which interact via normal and tangential Hertz-Mindlin forces
plus viscous dissipative forces [31]. Packings were created by compressing the initial
configuration of non-overlapping spheres. At low stress, the contact force distribution
is exponential, however, a gradual transition to a Gaussian contact force distribution
is found when the system is compressed further. A similar transition is observed in
simulations involving frictionless grains under isotropic compression.

Radjai et al. [28] used the contact dynamics (CD) approach to study the dynamics
of perfectly rigid particles (N = 4025). In CD the contact forces are calculated by
virtue of their effect, which is to fulfill constraints such as the volume exclusion of
the particles or the absence of sliding due to static friction [32]. The systems of
Radjai are in static equilibrium as the kinetic energy of the system is fully dissipated
in friction and collisions. The contact force distribution P( f ) shows an exponential
decay for larger forces and is quite robust with respect to changes in the grain-grain
friction coefficient.

O’Hern et al. [12] performed molecular dynamics simulations of binary 50%/50%
mixtures in 2D with N = 1024 particles at constant temperature, using the Gaussian
constraint thermostat and leapfrog algorithm [33]. The effect of different interparti-
cle pair potentials was studied. The contact forces followed directly from the particle
positions. The simulations on purely repulsive potentials were carried out at con-
stant reduced density ρ = N/V = 0.747; the simulations of attractive pair potentials
were carried out at zero average pressure. All particles have the same mass but dif-
ferent diameters (σ2/σ1 = 1.4) which prevents the system from crystallization [34].
The particles were confined to a square box with periodic boundary conditions. This
model system was studied in and out of equilibrium. Systems out of equilibrium were
created by thermal quenches from high temperature to a temperature below the glass
transition temperature Tg. Systems in equilibrium were created by a simulation at
T > Tg followed by an equilibration. At all temperatures, an exponential tail of P( f )
was observed. However, when shear stress was applied to the system out of equilib-
rium, the tail of the force distribution bends down on a logarithmic plot, suggesting
a faster than exponential decay. In a follow-up study by the same authors [35], also
exponential behavior of P( f ) at large f is found for systems at T = 0 close to density
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at which the system starts to unjam.
Tkachenko et al. [36] used adaptive network simulations to study a 2D pack-

ing N = 500 of variable-sized discs (polydispersity = 10%) and periodic boundary
conditions in one direction. In the simulation procedure, individual contacts between
adjacent beads are sequentially removed and added, while the bead positions are not
modified. Finally, a stable configuration without tensile contact forces is found. The
contact force distribution P( f ) does not show a convincing exponential decay; it
clearly decays faster than exponentially.

Silbert et al. [37] performed 3D molecular dynamics simulations of unloaded
frictional granular packings. The N = 12800 monodisperse and cohesionless spheres
interact only via a Hooke spring ( f = kδ in which k is the elastic constant and δ

is the deformation from equilibrium) or a Hertz contact law ( f = kδ 3/2) and static
friction. The packings were generated from a dilute system under gravity. Particles
settled onto a bottom wall that was either a planar base or a frozen template of a
close-packed random particle configuration until the kinetic energy of the system
was much smaller than the potential energy. The packings are spatially periodic in
the horizontal plane to ignore the effects of sidewalls. In this case, the system can
be compared to free-standing sand piles. The system can also be compared with
experimental packings poured into a cylindrical container with a wall that has the
same properties as the particles, but then the average force need to be normalized by
the average contact force at a depth z in the packing. The distribution of the particle-
particle and particle-wall normal and tangential contact forces were computed. The
distribution of normal forces P( fn) shows an exponential-like decay at large forces
for both the Hookean and the Hertzian contact force law in both systems (spatially
periodic and cylindrical) with µ = 0.5. The distribution of tangential forces P( ft)
decays more slowly than P( fn).

1.2.4 Theoretical studies

The q-model [15, 38] provides a quantitative way to study granular matter and to un-
derstand the experimentally observed exponential tail of the force distribution P( f ),
but at the cost of a significant simplification. This scalar model only takes the nor-
mal component of the force (i.e. weight) into account. The grains of mass unity are
assumed to be positioned on a regular lattice. A fraction qi j of the total weight sup-
ported by a grain i in a certain layer is transmitted to grain j in the layer underneath
it. The fractions are generated randomly, satisfying the constraint ∑i qi j = 1, which
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assures mechanical equilibrium in the vertical direction. At large depths, the weight
distribution P(q) yields an exponential tail. In principle, this tail depends on details
of the stochastic rules for force transmission and need not to be exponential [39, 40].
Note that the q-model does not ensure balance on the horizontal forces.

Edwards had proposed a theory for powders, which is based on analogies with
statistical mechanics [41]. In Edwards’ ensemble, besides the force distribution also
thermodynamic quantities can be computed by averaging over force and positional
configurations of grains. Valid configurations are all possible static packings with no
overlap between grains. Edwards assumes that all valid configurations are equally
probable, like in the microcanonical ensemble. The large number of degrees of free-
dom, i.e. positions and forces, makes it difficult to calculate averages. Recently,
Snoeijer et al. presented an approach [42, 43] inspired by Edwards’ ensemble, the
so-called force network ensemble. The allowed configurations are also sampled with
equal probability, but the ensemble of Snoeijer is limited to a single packing. Limit-
ing Edward’s ensemble to a single configuration of particles has also been suggested
by Bouchaud in a different context [44]. A detailed description of the force network
ensemble is presented in Section 1.5.

Rottler and Robbins studied a coarse-grained model for polymers that shows jam-
ming behavior [45]. Each linear polymer was modeled by N beads of mass m. Van
der Waals interactions were described with a standard Lennard-Jones potential and a
simple analytic potential was used for covalent bonds between adjacent beads along
the chain. Jamming behavior is shown under tension in which the covalent bonds
carry most of the stress. The distribution of forces between any pair of particles
shows an exponential tail. The authors make an analogy with the Boltzmann distri-
bution, because in jammed systems the total force is conserved and one may imagine
that the number of microstates is maximized. We will come back to this analogy in
Chapter 2.

Kruyt and Rothenburg developed a theory for the distribution of contact forces for
cohesionless, frictional granular materials, which is based on a maximum informa-
tion entropy principle [46]. In their study, entropy is maximized under the constraints
of a prescribed stress and the requirements that the normal component of the contact
forces is compressive and that the tangential component of the contact force is lim-
ited by Coulomb friction. The distribution of both the normal and tangential contact
forces exhibit an exponential decay for large forces. The crossover to a Gaussian
decay is not observed when the stress increases, which may be caused by the absence
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of kinetics that are important for elastic effects.
In a series of papers [47–49], Metzger presents a very elegant model to describe

contact force statistics of force balanced grains in the isostatic limit, based on entropy
maximization of the Edwards ensemble. Although an exponential tail is explicitly
mentioned in Ref. [47], a closer inspection reveals that the contact force distribution
decays faster than exponential [50].

1.3 Molecular Simulation techniques

Real-life situations and experiments can often be simulated with computer models.
Models used in molecular simulations contain a detailed description of the system at
microscopic level (e.g. the atomic or molecular positions and momenta). Statistical
mechanics relates the microscopic properties to the macroscopic properties of mate-
rials, such as temperature, pressure, energy and heat capacity. Computer simulations
can be used to actually compute these properties from the microscopic interactions.

Simulations are often relatively easy and cheap compared to experiments, es-
pecially under extreme circumstances. Therefore, simulations can be used to study
phenomena that are not yet fully understood, such as avalanches, crystal growth or
protein folding. Although, computers are becoming faster every year, a typical simu-
lation may still run for several days, weeks or even months depending on the system
size, complexity, etc. Note that simulations have a fixed duration, meaning that only a
finite number of the total number of microstates, i.e. specific microscopic configura-
tions of a system, can be generated. Therefore, molecular simulations nearly always
provide an estimate of a certain property.

The collection of all microstates which correspond to an identical macroscopic
state is called an ensemble. Different macroscopic environmental constraints lead to
different types of ensembles. The following are the most important: the canonical
ensemble (constant number of particles N, volume V and temperature T ), micro-
canonical (constant N,V, and energy E) [51], grand-canonical (i.e., constant chemi-
cal potential µ,V,T ), isobaric-isothermal, constant-stress-isothermal, and the Gibbs
ensemble [52].

Molecular simulation methods can roughly be divided in two categories: Monte
Carlo (MC) methods and Molecular Dynamics (MD) methods. In Molecular Dy-
namics, the time evolution of a system is followed by integrating the equations of
motion. From the resulting trajectory, one can not only compute configurational or
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thermodynamic averages, but also transport properties like the diffusivity, heat con-
ductivity etc. In Monte Carlo simulations, we compute averages over a representative
part of all possible configurations. The ergodicity hypothesis states that in principle
time averages should be identical to configurational averages [33, 52]. For a more
in-depth discussion of molecular simulation techniques we also refer the reader to
Refs. [33, 53–57].

In computer simulations an interaction model is used to describe a system at
microscopic level. A pair of charge neutral atoms or molecules is subject to two
types of forces: an attractive force at large distances and a repulsive force at short
distances. The Lennard-Jones potential [58] is a simple and very popular model that
mimics this behavior:

uLJ(ri j) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]
, (1.3)

in which ri j = |ri j| = |ri− r j| is the distance between the particle, ε is the depth of
the potential well and σ is the (finite) distance at which the interparticle potential is
zero. uLJ(r) has a minimum at r∗ = 21/6σ and uLJ(r∗) = −ε . Usually, interactions
beyond a certain distance rcut are not taken into account.

If one wants to simulate a bulk system without a surface present, a set of pe-
riodic boundary conditions can be used [52]. This means that a simulation box is
surrounded by copies of itself. When a particle leaves the central box on one side,
it enters the central box on the other side. Particle i in the central box only interacts
with the nearest image of particle j, which may be located in the central box or in
one of the images. This is called the nearest image convention. The nearest image
convention is automatically satisfied if the cut-off radius rcut is smaller than half the
box size.

1.3.1 Molecular Dynamics

Molecular Dynamics (MD) simulations were first introduced by Alder and Wain-
wright in the late 1950’s [59, 60] to investigate the phase diagram of a hard sphere
system, and in particular the solid and liquid regions. In a hard sphere system, par-
ticles interact via instantaneous collisions, and travel as free particles between colli-
sions.

MD simulations are very similar to real experiments. The system is “prepared”
by selecting a model system consisting of N particles and after equilibration some
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quantities can be measured at different time steps, such as the instantaneous temper-
ature. To measure an observable quantity in a MD simulation, the trajectory of the
particles in the system is needed. For instance, the instantaneous temperature T (t)
can be calculated using the following relation

T (t) =
N

∑
i=1

miv2
i (t)

kBN f
, (1.4)

in which N f = dN − d is the number of degrees of freedom for a d-dimensional
system of N particles with fixed total momentum, mi is the mass and vi is velocity
of particle i. This relation follows from equating the kinetic energy of the system
∑

N
i=1

1
2 miv2

i (t) to the average kinetic energy 1
2 N f kBT . The temperature T is calculated

by averaging the instantaneous temperature over many time steps: T = 〈T (t)〉.
The velocities need to be solved numerically by integrating Newton’s equations

of motion. First, the forces on all particles need to be computed. Forces between
the particles are given by an interaction potential u(ri j). From the positions of the
particles, the net force Fi on each particle i can be calculated

Fi = ∑
j

fi j, (1.5)

fi j = −
ri j∣∣ri j
∣∣ du(ri j)

dri j
, (1.6)

in which
∣∣ri j
∣∣ is the distance between particle i and j. Given this force and using

Newton’s second law Fi = miai, the acceleration ai of each particle with mass mi can
be calculated. Numerous numerical algorithms have been developed for integrating
the equations of motion. The Verlet algorithm uses positions and accelerations at
time t and the positions at time t−∆t to calculate new positions at time t +∆t

ri(t +∆t) = 2ri(t)− ri(t−∆t)+
Fi(t)
mi

∆t2. (1.7)

The velocity can be derived from the trajectory, using

vi(t) =
ri(t +∆t)− ri(t−∆t)

2∆t
. (1.8)

Alternatives to the Verlet algorithm are the Euler algorithm [52], the Leap Frog algo-
rithm [61], the Velocity Verlet algorithm [62] and the Beeman algorithm [52].
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For the case of particles with friction, Silbert et al. [63, 64] used MD simulations
that account for both the normal and tangential forces. Particles in contact experience
a relative normal compression δ =

∣∣|ri j|−d
∣∣ (in which d is the particle diameter).

The normal and tangential contact forces are given by

fn,i j = knδ
ri j

ri j
− m

2
γnvn, (1.9)

ft,i j = − ktst −
m
2

γtvt , (1.10)

where kn,t and γn,t are elastic and viscoelastic constants. st is the elastic tangential dis-
placement between spheres. By integrating the velocities during elastic deformation
of the contact st can be calculated

dst

dt
= vt −

(st ·v)ri j

r2
i j

. (1.11)

At the initiation of a contact st is set to zero. As necessary to satisfy a local Coulomb
yield criterion, the magnitude of st is truncated. From Eqs. 1.9, 1.10, 1.11 it becomes
clear that the preparation history of the contacts will have a strong influence on the
final contact force distribution at mechanical equilibrium.

1.3.2 Monte Carlo

The physicists Stanislaw Ulam, Enrico Fermi, John von Neumann, and Nicholas
Metropolis proposed a method to study differential equations with a statistical ap-
proach [65]. More than fifty years ago, the first Monte Carlo simulations were per-
formed in the Los Alamos National Laboratory for early work relating to the de-
velopment of the hydrogen bomb. Monte Carlo simulations were named after the
famous casino in Monte Carlo. This emphasized the importance of randomness or
probability.

Monte Carlo simulation methods are especially useful in studying systems with a
large number of degrees of freedom c, such as the coordinates of particle, spin states
and in our case contact forces. The instantaneous value of an observable quantity A(c)
depends only on the degrees of freedom c. Not every state is equally probable; the
probability of finding the system in state c is proportional to the probability density
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ρ(c). Therefore, the average of an observable A follows from

〈A〉=

∫
dcρ(c)A(c)∫

dcρ(c)
. (1.12)

For almost all physically relevant systems, it is not possible to solve these integrals
analytically or numerically using conventional numerical integration techniques, be-
cause of the high dimensional phase space of these systems. A possible way to
compute averages is to generate a sufficiently large number K of random states k.
Equation (1.12) can be approximated using

〈A〉=

lim
K→∞

K

∑
k=1

ρ(ck)A(ck)

lim
K→∞

K

∑
k=1

ρ(ck)

. (1.13)

However, random sampling is a very inefficient approach, because almost all states
have a very low probability density ρ(c) and will not contribute much to the nu-
merator and denominator of Eq.1.13. Importance sampling solves this problem by
generating states with a probability proportional to ρ(c). In this case, the statisti-
cal weight is already taken into account in the generation of the state and therefore
ensemble averages can be calculated as unweighted averages

〈A〉= lim
K→∞

K

∑
k=1

A(ck)

K
. (1.14)

This sampling scheme should not change the equilibrium distribution of the system.
This is guaranteed by imposing detailed balance, which means that in equilibrium
the average number of accepted moves from the old state o to any other new state n is
exactly canceled by the number of accepted reverse moves. Note that imposing strict
detailed balance is often convenient but not necessary, see Refs. [66, 67]. Metropolis
developed a scheme with an acceptance rule that obeys detailed balance [68]:

1. Generate an initial configuration co and calculate ρ(co).

2. Generate a new state cn by adding a random displacement to co and calculate
ρ(cn)
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3. Accept the trial move with the following acceptance rule

Pacc(o→ n) = min
(

1,
ρ(cn)
ρ(co)

)
. (1.15)

The function min(a,b) returns the smaller of its arguments. If rejected, the old
configuration co is kept. According to Eq. (1.15), new states with a larger ρ are
always accepted, and new states with a smaller ρ are accepted with a certain
probability.

4. Update ensemble averages, also after a rejected move.

5. Consider the actual configuration as old configuration and repeat from step 2.

It has already been mentioned that averages can be calculated in different ensem-
bles. For systems consisting of interacting particles, the most conventional one is the
canonical ensemble, in which the number of particles N, volume V and temperature
T are constant. The system can exchange energy with a much larger system that act
as a heat bath at a fixed temperature. The heat bath is sufficiently large that it is not
significantly affected by the smaller system. The ensemble average 〈A〉 is calculated
with Eq. (1.14). Here, the degrees of freedom c are the coordinates rN of all N par-
ticles, and ρ(rN) ∼ exp[−βU(rN)] in which U(rN) is the total energy of the system
and β = 1/(kBT ), kB being the Boltzmann constant. The acceptation rule is therefore
as follows

Pacc(o→ n) = min(1,exp[−β (U(rN
n )−U(rN

o ))]) = min(1,exp[−β∆U ]). (1.16)

Experiments at constant N, V and E are rare, but simulations under these condi-
tions (the microcanonical ensemble) are comparable to the force network ensemble,
which will be explained in Section 1.5.

1.3.3 Umbrella sampling

Umbrella sampling is a simulation technique designed to enhance the sampling of
rare but important regions of configuration space in a Monte Carlo simulation. This
technique was originally invented by Torrie and Valleau in 1977 [69], but it has been
re-invented many times under different names [33, 52]. In a Monte Carlo simulation,
ensemble averages are computed by sampling configurations with a probability pro-
portional to the probability density ρ(c). However, one can perform the simulation in
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a different ensemble (here denoted by π), in which configurations are sampled with
a probability

ρ
′(c) = ρ(c)exp[W (c)], (1.17)

In this equation, W (c) is an arbitrary function that only depends on c. The ensemble
average 〈A〉π in ensemble π is defined as

〈A〉π =

∫
dcA(c)ρ

′(c)∫
dcρ

′(c)
. (1.18)

It is important to note that 〈A〉 6= 〈A〉
π

. In the ensemble π some regions of the con-
figuration space are oversampled compared to the original ensemble, but when cal-
culating the averages this oversampling can be corrected exactly

〈A〉 =

∫
dcA(c)ρ(c)∫

dcρ(c)

=

∫
dcA(c) exp[−W (c)]ρ ′(c)∫

dc exp[−W (c)]ρ ′(c)

=

∫
dcA(c) exp[−W (c)]ρ ′(c)∫

dcρ
′(c)∫

dc exp[−W (c)]ρ ′(c)∫
dcρ

′(c)

=
〈A(c) exp[−W (c)]〉π
〈exp[−W (c)]〉π

. (1.19)

In this thesis we will apply umbrella sampling to enhance the sampling of net-
works with large contact forces. A natural order parameter to characterize force
networks with large forces is the maximum force fmax of a force network f, and
therefore we choose W (c) = W ( fmax(f)). In the ideal case, the weight function is
chosen W ( fmax) = − lnP( fmax) such that all values fmax will be sampled with equal
probability in the ensemble π . However, to construct such a weight function, already
a good estimate of P( fmax) is needed. Therefore, several simulations are performed
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Figure 1.4: Schematic representation of the probability distribution of the order parameter
P( fmax) in two different windows I and II that have a small overlap. The order parameter
distribution in both windows are related by lnPI( fmax) = lnPII( fmax) +C in which C is a
constant.

starting with W ( fmax) = 0. After each simulation, an improved weight function can
be calculated. This iterative process is stopped when P( fmax) is approximately flat.
See Section 1.6 for a more detailed explanation of umbrella sampling applied to the
force network ensemble. In Chapter 3, we will investigate the distribution of local
pressure p of a grain. To sample large local pressures, it turns out that it is convenient
to perform umbrella sampling using a weight function W (pmax(f)) in which pmax is
the largest local pressure in the system.

The weight function can also be used to force the system to stay in some par-
ticular regions (windows) of the phase space. When the whole range of the order
parameter is divided into overlapping windows, for each window a separate simula-
tion with a unique weight function can be performed. In this way, for each window an
order parameter distribution can be computed (see Fig. 1.4). By matching these order
parameter probabilities where the windows overlap one finally obtains the distribu-
tion over the whole order parameter range. This overlapping property is responsible
for the name umbrella sampling.
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1.4 Generation of disordered packings

All numerical results presented in this thesis concern the statistics of contact forces
in static granular matter. We will investigate both positionally ordered (triangular,
square, fcc and hcp lattices) and positionally disordered systems.

To generate a disordered packing of N particles in 2D, first an initial particle con-
figuration is made by placing the particles randomly in the box. Following O’Hern
et al. [12], we simulate a bidisperse 50%/50% binary system with a size ratio of 1.4.
This size ratio prevents the system from crystallization [34]. The particles interact
via the Weeks-Chandler-Anderson (WCA) potential [70]

uWCA(ri j) =

{
uLJ(ri j)+ ε, ri j ≤ 21/6σi j

0, ri j > 21/6σi j,
(1.20)

The WCA potential has the same shape as the Lennard-Jones (LJ) potential, but it is
truncated (at the minimum of uLJ(ri j)) and shifted. The attractive dispersion tail of the
LJ interaction is not included: the WCA potential is purely repulsive. Simulations
to generate a force balanced packing start from randomly positioned particles in a
square box with periodic boundaries. To prepare the initial particle configuration, the
energy is minimized using a combination of the steepest descent algorithm [71] and
the algorithm of Snyman [72–74]. The latter algorithm is very efficient in generating
configurations with very small energy gradients. Finding a local energy minimum or
saddle point in a high-dimensional space is not trivial, see for example Refs. [75, 76].

We use two methods to generate the final particle configuration from the initial
configuration: quenching [12] and compressing [77]. In practice, quenching is only
applicable for preparing systems with a high coordination number. In this method,
first, a molecular dynamics simulation at constant volume V is performed at a temper-
ature T above the glass transition temperature Tg. After equilibration, we set T < Tg

and continue the MD simulation at constant T , V . Finally, the potential energy is
minimized. From the final configuration, we determine all contacts in the system.
As the interaction potential is short-ranged and vanishes for distances larger than the
size of the particle, it is natural to define the presence of a contact between particles i
and j if ri j < rcut = 21/6σi j. Note that for systems with long-range interactions (e.g.
the full Lennard-Jones potential truncated at rcut ≥ 2.5σi j) it is less trivial to define
contact and the average contact number [78]. The final packing (positions of all par-
ticles and a list of all pair contacts) can be used as input for simulations using the
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force network ensemble. The coordination number z of the packing can be tuned by
varying the initial density of the system.

In the compressing method, we start with a configuration in which all particles
are randomly placed in a very large volume V in such a way that none of the par-
ticles overlap (i.e. ri j > 21/6σi j for all i and j). The system is slowly compressed.
If an overlap between particles is detected, we perform an energy minimization at
constant volume. This procedure is continued until the required coordination number
is reached. Particles with two or less neighbors are removed from the final packing,
because these particles can never have force balance unless their contact forces are
zero. The final packing (positions of all particles and a list of all contacts) can be
used as input for simulations using the force network ensemble.

1.5 Force network ensemble

In Section 1.2 we have seen that many different model systems are used to study the
statistics of contact forces in granular matter, which makes it difficult to compare dif-
ferent studies. In particular, parameters like particle rigidity, crystallinity, construc-
tion history, friction, pressure and shear stress may or may not strongly influence the
tail of the contact force distribution. In this thesis, we will study the influence of var-
ious parameters like the system size, the dimensionality, the structure of the packing,
the average contact number, the applied shear stress and the presence of friction in
the so-called force network ensemble.

The force network ensemble is a recently introduced statistical formulation to
study the statistics of contact forces in granular media [43]. The crucial assumption
is that for fixed particle positions, all force configurations of non-cohesive forces
that result in force balance on all particles are equally likely. This approach can be
regarded as a restricted version of the Edwards ensemble [41]. For several regular
and disordered packings the contact force distribution P( f ) was calculated, which
had all the features that are typically observed in experiments and numerics, and
subsequently the force network ensemble has received a lot of attention [79–84].

Actual forces in a physical realization of particles that interact via a short-ranged
pair potential depend on the distance ri j between the particles. However, for com-
pressed systems that are in mechanical equilibrium, a tiny change in ri j has a strong
effect on the corresponding contact forces. In the force network ensemble it is as-
sumed that a separation of length scales between the forces and the positions occurs.
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Therefore, one can treat the forces as independent from the positions [41]. In this
way, one can construct an ensemble in which the positions of all particles are fixed,
and the non-cohesive contact forces are the degrees of freedom that have to satisfy
force balance on each particle. For a fixed packing geometry, the net force Fi on each
particle i is zero

Fi = ∑
j

fi j = 0, (1.21)

in which j runs over the particles in contact with particle i. For a frictionless system,
this reduces to

Fi = ∑
j

fi j = ∑
j

fi j
ri j∣∣ri j
∣∣ = 0, (1.22)

in which ri j = ri−r j. Consider a d dimensional system with N particles and periodic
boundary conditions. To describe mechanical equilibrium in d directions, dN − d
linear constraints are needed. If frictional particles are considered, then N (for 2D)
or 3N (for 3D) additional constraints are needed to obtain torque balance on each
particle.

In addition to the force balance constraints, it is necessary to constrain the applied
stress on the system. The applied stress on a system is defined by the stress tensor

σ =

(
σxx σxy

σyx σyy

)
in 2D, and σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 in 3D (1.23)

in which
σαβ ∼

1
V ∑

i j
fi j,αri j,β . (1.24)

However, in the Force Network Ensemble it is more convenient to use a slightly
different normalization:

σαβ =
1

Nb
∑
i j

fi j,αri j,β . (1.25)

In this equation Nb = zN/2 equals the total number of contacts. In 2D, the contact
force in the direction α , fi j,α can be written as

fi j,x = fn,i j
ri j,x∣∣ri j
∣∣ + ft,i j

ri j,y∣∣ri j
∣∣ , (1.26)

fi j,y = fn,i j
ri j,y∣∣ri j
∣∣ − ft,i j

ri j,x∣∣ri j
∣∣ . (1.27)
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Table 1.1: The number of constraints (force and torque balance on each particle, and a fixed
stress tensor σ ) and the number of elements of f for systems with periodic boundary con-
ditions, N particles and an average coordination number z. The terms −2 and −3 originate
from Newtont’s third law applied to the whole system.

dimension d friction # constraints # elements of f
2 no 2N−2+3 zN/2
2 yes 2N−2+3+N zN
3 no 3N−3+6 zN/2
3 yes 3N−3+6+3N zN

in which fn,i j and ft,i j are the normal and tangential components of the force re-
spectively. The dimensionless shear stress is defined as τ = σαβ /σαα and the pres-
sure on a system is proportional to ∑α σαα . An isotropic pressure corresponds to
σxx = σyy (= σzz). By imposing 〈 f 〉= 1 a scale for the forces is introduced. Substitut-
ing Eqs. (1.26) and (1.27) into Eq. (1.25) we find σαα = 1/d in the case that

∣∣ri j
∣∣= 1

(regular packings). However, in the case that
∣∣ri j
∣∣ 6= 1, we will find σαα 6= 1/d and

〈 f 〉 6= 1.
The contact forces fi j,α in a force network are the elements of the vector f. The

elements of this vector f are subject to the constraint that all particles have force and
torque balance, and that the constraints on the stress tensor are satisfied. In Table 1.1,
the number of constraints and the number of elements of f are summarized. For pack-
ings with z > zc (zc = 4 for frictionless and zc = 3 for frictional 2D packings [43]), the
number of elements of f exceeds the number of constraints, which means that there
is a high-dimensional force space of solutions. Note that in dry granular media all
forces are repulsive, which is incorporated by demanding all normal forces fn to be
positive,

fn,i j ≥ 0. (1.28)

Snoeijer et al. assumed that all allowed solutions of this force space are equally likely,
like in the microcanonical ensemble and the Edwards ensemble [41]. The corre-
sponding ensemble is therefore called the force network ensemble. Using the force
network ensemble with this flat measure, realistic P( f ) have been obtained, both on
triangular lattices and on disordered packings [43].

In Ref. [85], analytical solutions for P( f ) in the force network ensemble for vari-
ous small systems were obtained: “snooker” packings [42] of 3 and 6 particles, peri-
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odic triangular lattices of 2×2 and 3×3, and a periodic fcc unit cell (8 particles). In
Ref. [80] analytical expressions are derived for both isotropic and anisotropic force
distributions in the 3×3 triangular lattice. Unfortunately, these analytical approaches
are not suited for larger systems so we have to rely on computer simulations. To com-
pute a single solution of the force space of a disordered system, a simulated annealing
procedure can be applied [71]. For arbitrary forces, a penalty function U(f) is defined
that describes the deviation from the required constraints. For a 2D frictionless sys-
tem with

∣∣ri j
∣∣= 1, this penalty function is defined as

U(f) = |σxy(f)−σ
req
xy | + |σxx(f)− 1

2 | + |σyy(f)− 1
2 |

+
N

∑
i=1
|Fi,x(f)| +

N

∑
i=1
|Fi,y(f)|. (1.29)

in which σ
req
xy is the required (imposed) shear stress of the system. The following

Monte Carlo procedure can be used to generate a single force network f that obeys
the required constraints

1. Start with a configuration fold in which all forces are taken from an arbitrary
distribution with 〈 f 〉= 1 and fi j ≥ 0. Set the control parameter β = 1 (equiv-
alent to the temperature) and calculate the penalty function U(fold).

2. Select two elements (contact forces) of f at random.

3. Add a randomly selected ∆ f to one contact force and −∆ f to the other contact
force, so that 〈 f 〉 still equals 1. If any of these forces becomes smaller than 0,
the move is rejected and we return to step 2.

4. Calculate the penalty function U(fnew).

5. Accept the trial move with the acceptance rule Eq. (1.16). If rejected, the old
configuration is kept.

6. Increase β by multiplying with a factor h > 1 (i.e. annealing).

7. Return to step 2 until the penalty function is very small (typically 10−12). The
resulting f is considered as a particular solution of the force network ensemble.

It is trivial to extend this scheme for frictional packings and packings with
∣∣ri j
∣∣ 6= 1.

In previous studies [11, 43, 85, 86], the solution space of the force network ensemble



24 CHAPTER 1

was sampled by generating many particular solutions obtained using this simulated
annealing scheme. This scheme reproduces analytic results for small regular pack-
ings very well [85] and it was verified that the results do not depend on the initial
configurations and details of the annealing scheme. Unfortunately, this simulated
annealing procedure is computationally expensive and it cannot be guaranteed that
force networks are indeed generated with equal a priori probability. Moreover, accu-
rate statistics for large contact forces can not be obtained directly.

At this point it is important to note that the force network ensemble can be for-
mulated as an inhomogeneous matrix equation

A f = b, (1.30)

in which static force (and torque) balance on each particle as well as a conserved
stress tensor are incorporated [43]. The elements of the fixed matrix A are deter-
mined by the geometry of the packing. The vector b reflects the force and torque
balance on each grain, as well as the fixed stress tensor. For a 2D system, b =
(0,0, · · · ,0,σxx,σyy,σxy). All possible solutions of Eq. (1.30) can be written as

f = f0 +∑
k

akvk, (1.31)

where f0 is a particular solution and the vectors vk span the null-space of matrix A ,
i.e.,

A vk = 0. (1.32)

The number of independent null vectors follows directly from Table 1.1. The coeffi-
cients ak are restricted by the condition that all elements of f corresponding to normal
forces need to be positive. For disordered packings, we used the simulated annealing
procedure described earlier to obtain both a particular solution f0 and the null vectors
vk. Note that in order to compute a null-vector, the penalty function has to be mod-
ified slightly and one needs to realize that the elements of vk can be positive as well
as negative. All vectors of the null-space are orthogonalized for efficiency reasons of
our sampling scheme, although in principle this is not needed for the correctness of
our scheme.

The force network ensemble is sampled by the usual Metropolis Monte Carlo
technique (see Section 1.3.2) in which the coefficients ak are the degrees of freedom.
The Monte Carlo scheme is started with ak = 0 and a particular solution f0. In a
trial move, a coefficient ak is chosen at random and its value is changed randomly.
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Figure 1.5: Sampling force networks of a frictionless triangular lattice [80]. The thickness
of the lines represent the magnitude of the (normal) force. In the starting configuration (left)
all normal contact forces are equal to 1. After a wheel move, 6 normal forces (the “rim”) get
displacement of +∆ and six other forces (the “spokes”) get a displacement of −∆. This new
configuration (right) still satisfies force balance on each particle and the stress tensor does
not change. If any of the contact forces will become smaller than zero, the wheel move is
rejected.

A trial move is accepted when all normal forces fi j ≥ 0. For frictional systems, one
has to take into account the Coulomb criterium Eq. 1.1 in the acceptance rule. In
this scheme, it is guaranteed that all allowed force networks are sampled with equal
probability.

For the triangular, square, and fcc lattice, it is convenient to choose f0 such that
all elements f0 are all equal to 1. The null-space vk can be expressed by the so-
called “wheel moves” developed by Tighe et al. [80]. For a frictionless triangular
lattice, a wheel move is centered around a single particle. As can be seen in Fig. 1.5,
only 12 forces are involved in a wheel move: 6 contact forces of the central particle
(“spokes”) and six forces that form the “rim” of the central particle. Therefore, all el-
ements of vk are equal to zero except these 12 forces. In the MC procedure described
above, the forces of the rim get a displacement of +∆ and the spokes get a displace-
ment of −∆. The obtained configuration still satisfies the required constraints. The
advantage of a local wheel move is the low number of forces that are changed. This
means that a larger maximum displacement ∆ is allowed. B.P. Tighe has developed
a set of (local) wheel moves for the frictionless triangular lattice, the frictionless fcc
lattice, the frictional triangular lattice, and the frictional square lattice [87].

In previous simulations in the force network ensemble for disordered systems [11,
40, 43, 85, 86], the value of all bond lengths

∣∣ri j
∣∣ in Eqs. (1.26) and (1.27) was

simply set to 1, even for contacts at a distance not equal to 1. Essentially, this
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Figure 1.6: Contact force distribution P( f ) of frictionless particles in 2D (N = 750, z = 5.5)
computed with a simulated annealing procedure (FA: fast annealing, SA: slow annealing)
and the matrix method Eq. (1.31). Forces are normalized such that 〈 f 〉= 1. In the simulated
annealing method, all bond lengths

∣∣ri j
∣∣ were normalized to 1. Clearly, setting all

∣∣ri j
∣∣ = 1

does not alter the contact force statistics. The curves of SA and the matrix method lay exactly
on top of each other. When the annealing is performed too quickly (FA, large value of h),
incorrect contact force distributions are obtained.

means that it is assumed that the value of the contact force and the bond length
are uncorrelated, which has been verified numerically [43]. The possible advantage
of this approach is that this assumption directly results in normalization of forces:
σxx + σyy (+σzz) = 〈 f 〉 = 1 and at isotropic pressure σxx = σyy (= σzz) = 1/d. In
later work, this assumption was not used, but instead we set σxx = σyy (= σzz). This
means that in these simulations, the average force in the force network ensemble is
not constant.

In Fig. 1.6, we have compared the various methods and assumptions to sample
the force network ensemble for a disordered system in 2D. The simulated annealing
method produces the same contact force distribution as the matrix method when the
annealing rate h is sufficiently low, even though it is not guaranteed that simulated
annealing samples force networks uniformly. If the annealing rate is too large, we
observe an incorrect contact force distribution in which many forces are very small.
This is not the case for slow annealing and the matrix method. The assumption that
the distance between two particles and their contact force are uncorrelated is valid as
was reported earlier [43].
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1.6 Umbrella sampling applied to the force network
ensemble

In Section 1.5, we have shown how to sample all solutions of the force network
ensemble using a Monte Carlo scheme. The sampling is performed in the space
spanned by the null-vectors of matrix A (see Eq. (1.31)). All force networks for
which all elements of f are positive are in principle equally likely. However, the
number of force networks in which at least one of the forces is much larger than the
average force is low compared to force networks in which all forces are quite close to
the average force. Therefore, standard Monte Carlo sampling results in poor statistics
for the tail of the contact force distribution P( f ). As explained in Section 1.3.3,
this can be improved using umbrella sampling. To improve the statistics for large
contact forces, we use the largest force of a certain force network fmax(f) as an order
parameter. The probability density in the modified ensemble then becomes

ρ
′(f) = ρ(f)exp[W ( fmax(f))], (1.33)

in which ρ(f) is the statistical weight of the force network ensemble and W ( fmax(f))
is a weight function. Ensemble averages in the force network ensemble can be com-
puted using

〈A〉=
〈A(f) exp[−W ( fmax(f))]〉π
〈exp[−W ( fmax(f))]〉π

, (1.34)

in which we used the shorthand 〈· · · 〉
π

to compute averages in the modified ensemble.
For example, the probability distribution of the largest force in the system can be
computed from

P( fmax) =

∫
dfρ(f)δ ( fmax− f ′max(f))∫

dfρ(f)

=
Pπ( fmax) exp[−W ( fmax)]∫

d f ′max Pπ( f ′max) exp[−W ( f ′max)]
, (1.35)

in which Pπ(· · ·) denotes a probability distribution in the modified ensemble. Note
that the probability distribution P( fmax) will depend on the size of the system. Simi-
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larly, we can write for the contact force distribution

P( f ) = lim
a→∞

∫ a

0
d fmax P( f | fmax)P( fmax)∫ a

0
d f ′

∫ a

0
d fmax P( f ′| fmax)P( fmax)

, (1.36)

in which P( f | fmax) is the conditional contact force distribution given that the maxi-
mum force in the force network equals fmax. Of course, P( f | fmax) = 0 if f > fmax.
The distribution P( f | fmax) can be computed directly in a simulation in the modified
ensemble.

To illustrate the umbrella sampling technique for the force network ensemble,
in Fig. 1.7 we have plotted the probability distributions P( f ) and P( fmax) computed
with and without umbrella sampling. Clearly, without umbrella sampling large con-
tact forces are hardly sampled. Umbrella sampling significantly improves the contact
force statistics for large forces, while still the correct distributions are obtained after
reweighting. Interestingly, for small forces, all P( f )’s in Fig. 1.7(c,d) are very close,
suggesting that P( f | fmax) does not strongly depend on the precise value of fmax as
long as f is small. This means that the presence of a single large force does not
influence the statistics of the small forces very much. Fig. 1.8 shows a typical con-
figuration of a force network for a large value of fmax. Clearly, a large force induced
correlations over many contacts. When the size of these correlations are of the order
of the system size, finite size effects can be expected. We will come back to this issue
in Section 4.4.

In Fig. 1.9 we have plotted the contact force distribution computed using Eq. (1.36)
for various values of the maximum allowed force a in the ensemble. The contact force
distributions fall on top of each other, which means that force networks for which
fmax > a have no influence on P( f ) for f < a. The reason for this is that P( fmax)
decays very quickly for large forces.
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Figure 1.7: (a,b) Probability distributions of the maximum force fmax in a force network
and (c,d) contact force distributions of a frictionless triangular lattice (N = 1840) in three
different ensembles: (1) the force network ensemble without umbrella sampling (fne), (2) the
ensemble π in which W ( fmax) is chosen such that Pπ( fmax) is approximately flat (fne-π), and
(3) the ensemble π in which ensemble averages are reweighted to the force network ensemble
using Eq. (1.34) (fne-π-rw). Forces are normalized such that 〈 f 〉= 1. Forces larger than 5〈 f 〉
are hardly sampled in the force network ensemble unless umbrella sampling is applied.
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Figure 1.8: Typical snapshot of a force network with a large value of fmax.
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Figure 1.9: Contact force distribution computed using Eq. (1.36) as a function of the maxi-
mum allowed force a in the ensemble. Forces are normalized such that 〈 f 〉= 1.
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1.7 Determination of the asymptotic behavior of P( f )

In Chapter 2 we will see that for very large contact forces, the asymptotic behavior
(the “tail”) of contact force distributions can be described by

P( f )∼ aexp[−b f α ]. (1.37)

In particular, it is interesting to see whether this distribution is exponential (α = 1),
Gaussian (α = 2), or something else. We considered two options to extract α:

1. The use of a triple-log plot, i.e. a plot of log10(− log10 P( f )) versus log10 f . In
good approximation the slope of such a plot will equal α .

2. For f �〈 f 〉, we perform linear regression to fit a and b in log10 P( f ) = a−b f α

for a wide range of α . The maximum in the regression coefficient R2 is used
to determine α .

In Fig. 1.10, we have used both methods to extract α from a known exponential and
Gaussian distribution (note f ≥ 0):

Pexp( f ) =
1
a

exp[− f /a], (1.38)

PGauss( f ) =
2√

2πσ
exp[− f 2/(2σ

2)], (1.39)

with a = 1 and σ = 2. Clearly, both methods quickly recover the correct asymptotic
behavior.
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Figure 1.10: An exact exponential (solid, Eq. (1.38)) and Gaussian (dashed, Eq. (1.39))
distribution on a logarithmic scale plotted against (a) f and (b) f 2. (c) A triple-log plot of
these distributions. The slope (i.e. α) for the exponential distribution equals 1 and for the
Gaussian distribution the slope equals 2. (d) The regression coefficient R2 as a function of
α for fits to Eq. 1.37 of both distributions. The best fit for the exponential distribution is
obtained with α = 1 and for the Gaussian distribution with α = 2.
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1.8 Outline

This thesis focuses on the statistics of large forces in granular media by using the
force network ensemble. One of the crucial questions is whether the tail of the contact
force distribution P( f ) is exponential, Gaussian, or even some other form. We resort
to umbrella sampling to unambiguously resolve the asymptotic decay of P( f ) for
large f , and determine P( f ) down to values of order 10−45.

In Chapter 2, we study the distribution P( f ) of contact forces between friction-
less particles. We explore the effect of packing structure, dimensionality, system
size, contact number and shear stress. We find that local force balance constraints
determine the asymptotic behavior of P( f ) and that the dimensionality is the most
important parameter that determines the tail of P( f ). In particular, we find that P( f )
decays as aexp[−b f α ] with α = 2.0±0.1 for 2D systems, α = 1.7±0.1 for 3D sys-
tems and α = 1.4±0.1 for 4D systems. Other factors like the coordination number
and the structure of the packing are of less importance.

Chapter 3 presents simulations of the local pressure distribution for both friction-
less and frictional packings. The numerically obtained pressure distributions are in
excellent agreement with the pressure distributions obtained from an entropy maxi-
mization argument by B.P. Tighe et al. [88]. The latter follows from a previously
not exploited conserved quantity in the force network ensemble: the total area of the
so-called reciprocal tiling, which follows directly from force balance on each particle.

Finally, in Chapter 4 we present a detailed study on the force network ensemble
for various packings/systems. In particular, we focus on dimensionality of the force
space, the maximum possible force of a packing, the effect of boundary forces, and
the angle-resolved contact force distribution. We also present a comparison of the
contact force statistics between the force network ensemble and packings of particles
that interact with a real pair potential.





2

Tail of the contact force distributions in
static granular materials

We numerically study the distribution P( f ) of contact forces in frictionless bead
packs, by averaging over the ensemble of all possible force network configurations.
We resort to umbrella sampling to resolve the asymptotic decay of P( f ) for large f ,
and determine P( f ) down to values of order 10−45 for ordered and disordered sys-
tems in two (2D) and three dimensions (3D). Our findings unambiguously show that,
in the ensemble approach, the force distributions decay much faster than exponen-
tially: P( f ) ∼ exp(−c f α), with α ≈ 2.0 for 2D systems, α ≈ 1.7 for 3D systems,
and α ≈ 1.4 for 4D systems.

This chapter is for a large part based on:
A.R.T. van Eerd, W.G. Ellenbroek, M. van Hecke, J.H. Snoeijer, and T.J.H. Vlugt
Tail of the contact force distribution in static granular materials
Phys. Rev. E 75, 060302 (2007)
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2.1 Introduction

The contact forces inside a static packing of grains are organized into highly het-
erogeneous force networks, and can be characterized by the probability density of
contact forces P( f ) [18]. Such force statistics were first studied in a series of exper-
iments that measured forces through imprints on carbon paper at the boundaries of a
granular assembly. Unexpectedly, the obtained P( f ) displayed an exponential rather
than a Gaussian decay for large forces [15, 21–23]. After these initial findings, other
experimental techniques have revealed similarly exponentially decaying distributions
of the boundary forces [20, 24].

As it is difficult to experimentally access contact forces inside the packing, nu-
merous direct numerical simulations of P( f ) have been undertaken [12, 27, 28, 36,
37]. While many of these studies claim to find an exponential tail as well, the evi-
dence is less convincing than for the carbon paper experiments: apart from Ref. [27],
nearly all numerical force probabilities bend down on a logarithmic plot, suggesting
a faster than exponential decay [12, 28, 36, 37]. In addition, new experimental tech-
niques using photoelastic particles [25] or emulsions [26, 29] have produced bulk
measurements, and these also reveal a much faster than exponential decay for P( f ),
consistent with a Gaussian tail.

Nevertheless, much theoretical effort has focused on explaining the exponential
tail of P( f ), starting with the pioneering q model [38]. Here, scalar forces are bal-
anced on a regular grid, but it was later realized that, in this model, the tail of P( f )
depends on details of the stochastic rules for the force transmission and need not be
exponential [39]. Other explanations for the exponential tail hinge on “entropy max-
imization” [46, 77], or closely related, on an analogy with the Boltzmann distribu-
tion [45, 47]. The essence of the latter argument is that a uniform sampling of forces
that (1) are all positive (corresponding to the repulsive nature of contact forces), and
(2) add up to a constant value (set by the requirement that the overall pressure is con-
stant) strongly resembles the microcanonical ensemble, in which configurations are
flatly sampled under the constraint of fixed total energy.

In this chapter, we will probe the tail of P( f ) in the force network ensemble
[11, 43, 79–81, 85]. This ensemble is obtained by flatly sampling all force config-
urations for which forces are repulsive and add up to satisfy overall stresses, i.e.,
(1) and (2) as listed above, under the additional constraints of force balance on all
grains. We numerically resolve the probability for large forces using the technique of
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umbrella sampling [52], which yields accurate statistics for P( f ) for relative proba-
bilities down to 10−45 and f up to f = 15 (throughout the rest of this thesis, all forces
are normalized such that 〈 f 〉 = 1). This high accuracy is crucial for excluding any
crossover effects and allows us to unambiguously identify the behavior for f � 1.
We study the force ensemble for frictionless systems in two and three dimensions,
with both ordered and disordered contact networks, and also explore the effect of
system size and contact number. We also studied a single contact network in 4D.

For all systems, we have found that the ensemble yields force distributions that
decay much faster than exponentially. The dimensionality of the system is crucial,
while other factors hardly affect the asymptotics: P( f ) decays as exp(−c f α), with
α = 2.0±0.1 in two dimensions, while in three dimensions α = 1.7±0.1 and in four
dimensions α = 1.4± 0.1. It is important to note that similar exponents emerge for
the potential energy of Hertzian contacts [20], which scale as f 2 (in 2D) and f 5/3 (in
3D). As the ensemble considers rigid particles without any contact law, this appears
to be a coincidence.

2.2 Force network ensemble and umbrella sampling

The ensemble approach to force networks is inspired by the proposal of Edwards to
assign an equal probability to all “blocked" states, i.e., states that are at mechanical
equilibrium [41]. By limiting the Edwards ensemble to a single packing of fixed con-
tact geometry [44], where the contact forces are the remaining degrees of freedom
and all allowed force configurations are sampled with equal weight, one obtains the
force network ensemble. Here we restrict ourselves to spherical particles with fric-
tionless contacts, so that every contact force fi corresponds to one scalar degree of
freedom. Furthermore, we require all fi ≥ 0 due to the repulsive nature of the con-
tacts. As the equations of mechanical equilibrium are linear in the contact forces, one
can cast the solutions f = ( f1, f2, . . .) in the form f = f0 +∑k akvk. The solution space
is spanned by the vectors vk and f0, and can be sampled through the coefficients
ak; for details we refer to Refs. [43, 80, 85] and Section 1.5. Ensemble averages
using a uniform measure in this force space can be calculated using Monte Carlo
simulations (Section 1.3.2). To obtain accurate statistics for large forces, we per-
form umbrella sampling. The idea is to bias the numerical sampling toward solutions
with large forces, using a Monte Carlo technique with a modified measure and then
correct for this bias when performing the averages, see Sections 1.3.3 and 1.6. Defin-
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ing fmax as the largest force for a given f, we have used a measure chosen such that
the probability of fmax in the modified ensemble is approximately flat in the range
1 < fmax < 15. This procedure exactly reproduces P( f ) in the range accessible by
the conventional unbiased sampling. However, forces of the order of 15 are now sam-
pled only 104 times less frequently than forces around 1, even though their relative
probability is about 10−45, leading to the spectacular improvement in numerical ac-
curacy. The asymptotic behavior of P( f ) is determined by the asymptotic behavior
of both P( f | fmax) and P( fmax), see Eq. (1.36).

2.3 Triangular lattice

A well-studied geometry for which the force network ensemble yields nontrivial re-
sults is that when all particles are of equal size and form a triangular lattice [43,
80, 85]. The umbrella sampling allows us to access the statistics beyond f = 5.
Fig. 2.1(a) shows that P( f ) decays much faster than exponentially, and that effects of
the finite size of the system are weak. Figs. 2.1(b,c,d) illustrate that, for increasingly
large systems, P( f ) rapidly converges to an asymptotic form which is characterized
by a purely Gaussian decay. This can also be seen in Fig. 2.1(c), where we exploit
the fact that we have access to P( f ) over more than 40 decades. Assuming that,
for large f , P( f ) ∼ exp(−c f α), one can infer the exponent α from the asymptotic
slope of a triple-logarithmic plot in which log10(− log10 P) is plotted as function of
log10 f [20]. Fig. 2.1(d) shows that α = 2.0± 0.1, confirming that the tail of P( f )
is well described by a Gaussian decay. Intriguingly, the force distribution is surpris-
ingly well approximated at small f by P( f )' 1/3+3 f /4, which hints that a simple
analytic expression may exist for the triangular lattice. A decent fit over the whole
range of f is given by P( f ) = (a + b f )e−c( f− f0)2

, where a,b are determined by the
observed small- f behavior, and f0,c are determined by 〈 f 〉 = 1 and

∫
P( f )d f = 1,

but deviations from the numerical P( f ) can be observed in the tail.
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Figure 2.1: Force probabilities in two-dimensional triangular lattices of N particles with
periodic boundary conditions. (a) P( f ) decays much faster than exponentially, and rapidly
converges to its asymptotic form with N—larger N corresponds to wider distributions. (b)
System size effects are hardly visible for P( f ) down to 10−6. (c) log10 P vs f 2 becomes a
perfectly straight line for large systems, indicating that the tail of P( f ) is well described by a
Gaussian decay ∼ exp(−c f 2). (d) A triple-logarithmic plot shows that the asymptotic decay
attains a slope close to 2, confirming the Gaussian tail.
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2.4 Disordered packings in two dimensions

To investigate the effect of packing disorder and coordination number z, we have
created packings of soft particles with periodic boundary conditions using the com-
pression method, see Section 1.4. The coordination number z is controlled by the
degree of compression. Once a packing is obtained, all particle positions are kept
fixed, and we subsequently explore the ensemble of force networks for that packing.
At this point the interparticle potential is no longer used, so that grain rigidity is not
a parameter in the ensemble.

For all 2D disordered packings, P( f ) decays much faster than exponentially, as
shown in Fig. 2.2. Comparing the ordered triangular lattices to a disordered sys-
tem with equal coordination number, z = 6, we find nearly indistinguishable P( f )
(Fig. 2.2(b)). This suggests that the packing (dis)order and preparation history are
not important for P( f ) in the ensemble. However, the contact number influences the
asymptotic decay: a lower z leads to a faster decay, although in the restricted range
f < 5, the force distribution appears very close to Gaussian for all z (Fig. 2.2(d)).
For the lowest z in particular, this tendency is cut off at large f , which can be clearly
seen in the triple-logarithmic plot (Fig. 2.2(e)), where all curves tend toward a well-
defined slope α = 2.0 for intermediate f , but cross over to a much faster decay for
large f . We suggest that this is a finite-size effect, which is most severe when z
approaches the isostatic point (z = 4), where there are fewer and fewer degrees of
freedom available [11, 36, 89]. Indeed, data for z = 4.5 and increasing system sizes
suggest that the “kink” in the triple-logarithmic plots becomes less severe for large
systems (Fig. 2.2(f))—our data are not conclusive as to whether this kink will disap-
pear for N →∞. In conclusion, for two-dimensional, frictionless systems, the ensem-
ble approach yields force distributions P( f ) that decay at least as fast as a Gaussian.
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Figure 2.2: Force distribution for two-dimensional systems. (a) P( f ) grows in width for
disordered systems (N = 1000) with increasing values of the contact number z. (b) Compar-
ison of P( f ) for a disordered packing with z = 6 and N = 1000 and the triangular lattice for
N = 2900. (c) The same data as in (a), now plotted as log10 P( f ) vs f 2, tends to a straight
curve for large z. (d) The same figure a in (c), but on a smaller range, shows that all curves
look Gaussian. (e) Same data as in (a), now on a triple-logarithmic plot. The range in f over
which P( f ) looks Gaussian grows with contact number z. (f) For fixed small z = 4.5, P( f )
appears to approach a Gaussian tail for large N.
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2.5 Three- and four-dimensional packings

We now turn to three-dimensional systems, which have been generated using molecu-
lar dynamics, see section 1.4. Similar to what happens in two dimensions, Fig. 2.3(a)
shows that P( f ) decays faster than exponentially, and disordered and regular (fcc)
packings have very similar force distributions. However, the decay is now slower
than Gaussian and much more accurately described by P( f ) ∼ exp(−c f α) with an
exponent α = 1.7±0.1 (see Figs. 2.3(c,d)). For comparison we have also included the
result for the triangular lattice, which is seen to decrease significantly more rapidly
than the P( f )’s of the three-dimensional systems. For small systems and small con-
tact number (N = 250,z = 9.1), finite-size deviations, similar to those observed in
two dimensions, can be seen. The exponent α has also been determined from the
triple-logarithmic plots of the contact force distributions (Fig. 2.4(a)) for a range of
contact numbers and system sizes, and in all cases the slope is close to α = 1.7 over
a decade.

Surprisingly, we thus find that the dimensionality of the packing determines the
nature of the tail of P( f ). Therefore, we have also considered a 4D packing of N =
256 with 2681 bonds, leading to z ≈ 20.9. The topology of this network has been
chosen randomly. All bonds vectors were chosen randomly on a 4D unit sphere.
Such a packing seems to be a reasonable choice for a typical 4D system, since we
have seen earlier that the behavior of large forces does not strongly depend on the
packing geometry for 2D and 3D systems. In the simulation, we constrain the system
to σαα = 1

4 and σαβ (α 6=β ) = 0. Fig. 2.4(b) shows that for this system α ≈ 1.4.
For very large d, the coordination number becomes large as well, reducing cor-

relations between contact forces acting on the same grain. If these correlations com-
pletely vanish, then one would expect α = 1 (see also Section 3.4). It would be
interesting to validate if this is really the case for d → ∞.
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Figure 2.3: Force distribution for 3D systems. (a,b) P( f ) for two disordered and a regular
fcc packing of N = 500 particles—the fcc packing has the smallest width, while for the
disordered packs the width grows with contact number. (c) Same, now plotted as function
of f 2. The thin dotted line corresponds to a triangular lattice in 2D, which has a Gaussian
tail—the tail of P( f ) for 3D systems is significantly less steep. (d) Same data, now plotted as
function of f 1.7—the tails for the P( f ) of 3D packings are now straight.
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Figure 2.4: (a) Triple-log plot of P( f ) for 3D systems: hcp lattice (N = 180), fcc lattice
(N = 180 and N = 15444), and four disordered systems (z = 11.4,10.8,8.7, and 7.8). All
curves are plotted as thin and dashed lines, except the curve for largest fcc lattice (bold line).
(b) Triple-log plot of P( f ) for a 4D system (N = 256, z≈ 20.9).
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2.6 The effect of shear stress

From experiments on (two-dimensional) sheared packs of photoelastic grains, it was
found that the distribution broadened significantly, and developed an exponential-
like regime in a range up to f = 4〈 f 〉 [25]. The ensemble indeed reproduces this
qualitative feature for packs under shear. As can be seen in Fig. 2.5, however, there
does not seem to be a simple asymptotic decay. This is because the force anisotropy
induced by the shear stress yields a variation in 〈 f 〉 depending on the orientation of
the contact [11, 80]. The total P( f ) becomes a superposition over all orientations,
of mixed force statistics, and hence lacks a single characteristic feature. The angle-
resolved contact force distribution will be discussed in Chapter 4.
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Figure 2.5: (a) 2D disordered system (z = 5.5, N = 2000) experiencing a shear stress τ ≡
σxy/σxx [11]. For increasing τ , the characteristic peak of P( f ) at f ≈ 1 disappears and the
largest forces in the packing are oriented along the shear direction, see also Figs. 1.1 and 1.2.
(b) While, for large τ , the tail of P( f ) viewed over a limited range broadens and may appear
exponential, (c) the asymptotic decay of P( f ) for f > 10 in fact increases with τ . (d) The
same point is illustrated in the triple-logarithmic plots.
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2.7 Discussion

We have shown for the force network ensemble that the tail of P( f ) decays faster
than exponentially, in agreement with recent experiments [25, 29], but inconsistent
with others [15, 20–24]. Our results required extremely accurate statistics, beyond
the regime accessible by experiments or conventional simulations. In particular, in
experiments it would be difficult to distinguish an exponent α = 1.7 from 2.0. Never-
theless the discrepancy between the exponential data sets [15, 20–24] and the faster-
than-exponential data sets [25, 29] cannot be explained away by finite error bars, but
is convincing and worthwhile of further investigations.

The experimental and numerical data for P( f ) have been obtained from a wide
variety of systems and models, and parameters such as dimensionality, friction, hard-
ness of grains vs boundary, and bulk vs boundary measurements may ultimately all
play a role in determining the asymptotics of P( f ). Note that the glass beads used
in the boundary measurements are much harder than the particles used in the bulk
measurements of [25, 26, 29], and that realistic particle rigidity is difficult to achieve
in molecular dynamics.

The ensemble can also be extended to include torque balance and to explore
boundary measurements. This will be discussed in Chapters 3 and 4 respectively.
A crucial untested assumption in the ensemble is the flat measure, i.e., the sampling
of all allowed configurations with equal weight. As argued in Ref. [20], different
experimental procedures and parameters can lead to a different P( f ), so that the ef-
fective sampling of force networks may not be universal.
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Entropy maximization in the force
network ensemble for granular solids

A long-standing issue in the area of granular media is the tail of the force distribu-
tion, in particular whether this is exponential, Gaussian, or even some other form.
We demonstrate that conservation of the total area of a reciprocal tiling, a direct con-
sequence of local force balance, is crucial for predicting the local stress and force
distribution. Maximizing entropy while conserving the tiling area and total pressure
leads to a distribution of local pressures with a generically Gaussian tail that is in ex-
cellent agreement with numerics, both with and without friction and for two different
contact networks (triangular lattice and square lattice).

This chapter is for a large part based on:
B.P. Tighe, A.R.T. van Eerd and T.J.H. Vlugt
Entropy maximization in the force network ensemble for granular solids
Phys. Rev. Lett. 100, 238001 (2008)
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3.1 Introduction

There is as yet no clear consensus on the form of the distribution of local stresses in
granular media. Of particular interest is the large-stress tail, which early experiments
found to be exponential when measured on the boundary [15, 20–24]. More recent
measurements in the bulk [26, 29], along with numerics [12, 28, 37, 90], find distri-
butions that bend downward on a semilogarithmic plot, suggesting faster than expo-
nential decay. A number of proposed theories exploit an analogy to the microcanon-
ical ensemble to arrive at a Boltzmann-like exponential tail [38, 46, 48, 77, 91–93].
These theories should in principle apply to the force network ensemble of Snoeijer
et al. [43]. However, in the previous chapter we have unambiguously shown that
this is not the case: the normal force distributions decay much faster than exponen-
tially: P( fn) ∼ exp(−c( fn)α), with α≈2.0 for 2D systems, α≈1.7 for 3D systems
and α≈1.4 for 4D systems (see Chapter 2). As the present statistical mechanics ap-
proaches fail to describe simple models like the force network ensemble, they must
be missing an important ingredient. We argue that local force balance is absolutely
crucial to describe the correct stress statistics. In particular, we show that the pressure
distribution in the force network ensemble directly follows from entropy maximiza-
tion, but only when it respects a conserved quantity overlooked in previous theories.
This conserved quantity follows from force balance at the grain scale, and leads to
excellent agreement with numerics for both small and large forces.

3.2 Force network ensemble

Snoeijer’s ensemble is composed of all “force networks”, i.e. sets of noncohesive
contact forces on a fixed granular contact network, for which all N grains are in static
force and torque balance. For packings with more than a critical number of contacts
per grain zc, there exist many balanced force networks. The critical coordination
number zc equals 4 (3) for frictionless (frictional) 2D packings of disks [43]. All force
networks on a contact network with the same global stress tensor and local force and
torque balance can be sampled uniformly by a series of Monte Carlo moves, termed
“wheel moves”, see also Section 1.5 and Tighe et al. [80]. As by construction the
global stress tensor Eq. (1.23) is fixed, the extensive pressure in the system P is
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conserved,

P =
N

∑
i=1

pi = constant, (3.1)

where we dropped the usual prefactor. The summation runs over all grains and pi is
the pressure on grain i, which is defined as

pi = ∑
j

ri j · fi j. (3.2)

The summation in Eq. (3.2) is over all neighbors j of particle i. ri j = ri− r j is the
bond vector between particles i and j and fi j is the contact force. We restrict ourselves
to isotropic states in 2D systems, σxx = σyy and σxy = σyx = 0, so that the global stress
tensor is fully characterized by P .

Every force network, regardless of its (dis)ordering, coordination number z, or
friction coefficient µ , has a corresponding reciprocal tiling [94, 95]. Fig. 3.1 shows
the real and reciprocal representation of the same force network; each grain corre-
sponds to a tile. Each face of the tile corresponds to one of the grain’s contact forces.
The face is oriented at a π/2 rotation to the contact force fi j, and its length is pro-
portional to

∣∣fi j
∣∣. Because the grain is in static force balance, the faces form a loop

enclosing the tile. By Newton’s third law, the tiles fit together with no gaps. Note
that upon rotation by −π/2, the vertices of the tiling are the loop forces of Ref. [96].

Figure 3.1: Schematic representation of a force network of a frictionless triangular lattice
(left) and its corresponding reciprocal tiling (right). The thickness of each line in the left fig-
ure represents the magnitude of the force. Larger forces map to longer lines in the reciprocal
tiling.



52 CHAPTER 3

Specifying the boundary forces on a packing establishes the boundaries of its
corresponding tiling, and hence the total area of the tiling. Fixing the global stress
tensor in a periodic system has the same effect. Rearrangements of bulk forces,
i.e. the wheel moves, correspond to local exchanges of area among tiles. It can be
shown that the total tiling area is unaltered by wheel moves, and therefore the area
A is conserved. That is,

A =
N

∑
i=1

ai = constant. (3.3)

The sum runs over all tiles and ai is the area of tile i:

ai =
1
2

z ·
zi−2

∑
j=1

zi−1

∑
k= j+1

[fi j× fik] . (3.4)

The indices j and k number the zi neighbors of grain i in a right-hand fashion. The
unit vector z = x×y points out of the plane. Area conservation is a global constraint
that results from imposing local force balance. It holds for arbitrary force balanced
packings in 2D with fixed global stress tensor or boundary forces. Area conservation
plays a crucial role in determining the statistics of local stresses.

3.3 Entropy maximization

Armed with the insight that the force network ensemble involves two conserved quan-
tities, P and A , we explore their implications for the statistics of local stresses.
While previous work has incorporated the conservation of P or its equivalent, the
conservation of A has heretofore been overlooked. We will show that the conserva-
tion of A has a dramatic effect on the force network statistics.

We calculate the probability density P(p) by maximizing entropy while conserv-
ing P and A . Each force network corresponds to a set of pressures {pi}, i = 1 . . .N.
We define X(p)ω(p)d p as the probability of finding a pressure p in the interval
[p, p + ω(p)d p], where ω(p) is the density of states for pressures. The entropy S
is the logarithm of the number of ways of constructing force networks with pressures
{pi} consistent with X(p). In the thermodynamic limit [92, 97–99]

S =−
∫

∞

0

(
X(p) lnX(p)

)
ω(p)d p. (3.5)

The experimentally accessible probability density P(p) is related to X(p) by P(p)d p
= X(p)ω(p)d p. It is important to note that weighting all force networks equally does
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not correspond to a flat measure on the pressures, i.e. ω(p) 6= constant. B.P. Tighe
showed that ω(p) ∝ pν [88]. The value of ν depends on the grain’s coordination
number and the friction coefficient. For the frictionless triangular lattice, ν = z− 3.
The entropy is maximized subject to Eqs. (3.1) and (3.3), as well as normalization of
P(p). This leads to [88]

〈p〉 = P/N =
∫

∞

0
pP(p)d p,

〈a〉 = A /N =
∫

∞

0
〈a(p)〉P(p)d p,

1 =
∫

∞

0
P(p)d p. (3.6)

〈a(p)〉 =
∫

aP(a|p)da is the average area of a tile with perimeter or pressure p;
P(a|p) is the conditional probability that a certain tile has area a given its perimeter
p. Using the method of Lagrange multipliers, B.P. Tighe et al. [88] have shown that
the entropy-maximizing density subject to Eqs. (3.6) is

P(p) = Z−1 pν exp [−α p− γ 〈a(p)〉]. (3.7)

Without the constraint on tiling area we would always have γ = 0 and thus an expo-
nential tail: Incorporating local force balance by means of the area constraint has
qualitatively changed the form of the distribution. The Lagrange multipliers Z, α ,
and γ are determined by substituting Eq. (3.7) in Eqs. (3.6). For frictionless systems
a scaling argument shows that 〈a(p)〉 is quadratic in the thermodynamic limit [88];
we write 〈a(p)〉= c〈a〉(p/〈p〉)2 and determine the constant c from numerics. Thus
the probability density P(p) has a generically Gaussian tail, as was already shown
numerically for the normal contact force distribution P( fn). As expected, it will turn
out that P(p) and P( fn) have the same asymptotic behavior.
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3.4 Results

We employ umbrella sampling on a periodic frictionless triangular lattice with N =
1840 to numerically determine P(p), see Sections 1.5 and 1.6. To improve sampling
of large pressures, we used the maximum pressure on a single grain (pmax(f)) as an
order parameter. A typical snapshot of a force network of this system with a large
value of pmax is shown in Fig. 3.2. It is important to note that typical force config-
urations with a large pmax are fundamentally different from those with a large fmax,
see also Fig. 1.8. Typical force configurations with a large pmax have a single grain
on which all contact forces are large, while typical force configurations with a large
fmax have at least a single grain on which two forces are very large. Therefore, to ac-
curately compute P( f ) and P(p) for large forces and pressures respectively separate
umbrella sampling simulations are needed.

In all simulations, forces are normalized in such a way that the average normal
force 〈 fn〉 = 1. From the sampled 〈a(p)〉, shown in Fig. 3.3, we extract c ≈ 0.89.
Fig. 3.4 contains the corresponding probability density of Eq. (3.7) and its numerical
counterpart. Theory and numerics are in excellent agreement, even for P(p) as low
as 10−8. The slight discrepancies can be attributed to finite size effects and spatial
pressure correlations: due to force balance, neighbors of large p grains are more
likely to be at high p themselves. Thus large pressures are less entropically favorable
than suggested by neglecting correlations.
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Figure 3.2: Typical snapshot of a force network with a large pmax. The picture is centered
around the grain with the largest pressure. The thickness of each line represents the magnitude
of the force.
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Figure 3.3: Fitted and numerical average area of a tile with perimeter p for a triangular
frictionless system.
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Figure 3.4: Theoretical (dashed) and numerical (solid) pressure probability distributions for
the frictionless triangular lattice with N = 1840.
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Figure 3.5: Clusters of contact forces. Left: triangular lattice, 7 grains, 30 contact forces.
Right: square lattice, 9 grains, 24 contact forces.

We now consider frictional triangular (z = 6) and square (z = 4) lattices. A system
with friction coefficient µ permits contact forces with both normal component fn and
tangential component | ft | ≤ µ fn. The pressure p remains the sum of normal forces
on a grain. Friction has two important consequences. The first is that 〈a(p)〉 is
not strictly quadratic. Friction permits tiles with area a < 0, which occurs when
tile faces overlap. Nevertheless, on dimensional grounds we expect 〈a(p)〉 ∼ p2

for large p. In numerics, deviations from a quadratic form increase with µ , but for
all frictional systems we have studied quadratic scaling holds for p > 〈p〉. Hence
Eq. (3.7) still yields Gaussian tails. Secondly, we find that friction increases spatial
correlations [88]. Consequently, as in Ref. [93], we coarse-grain and study clusters
of m = 7 (9) grains and k = 30 (24) contacts on the triangular (square) lattice, see
Fig. 3.5. The frictional clusters have exponent ν = 2k− 3m− 1 in their density of
states. We find 〈a(p)〉 for a cluster deviates much less from quadratic behavior than
its single-grain counterpart.

Lacking the exact form of 〈a(p)〉 for frictional systems, we determine the La-
grange multipliers satisfying Eqs. (3.6) using the numerically sampled 〈a(p)〉. The-
ory and numerics are again in excellent agreement, as seen in Fig. 3.6. As the La-
grange multiplier γ tends towards zero with increasing µ (Fig. 3.7), we investigate
the limit µ → ∞. For finite friction and circular grains, normal and tangential forces
are coupled through the force balance constraints on each grain and the Coulomb
constraint on each force. In the infinite friction limit the Coulomb constraint has no
effect. For the triangular lattice there are three distinct contacts per grain, and it is
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possible to choose a set of tangential forces { fti} to balance force and torque on each
grain regardless of the normal forces { fni}. The only constraints on the { fni} are
positivity, fni > 0, and fixed total pressure P . This leads directly to a Boltzmann
distribution

P( fn) =
exp[− fn/〈 fn〉]

〈 fn〉
, (3.8)

with 〈 fn〉= P/zN. In contrast, for systems with z−zc < 3, such as the square lattice,
the normal and tangential forces remain strongly coupled through force balance even
for infinite friction. We have confirmed numerically that in the infinite friction limit
the Boltzmann distribution holds for P( fn) in the triangular lattice, and that for finite
µ there is a cross-over from a Gaussian (low µ) to an exponential (µ → ∞) distribu-
tion (see Fig. 3.8). The same is observed for P(p), see Fig. 3.9. The normal force
and pressure distributions in the square lattice remain close to Gaussian (Figs. 3.8
and 3.9). Indeed, P(p) and P( fn) have the same asymptotic behavior. Fig. 3.10
shows the distribution of the tangential forces P( ft), computed using umbrella sam-
pling with the largest tangential force as an order parameter. The distribution of
tangential forces shows the same asymptotic behavior as the corresponding distribu-
tions P(p) and P( fn) (for the same value of µ). The reason for this is unclear to us.
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Figure 3.6: (a) Theoretical and numerical pressure probability distributions for 7-grain clus-
ters in the frictional triangular lattice with µ = 0.5, 1.0, and 3.0 (arrow: increasing µ). (b)
Theoretical and numerical pressure probability distributions for 9-grain clusters in the fric-
tional square lattice with µ = 0.5, 1.0, and 2.0 (arrow: increasing µ).
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Figure 3.7: Lagrange multiplier γ as a function of the friction coefficient µ for 7-grain clus-
ters in the frictional triangular lattice and for 9-grain clusters in the frictional square lattice.
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Figure 3.8: Distribution of normal contact forces for various µ computed for the triangular
lattice (a,c,e) and square lattice (b,d,f) using the force network ensemble. The direction of
the arrow indicates increasing µ . (triangular lattice: µ = 0.1, 0.2, 0.5, 1.0, 3.0, 5.0, 10.0, ∞;
square lattice: µ = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, ∞). For the triangular lattice, the curves for
µ = 0.1 and µ = 0.2 are almost identical.
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Figure 3.9: Distribution of pressures for various µ computed for the triangular lattice (a,c)
and square lattice (b,d) using the force network ensemble. The direction of the arrow indicates
increasing µ . (triangular lattice: µ = 0.1, 0.2, 0.5, 1.0, 3.0, 5.0, 10.0, ∞; square lattice: µ =
0.1, 0.2, 0.5, 1.0, 2.0, 5.0, ∞). For the triangular lattice, the curves for µ = 0.1 and µ = 0.2
are almost identical.
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Figure 3.10: Distribution of tangential contact forces for various µ computed for the trian-
gular lattice (a,c) and square lattice (b,d) using the force network ensemble. The direction of
the arrow indicates increasing µ . (triangular lattice: µ = 0.1, 0.2, 0.5, 1.0, 3.0, 5.0, 10.0, ∞;
square lattice: µ = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, ∞)
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To study the plasticity of the contact forces, we have measured the plasticity index

Σ =
| ft |
µ fn

(3.9)

and its distribution in the force network ensemble, see Fig. 3.11. In all cases, P(Σ)
is a monotonously decreasing function which becomes more flat for smaller µ . For
µ � 1, we have verified that the distribution of the contact force ratio ft/ fn is in-
dependent of µ . The plasticity distribution has been measured in several exper-
iments [100] and simulations [28, 63, 101]. Often, a maximum was observed at
nonzero Σ along with a sharp increase close to Σ = 1. The latter corresponds fully
mobilized or “plastic” contacts. In the force network ensemble, the occurrence of
these contacts is significantly reduced at all µ .
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Figure 3.11: Plasticity distribution for the frictional triangular lattice (a) and square lattice
(b). The direction of the arrow indicates increasing µ . (triangular lattice: µ = 0.1, 0.2, 0.5,
1.0, 3.0, 5.0, 10.0; square lattice: µ = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0)
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3.5 Conclusion

We have derived an analytic expression for the distribution of pressures in the force
network ensemble in 2D and found excellent agreement with numerics. Distinct from
previous studies, we incorporate two conserved quantities, the total pressure and the
area of a reciprocal tiling. The latter is a direct consequence of force balance on
the grain scale, and we conclude that this is crucial to understand the statistics of
local forces in granular media. As a result, large stresses obey Gaussian statistics in
2D. This observation is robust to changes in the contact network, the finite friction
coefficient, and the imposed measure.

We have not addressed the distribution at the unjamming transition, which could
have a signature in the local stress statistics. Marginally rigid packings cannot be
studied within the force network ensemble. Similarly, our results are restricted to
two dimensions. A naïve extension of the reciprocal tiling to d dimensions sug-
gests an exponent of d/(d − 1), so for 3D P( fn) ∼ exp[−c( fn)3/2], and P(p) =
Z−1 pν exp[−α p−γ p3/2]. For the fcc lattice, ν = 12−3−1 = 8. However, numerics
find P( fn) ∼ exp[−c( fn)α ] with α = 1.7± 0.1 within the force network ensemble,
see Chapter 2. Fig. 3.12 shows the numerically obtained P(p) for an fcc lattice. This
function is fitted to P(p) = a0 exp[−a1 p−a2 pa3 ] resulting in a best fit with a3 ≈ 1.7.
However, excellent fits can be obtained as well for a3 in the range of 1.5−1.8. The
discrepancy, if any, may be the result of stronger spatial correlations than in 2D,
where coarse-graining suffices, or it may signal new physics.
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Figure 3.12: Pressure distribution (P(p)) for an fcc lattice of N = 7140 particles. The dashed
curve is a fit of the numerical data to P(p) = a0 exp[−a1 p−a2 pa3 ], resulting in a3 ≈ 1.7. Also
shown is the same fit with a3 fixed at 1.5.
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It is interesting to speculate further on the role of the torque constraints on the
individual particles in frictional systems. It is important to note that for systems that
do have force balance on each particle, but no torque balance, still have a conserved
area A and pressure P in the force network ensemble. This suggests that torque
constrains do not have a large influence on the contact force statistics. To clarify
the role of the torque constrains, we have studied the frictional triangular lattice with
force balance on each particle, but without torque balance. Sampling the force space
of these systems requires not only the usual wheel moves for the frictional triangu-
lar lattice [80, 87], but also additional wheel moves to sample the extra degrees of
freedom introduced by the non-zero torque on each particle. In these wheel moves,
a particle is selected at random. The tangential component of the “rim” forces get a
(randomly selected) displacement ∆ f and the tangential component of the “spokes”
get a displacement −∆ f (see also Fig. 1.5). The normal component of the “rim”
and “spoke” forces are not affected in this trial move. It is trivial to show that this
move conserves local force balance on each grain. The trial move is accepted using
the usual acceptance rules (see Section 1.5). Fig. 3.13 shows that the triangular lat-
tice without torque balance has almost identical distributions P( fn) and P(p), while
the distribution of tangential forces P( ft) significantly differs from the system with
local torque balance (especially for large µ). Also without torque balance, the nu-
merically sampled distribution P(p) is in good agreement with Eq. (3.7) with the
Lagrange multipliers obtained from the numerically sampled 〈a(p)〉 (note that here
ν = 12− 2− 1 = 9). The observation that local torque balance strongly influences
P( ft), while P( fn) and P(p) are hardly changed, along with the results of Fig. 3.11,
may suggest that the force network ensemble with friction is a less realistic model for
granular systems than the frictionless case. In real granular packings, the plasticity is
strongly dependent on the preparation procedure [101] and this is absent in the force
network ensemble.

Along with recent experiments [25, 26, 29], our results give serious cause to
doubt that exponential statistics are a generic property of jammed granular matter. At
the very least, more work is needed to distinguish bulk and boundary phenomena and
to clarify why measured boundary forces show exponential statistics. We will come
back to the issue of boundary forces in Section 4.6.
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Figure 3.13: Distribution of normal contact forces (a), pressures (b) and tangential forces (c)
computed for the triangular lattice of frictional particles using the force network ensemble.
The solid lines show the distributions without torque balance and the dashed lines show the
distributions with torque balance. The direction of the arrow indicates increasing µ (0.1, 1.0,
5.0).
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4.1 Introduction

In this chapter we will use numerical simulations to study several aspects of the force
network ensemble in more detail. In particular, we focus on the details of the stress
constraints and finite-size effects for the frictionless triangular lattice (Section 4.2),
the angle resolved contact force distribution (Section 4.3), finite-size effects and the
maximum possible force of a certain network of contact forces (Section 4.4), the
dimensionality of the space spanned by all solutions (Section 4.5) and the effect of
boundaries (Section 4.6). In the last part of this chapter (Section 4.7), we will investi-
gate a crucial and longstanding question: how well does the force network ensemble
describe systems with “real” interactions?

4.2 Details of the stress constraints and finite-size effects

In Section 1.5 we introduced a force scale by imposing 〈 f 〉 = 1. In case that |ri j| =
1, this directly results in σxx + σyy (+σzz) = 1. For d dimensional systems under
isotropic pressure, it is therefore convenient to choose a force scale such that σxx =
σyy (= σzz) = 1/d. However, in Ref. [102] the rather unphysical constraint σxx +
σyy = 1 was used instead. With the latter constraint, small anisotropic pressure fluc-
tuations occur.

Monte Carlo simulations in the force network ensemble are used to study the
contact force distribution for the triangular lattice for both isotropic and anisotropic
pressure. We also unravel the effect of the system size N for both constraints. The
results are shown in Fig. 4.1. Contact force distributions calculated with σxx = σyy =
1
2 show no differences at forces below f = 5, but a finite size effect is observed for
larger forces, converging to a Gaussian distribution (see also Section 2.3). Contact
force distributions calculated with the anisotropic constraint σxx + σyy = 1 converge
to the same Gaussian distribution, but the finite size effect is much larger. The reason
for this is that for small systems, the fluctuations of σxx and σyy around 1

2 are quite
large. For larger systems, these fluctuations become smaller so eventually σxx ≈ 1

2
and σyy ≈ 1

2 . From now on, for regular packings we use the constraint σxx = σyy(=
σzz) = 1

d , because it is the most physical one.
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Figure 4.1: Contact force distribution P( f ) as a function of the system size (number of
particles N) for the triangular lattice. (a,c,e) The constraint σxx = σyy = 1

2 is used. (b,d,f) The
constraint σxx +σyy = 1 is used.
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4.3 Angle-resolved P( f )

In Section 2.6, contact force distributions are shown for a two-dimensional disordered
system (z = 5.5) experiencing shear stress. These force distributions do not show a
single characteristic feature, because shear stress induces force anisotropy that yields
a variation in 〈 f 〉 depending on the orientation of the contact. In good approximation,
the average normal contact force along direction φ , see Fig. 4.2, can be described by

f̄n(φ) = 1+2τ sin(2φ)−b2 cos(4φ), (4.1)

with
∫

dφ f̄n(φ)/
∫

dφ = 1 [11, 103]. The parameter b2 increases with increasing
shear stress τ = σxy/σxx and b2 = 0 for τ = 0. The second term in Eq. (4.1) has
the largest contribution to the force anisotropy. The “total” P( f ) is a superposition
over all orientations φ . Here, we study the angle-resolved contact force distribu-
tion P( f ,φ) by umbrella sampling. To accurately compute the tail of this distribu-
tion, a separate simulation is needed for each φ , using the maximum force along
the direction φ as an order parameter (see also Section 1.6). From Eqs. (1.25),
(1.26), and (1.27) it is easy to see that the constraints σxx = σyy and σxy 6= 0 im-
ply that φ = 45◦ is the shear stress direction. Hence, the following symmetry applies:
P( f ,45◦−φ) = P( f ,45◦ + φ) and P( f ,225◦−φ) = P( f ,225◦ + φ). This has been
used to improve sampling statistics.

x

y

φ

Figure 4.2: The angle φ in the used reference frame.

A triangular lattice contains contact forces in three distinct orientations: (1) 0◦

and 180◦, (2) 60◦ and 240◦, and (3) 120◦ and 300◦. In Fig. 4.3 contact force distri-
butions are shown for these three orientations. We see that for τ = 0 all orientations
have the same Gaussian decay of P( f ,φ) (α = 2 in Eq. (1.37)). The small differ-
ences in Fig. 4.3(a) can be attributed to finite-size effects induced by periodic bound-
ary conditions. If the system experiences shear stress (τ > 0), the tails of the force
distributions are still Gaussian (α = 2), but as expected we observe a different slope
in the linear-log plots; the probability of large contact forces oriented close to the
direction of the shear stress (60◦ and 240◦) becomes larger, while the probability of
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large contact forces oriented almost perpendicular to the direction of the shear stress
(120◦ and 300◦) becomes significantly smaller.
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Figure 4.3: Angle-resolved contact force distributions for a triangular lattice (N = 1840 par-
ticles) with τ = 0 (a,b), τ = 0.2 (c,d) and τ = 0.4 (e,f). The contact forces are oriented in
three directions: (1) 0◦ and 180◦, (2) 60◦ and 240◦, and (3) 120◦ and 300◦. If systems ex-
perience shear stress, the distribution P( f ,φ) becomes different in the three given directions.
However, for a fixed φ , P(φ) shows a Gaussian decay.
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To study the angle-resolved P( f ,φ) for 2D disordered systems, we construct a
histogram of all contact forces in which the contact forces are grouped according
to their orientation φ , see Fig. 4.4. In Fig. 4.5 the average normal force for each
orientation is plotted in a polar diagram. Without shear stress, the average force
equals 1 in all directions. With shear stress (τ > 0), the average force in the direction
of the shear stress (label 1 in Fig. 4.4) becomes larger and the average force oriented
almost perpendicular to this direction (label 6) becomes smaller (see Fig. 4.5(a)).
The orientation dependence of the average force is given in good approximation by
Eq. (4.1). We also show a polar diagram for frictional particles as a function of shear
stress (see Fig. 4.5(b)) and as a function of the friction coefficient (see Fig. 4.5(c)).
From the latter figure we can conclude that force anisotropy disappears if we allow
friction.
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Figure 4.4: Diagram showing the different orientation segments for which the contact forces
are evaluated. Note the symmetries P( f ,45◦ − φ) = P( f ,45◦ + φ) and P( f ,225◦ − φ) =
P( f ,225◦+φ) are compatible with the symmetry of simple shear.

Fig. 4.6 shows the angle-resolved P( f ,φ) for disordered systems with friction-
less particles. We see that the P( f ,φ)’s for systems experiencing shear stress decay
at least as fast as a Gaussian. Certainly, the decay of the angle-resolved contact
force distribution decays significantly faster than an exponential. This means that the
(partly) exponential decay of the total P( f ) as was found in Fig. 2.5 is a direct result
of averaging P( f ,φ) over all φ , and not a result of exponential statistics of individual
contact forces.
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Figure 4.5: Polar diagram of the average normal force per histogram segment for a two-
dimensional disordered system with N = 1024 and z = 5.5. We have used the segments
represented in Fig. 4.4. (a) Frictionless particles as a function of the shear stress τ . The
direction of the arrow indicates increasing τ: 0, 0.1, 0.2, 0.3. (b) Frictional particles (µ = 0.5)
as a function of the shear stress τ . The direction of the arrow indicates increasing τ: 0.1, 0.2,
0.3, 0.4, 0.49. (c) Frictional particles experiencing shear stress (τ = 0.2) as a function of the
friction coefficient µ . The direction of the arrow indicates increasing µ: 0.1, 0.5, 1.0, 2.0,
10.0.
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Figure 4.6: Angle-resolved contact force distributions of a two-dimensional disordered sys-
tem with frictionless particles (N = 1024,z = 5.5), divided in six directions. The numbers
correspond to the segments in Fig. 4.4. (a,b) τ = 0.0, (c,d) τ = 0.2, (e,f) τ = 0.3.
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We also studied the angle-resolved contact force distribution for a fcc lattice ex-
periencing shear stress. This lattice is oriented such that the close-packed planes lay
in the xy-plane and are stacked along the z-axis. Contact forces in the fcc lattice
have six distinct orientations, as shown in Fig. 4.7. Shear stress of the form σxy 6= 0
and σyz = σxz = 0 is applied and we refer to the parameter τ = σxy/σxx as the shear
stress. The stress direction is in the xy-plane at 45◦ with the x-axis. Fig. 4.8 shows the
direction-resolved P( f ) for a fcc lattice with frictionless particles. All P( f ) decay as
aexp[−b f α ] with α ≈ 1.7. Similar to the triangular lattice, for different directions we
observe a different slope in the linear-log plots. Shear stress has the largest effect on
the forces oriented in directions 2 and 3 as both are in the xy plane along the direction
of the shear stress. Forces not oriented in this plane (e.g. 5) are less affected.
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Figure 4.7: (left) Orthografic projection of an fcc lattice along the z-axis. The close-packed
planes lay in the xy-plane and are stacked along the z-axis. The orientation becomes important
if the system experiences shear stress. (right) Part of the fcc lattice in which the six distinct
orientations of contacts between the particles are shown.
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Figure 4.8: Direction-resolved contact force distributions of a three-dimensional crystalline
system with frictionless particles (fcc, N = 7140), divided in six orientations (see Fig. 4.7).
Shear stress τ is defined as σxy/σαα with α = x,y,z. (a,b) τ = 0, (c,d) τ = 0.3 and (e,f)
τ = 0.39.
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4.4 Maximum possible force inside a packing

In Section 2.4 we have seen that for disordered packings in 2D, finite-size effects
occur for the contact force distribution P( f ), especially for low coordination numbers
(z). One would observe such finite-size effects for forces close to the maximum force
that a certain packing can sustain. When the maximum force of a packing ( fmax(f))
is close to the maximum force that a certain packing can sustain, P( f ) will show a
very sharp decrease. Eventually, P( f ) will decrease to zero for any packing [85].

In principle, conventional umbrella sampling [52] can be used to determine the
maximum possible fmax. However, a huge number of iterations will be necessary as
P( f ) will become extremely small close to the maximum possible fmax. To efficiently
compute the maximum possible fmax for a given packing, we use the central idea of
the recently proposed random-walk algorithm of Wang and Landau [104, 105]. In this
scheme, a random walk is performed in the space of all possible force networks f. The
simulation is started by setting a certain function κ( fmax) = 1 for all fmax. Starting
from a particular solution f = f0, we perform a Monte Carlo scheme to sample all
possible force networks (see section 1.5). Trial moves that result in a configuration
for which all fn,i ≥ 0 are accepted with a probability

Pacc(o→ n) = min
(

1,
κ( fmax(o))
κ( fmax(n))

)
. (4.2)

in which o and n are used to denote the old and new configuration respectively. The
crucial difference with conventional Monte Carlo is that each time a force network
with a certain fmax is visited, κ( fmax) is updated as follows: κ( fmax)→ κ( fmax)×m
in which m > 1 (typically m = 2). This means that this scheme does not obey de-
tailed balance. After many trial moves, eventually all possible values of fmax will
be visited with (approximately) equal probability. From this, the maximum possible
force of a certain contact network can be estimated. In the original version algo-
rithm [104, 105], the parameter m is slowly decreased from 2 to 1+δ in a controlled
way (typically δ ≈ 10−9), such that eventually configurations are sampled with a
probability inversely proportional to the density of states. In our case, we are only
interested in the maximum possible force that a packing can sustain and therefore we
can safely set m = 2.

Fig. 4.9(a) shows the computed maximum possible force in 2D disordered sys-
tems. Indeed, the maximum possible force increases with N and strongly depends
on the coordination number z. In Fig. 4.9(b), the corresponding P( f ) along with the
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maximum possible force is shown for z = 4.5. This figure shows strong evidence that
the finite-size effects obtained in P( f ) are due to the fact that the maximum possible
force of a small system with low z is quite small. Fig. 4.10 suggests that finite-size
effects in 3D are much smaller. This is in line with the simulations presented in
Fig. 2.4(a).
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Figure 4.9: (a) The maximum possible force in unsheared networks of two-dimensional
disordered systems for different N. (b) P( f ) for a 2D disordered systems with z = 4.5. The
vertical lines show the maximum possible force.
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Figure 4.10: The maximum possible force in unsheared networks of three-dimensional dis-
ordered systems with a different N.
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4.5 Maximum shear stress of a packing

To understand the relation between the maximum shear stress τm and the coordina-
tion number z of a certain packing, we investigated the volume of the phase space of
allowed force networks. J.H. Snoeijer et al. showed that for 2D frictionless systems
this volume shrinks for increasing τ [11]. The point at which the phase space vol-
ume is zero (τm) can be considered as a measure for the yield stress of the material.
Ellenbroek and Snoeijer predicted that the effect of friction on τm is quite small [103]:

τm =
1+
√

1+3µ2

3
. (4.3)

This equation is valid for disordered 2D systems in the limit of z → 6. To estimate
the accessible volume of the space of all allowed force networks corresponding to a
certain shear stress τ , we have used the following approaches:

• An effective linear measure for the size of the force space is the Euclidean
distance L:

L(τ)≡

√√√√〈
∑
i j

( fn,i j− f ′n,i j)2

〉
. (4.4)

The brackets denote an average over independent force networks with normal
forces fn,i j and f ′n,i j. Close to τm, L(τ) will show a sharp decrease.

• Direct calculation of the volume using umbrella sampling. The accessible vol-
ume V (τ) corresponding to a certain τ is proportional to the probability P(τ)
measured in the force network ensemble in which the constraint on σxy has
been removed. The dimension of the null space of this modified ensemble is
one higher than given in Table 1.1. Essentially, P(τ) = V (τ)/Vtot in which
Vtot =

∫
∞

0 dτV (τ). In principle, P(τ) and L(τ) will depend on the system size
N and the nature of the packing. As L can be considered as a linear measure
for the phase space volume, one would expect P(τ) ∝ V (τ) ≈ cLγ in which c
is a constant and γ is the dimension of the force space. It describes how the
volume of the force space shrinks with increasing τ .

First we will study the Euclidean distance L as a measure for the volume of the phase
space. Fig. 4.11 shows the Euclidean distance L(τ)/L(τ = 0) for 2D disordered
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Figure 4.11: Euclidean distance L/L(τ = 0) as a function of τ for 2D disordered systems
with N = 1024 and (a) z = 4.5, (b) z = 5.0 (c) z = 5.5. The symbols are simulation data
points and the solid lines are fits to Eq. 4.5: no friction (square), µ = 0.5 (circle) and µ = 1.0
(triangle).

systems (N = 1024) without and with friction (µ = 0.5 and µ = 1.0). The data is
well described by

L/L(0) =

√
1−
(

τ

τm

)α

, (4.5)

in which τm and α are fitted. For frictionless systems, α ≈ 2 while frictional systems
have a larger value for α . The obtained results for τm are summarized in Table 4.1.
Our simulation results for frictional and frictionless systems are in excellent agree-
ment with the prediction of Ref. [11], which can be considered as an upper limit and
therefore valid for large z. For τ < 0.2, the Euclidean distance of frictional packings
is almost constant, suggesting that the shear stress has a negligible influence on the
normal contact forces.



EXTENDED NUMERICAL STUDY OF THE FORCE NETWORK ENSEMBLE 81

Table 4.1: The maximum shear stress τm for systems with coordination number z and N =
1024 obtained by fitting Eq. 4.5 to the simulation data in Fig. 4.11. Included is also the
prediction according to Eq. 4.3.

z = 4.5 z = 5.0 z = 5.5 Eq. 4.3
no friction 0.20 0.37 0.50 0.67
µ = 0.5 0.60 0.69 0.76 0.77
µ = 1.0 0.78 0.87 0.98 1.00

Table 4.2: Estimated dimension γ of the force space for frictionless 2D disordered systems
with N = 1024, obtained by plotting ln(P(τ)) versus ln(L(τ)). The values between brackets
are the dimension of the force space according to Table 1.1.

z = 4.5 z = 5.0 z = 5.5
462 (259) 1120 (523) 2536 (769)

In Fig. 4.12, P(τ)/P(τ = 0) is plotted as a function of τ for 2D disordered sys-
tems (N = 1024) without friction and with friction (µ = 0.5 and µ = 1.0). Already
for small τ (i.e. far away from τm), P(τ)/P(τ = 0) becomes extremely small. This
means that within the framework of the force network ensemble, packings do not
spontaneously develop a shear stress. Computing P(τ) beyond τ = 0.2 is very diffi-
cult and requires very long simulations, even if more overlapping windows are used in
the umbrella sampling simulations. For frictionless systems, P(τ)/P(τ = 0) strongly
depends on the coordination number z, while this effect is not present for frictional
systems. The latter observation is not surprising, as L(τ) of frictional systems is
almost flat for τ < 0.2.

From the slope of ln(P(τ)) as a function of ln(L(τ)) we estimated the dimension
of the force space γ that describes the shrinking of the force space for increasing τ .
The value of γ is related to the dimension of the force space, see Table 1.1.
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Figure 4.12: P(τ)/P(τ = 0) against τ for 2D disordered systems N = 1024: no friction
(solid), µ = 0.5 (long dashed) and µ = 1.0 (dot-dashed). (a) z = 4.5, (b) z = 5.0 (c) z = 5.5.
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4.6 Wall versus bulk forces

In Section 1.2 we have presented a brief overview of experimental, theoretical and
computational studies of force network statistics in granular materials. Experimental
measurements of contact forces at the boundaries (walls) show convincing exponen-
tial contact force distributions, while a stronger than exponential decay is observed in
many experimental and computational studies of bulk force statistics. The observed
exponential force distributions have often been attributed to “Boltzmann” type argu-
ments, however, in Chapter 3 we have shown that the tail of the force distribution
is mainly determined by local constraints. This raises the question whether or not
contact force statistics at the walls is fundamentally different from the bulk.

A simple model for a system with wall and bulk forces is the so-called Snooker
triangle first studied by Snoeijer [42], see Fig. 4.13. The stress on the system is
controlled by constraining the sum of the wall forces for each of the three walls. All
contact forces are repulsive and we will not consider friction. For N = 3 and N = 6
balls, it is possible to derive analytical solutions for the bulk and wall force statistics
(P( fb) and P( fw)) in the framework of the force network ensemble. For larger N,
P( fb) and P( fw) have been computed in Ref. [85]. However, the authors of this study
were not able to make conclusive statements about the nature of the tail of these
distributions.

Figure 4.13: Snooker triangle of N = 6 balls with 9 forces between the balls (i.e., bulk
forces) and 9 forces between a ball and the wall (i.e., wall forces). The stress on the system
is controlled by constraining the sum of the wall forces for each of the three walls. Note that
particles at the wall have 5 neighbors, while particles in the bulk have 6 neighbors.
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We have re-examined the force distribution for snooker packings using umbrella
sampling, see Fig. 4.14. The distributions P( fb) and P( fw) have been normalized
such that 〈 fb〉 = 1 and 〈 fw〉 = 1. The results unambiguously show that for large N
both the bulk and wall forces have a Gaussian tail. It is not surprising that for large N,
P( fb) approaches the contact force distribution of a triangular lattice, which is known
to have a Gaussian tail, see Chapter 2. Without the presence of local force balance on
the balls near the wall, we would have exactly recovered the “Boltzmann” argument
resulting in an exponential distribution of wall forces. Apparently, the distribution
of wall forces is changed significantly by the presence of bulk forces and local force
balance constraints.
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Figure 4.14: Contact force distribution for wall forces (a,c) and bulk forces (b,d) for snooker
packings of several sizes. P( fw) and P( fb) have been normalized such that 〈 fb〉 = 1 and
〈 fw〉= 1. For comparison we also show P( f ) for a frictionless triangular lattice in (b,d).
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In order to further study the effect of wall forces, we have computed contact
force distributions for a triangular lattice confined between two walls using the force
network ensemble, see Fig. 4.15. The following conditions were studied:

• A flat measure imposed on the whole system, i.e. the sum of the wall forces
for each wall is constant. The distribution of bulk and wall forces is shown in
Fig. 4.16. Just as for the snooker packing, both the bulk and wall forces show
a Gaussian decay because of the local force balance constraints.

• A flat measure imposed on the bulk and wall forces separately [106], i.e. all
wall forces are constant and drawn from an exponential distribution. Fig. 4.17
shows the distribution of bulk forces as a function of the position in the sys-
tem for a single realization of the wall forces. Within 10 layers the contact
force distribution is identical to the one for the periodic triangular lattice, both
having a Gaussian tail. The boundary forces are fixed and drawn from an expo-
nential distribution. As a reference, the contact force distribution of a periodic
triangular lattice of N = 2900 particles is also shown, see Fig. 2.1.

This simple example demonstrates that the distribution of wall forces may differ con-
siderably from the distribution of bulk forces.
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Figure 4.15: Triangular lattice between two walls. Periodic boundary conditions are only
used in the vertical direction. The system consists of 820 particles, 2420 interparticle contact
forces and 2×20 = 40 wall forces. All forces are repulsive and we do not consider friction.
The numbers indicate the various layers.
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Figure 4.16: Distribution of bulk and wall forces for the system of Fig. 4.15. A flat measure
is imposed on the whole system.



EXTENDED NUMERICAL STUDY OF THE FORCE NETWORK ENSEMBLE 87

0 2 4 6 8 10
f

10
−20

10
−15

10
−10

10
−5

10
0

P
(f

)

layer 3
layer 5
layer 7
triangular

Figure 4.17: Distribution of bulk contact forces as a function of the position, see Fig. 4.15. A
flat measure imposed on the bulk and wall forces separately, i.e. all wall forces are constant
and drawn from an exponential distribution (see text).
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4.7 Contact force distributions for systems with “real”
interactions

Until now we studied contact force distributions in the framework of the force net-
work ensemble. In this ensemble, the contact forces between particles are stochastic
variables subject to various constraints (i.e. force balance on each grain, only re-
pulsive contact forces, and a prescribed stress tensor) and do not originate from an
interaction potential. It is interesting to investigate to which extent the contact force
statistics of the force network ensemble is identical to that of forces derived from
“real” interactions, i.e. interactions that follow from an interaction (pair) potential.

Two cases are worth studying. First, the force distribution of the unconstrained
“real” system and second the force distribution of the “real” system with the con-
straint of a zero net force on each particle. We shall refer to the latter systems as
force balanced packings.

We first discuss force balanced packings of interacting particles. It is natural to
expect that the contact force distribution is close to the one obtained in the force
network ensemble. Molecular simulations of force balanced packings of interacting
particles are non-trivial as one needs to include constraints on the net force on each
particle, while one cannot control the contact forces directly. We used the scheme
described in Section 1.4 to generate a large number of these packings with equal
pressure P. We studied 2D packings of N = 2000 bidisperse particles with diam-
eter σi (50%/50% mixture, size ratio 1.4) interacting with either a WCA potential
(Eq. 1.20) or an harmonic potential

uHARM(ri j) =

{
ε (σi j− ri j)

2 , ri j ≤ σi j

0, ri j > σi j,
(4.6)

where σi j = (σi +σ j)/2 and ε is the depth of the potential well. The diameter of the
smallest particles is used as a unit of length.

Fig. 4.18 shows the contact force distributions and the coordination numbers for
forces balanced packings with pressure P consisting of particles that interact with
an harmonic potential. In the same figure we also show P( f ) for a triangular lattice
in the force network ensemble. The graphs for the “real” interactions are obtained
from averaging over 4000 force balanced packings for each pressure. The average
coordination number z strongly depends on the applied pressure. In the limit of
small pressure, the coordination number approaches the isostatic limit zc = 4. For
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all simulations, we have verified that the system is sufficiently far from zc so that the
simulations do not suffer from a lack of self-averaging [35, 107]. The contact force
distribution for a triangular lattice in the force network ensemble is close to P( f ) for
the “real” interactions at dimensionless pressure P ≈ 0.03. Both distributions have a
Gaussian tail. For larger pressures (and larger z) the contact force distribution bends
down faster than a Gaussian. The observation of a Gaussian tail is in agreement
with the simulations of O’Hern et al. [12, 35]. These authors also used an argument
based on equilibrium systems to predict the decay of the large force tail, resulting in a
Gaussian tail for an harmonic potentials and a nearly exponential tail for a WCA po-
tential. It is important to note that the systems of Fig. 4.18 are not in thermodynamic
equilibrium so the argument may not apply.

To investigate the effect of the interaction potential, we have studied force bal-
anced packings of particles interacting with a WCA potential. We have investigated
the effect of the pressure P as well as the (dimensionless) hardness κ of the interac-
tion potential:

κ =
〈 f 〉〈
ri j
〉 〈 ∂ f

∂ ri j

〉−1

. (4.7)

Particles that are harder have a lower value of κ . The value of κ can be controlled di-
rectly by changing the energy parameter ε of the WCA potential. Fig. 4.19(a) shows
that systems with the same κ have the same coordination number z, and we have
verified that they also have the same contact force distribution. Analogous to what
we found for an harmonic interaction, we find that the contact force distribution for a
triangular lattice in the force network ensemble is close to P( f ) for energy parameter
ε ≈ 16 and dimensionless pressure P = 15. Again, they both have a Gaussian tail. In
fact, all distributions of Fig. 4.19(d) have a Gaussian tail.

Next we turn to the case of the force distribution of an unconstrained “real” sys-
tem. These systems do not have force balance. In Chapter 3 we have shown that
local force balance determines the decay of the contact force distribution. Fig. 4.20
shows the contact force distribution of particles interacting with a WCA potential
simulated at a finite temperature T . The glass transition temperature of this system
is kBTg/ε ≈ 1.1. Clearly, P( f ) decays exponentially both for T > Tg and T < Tg, in
agreement with previous molecular dynamics simulations [12]. This is significantly
different from the Gaussian tails of the contact force distribution that we found for
the constrained “real” interactions. It would be very interesting to investigate further
if the arguments of Chapter 3 are able to explain the differences between the tails of
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Figure 4.18: (a) The coordination number z as a function of the pressure P resulting from
simulations of systems with particles interacting via an harmonic potential (ε/kBT = 1). The
data is well described by z− zc ∼ P0.41 (solid line). (b,c,d) Contact force distribution of
systems with particles interacting via the harmonic potential (ε/kBT = 1). The same data are
plotted using different axes. The direction of the arrow indicates increasing pressure P (in
dimensionless units 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4). For comparison
we also show P( f ) for a triangular lattice in the force network ensemble (dashed curve).

P( f ) in Fig. 4.19 and 4.20.
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Figure 4.19: (a) The hardness κ as a function of the coordination z. The data points are
results from simulations of systems with particles interacting via the WCA potential and di-
mensionless pressure P = 15 (circle), P = 25 (plus) and P = 35 (square). (b,c,d) Contact force
distribution of systems with particles interacting via the WCA potential and dimensionless
pressure P = 15. The direction of the arrow indicates increasing energy parameter ε/kBT (1,
2, 4, 7, 10, 13, 16, 20) and decreasing κ (0.0466, 0.0384, 0.0294, 0.02227, 0.01810, 0.01531,
0.01331, 0.01138). For comparison we also show P( f ) for a triangular lattice in the force
network ensemble (dashed curve).
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Figure 4.20: Force distributions of a two-dimensional system (N = 1024, ρ = N/V = 0.747)
with a WCA potential without force balance as a function of the temperature. The direction
of the arrow indicates increasing kBT/ε: 0.2, 0.4, 0.6, 0.8, 1.2. These simulations have been
obtained using umbrella sampling where we have assumed local equilibrium. We have veri-
fied that MD simulations of the same system using a constraint temperature lead to identical
results.
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Summary

Granular materials such as sand and grains of corn have both liquid-like and solid-like
properties similar to both liquids and solids. Dry sand in an hour-glass can flow just
like water, while sand in a sand castle closely resembles a solid. Because of these
interesting properties granular matter has received much attention from numerous
physicists. Part of the research on these materials focuses on the statistics of contact
forces between individual particles (grains) and how these statistics can be used to
understand and predict material properties. Contact forces in granular materials are
organized in so-called forces networks. The magnitude of the contact forces may vary
considerably. Some particles experience contact forces much larger than the average
contact force, see for example Fig. 1.2 and 1.8 of this thesis. The presence of many
large contact forces in a sand pile may result in yielding, i.e. breaking down of the
sand pile. A common quantity to characterize these force variations is the probability
distribution P( f ) of the contact force f between two particles. Usually, the contact
force distribution of a static system has its maximum near the average force 〈 f 〉, see
for example Fig. 1.1 of this thesis.

A long-standing issue in the area of granular media is the asymptotic behavior
of the contact force distribution P( f ) for large forces. In particular, one discusses
whether the tail of P( f ) is exponential, Gaussian, or has a different form. Further-
more, its relation with material and system properties is under scruteny. In a recent
issue of Nature (volume 435, 23 June 2005) three papers pay attention to this subject.
Two different experimental methods are often applied to determine contact forces in
static granular materials. The first measures boundary forces using carbon paper. The
force between grains and the wall of the container, that holds the grains, is deduced
from imprints on carbon paper. For large boundary forces the measured distribution
decays exponentially. This observation is often used to suggest an analogy with the
Boltzmann distribution of the microcanonical ensemble. In this ensemble, N random
variables xi satisfy the constraints ∑

N
i=1 xi = N 〈x〉 and xi ≥ 0. In the thermodynamic



limit, equipartition of N variables xi results in an exponential distribution (the so-
called Boltzmann distribution) for xi. The second and more recent way to measure
bulk contact forces in two-dimensional granular materials (grains are disks) uses the
photoelastic effect of the disks. Changes in the optical properties of the disks can be
translated into contact forces. Distributions of these contact forces show a faster than
exponential decay. It should be mentioned that a faster than exponential decay also
was found in experiments with three-dimensional emulsions.

In view of the technical difficulty to measure contact forces, especially in the bulk
of the material, several research groups use molecular simulations to study contact
force statistics. Molecular simulations may be interpreted as computer experiments
in which the temporal evolution of a model system consisting of interacting particles
can be calculated. From the simulated results statistical properties, like the distri-
bution of the average contact force, can be calculated. Some of these studies claim
an exponential tail of P( f ). The published graphs however, are less convincing than
the graphs obtained from the experiments with carbon paper. The differences in the
results give rise to three important questions: (1) Which properties are responsible
for the behavior of P( f ) for large forces? (2) What is the fundamental difference
(if any) between the statistics of contact forces between particles in the bulk and be-
tween particles and the wall? (3) Is it possible to explain the shape of P( f ) with
the Boltzmann-type argument? Answering these questions is seriously hindered by
the fact that large contact forces occur de facto significantly more rarely than contact
forces near the average force 〈 f 〉. This applies to experiments as well as to molecular
simulations.

In this thesis, we approached these questions using computer simulations in the
so-called force network ensemble of Snoeijer et al. (J.H. Snoeijer, T.J.H. Vlugt, M.
van Hecke, W. van Saarloos, Phys. Rev. Lett., 2004, 92, 054302). This ensemble
describes the statistics of repulsive contact forces for a particular packing of the par-
ticles. The crucial assumption is that the particles are almost undeformable. Hence
a small displacement of a particle may result in completely different contact forces
on that particle. In the force network ensemble, the particles in the system have fixed
positions and the contact forces are chosen in such a manner that all particles are
in mechanical equilibrium, i.e. experience a zero net force, and the elements of the
stress tensor have a prescribed value. Moreover it is assumed that each realization of
repulsive contact forces (a force network) that satisfy the constraints is equally prob-
able. The obtained collection of force networks is called the force network ensemble.



Mathematically, the force network ensemble can be considered as the collection of
solutions of an underdetermined matrix equation A f = b subject to the constraint
that all elements of f are larger or equal to zero. This constraint expresses that only
repulsive contact forces are considered. The solutions of this underdetermined matrix
equation can be written as f = f0 +∑akvk, in which f0 is a particular solution, the vk

are the null vectors of matrix A and the ak are arbitrary coefficients. The summation
is over all null vectors and only f with exclusively non-negative elements are allowed.

Force networks on arbitrary two- and three-dimensional packings can be gen-
erated with Monte Carlo simulations. These simulations are computer calculations
in which (pseudo-)random numbers are used to efficiently sample the configuration
space. From the simulation results one estimates the average of particular quantities,
such as the distribution of the contact forces P( f ). The solution space of the force
network ensemble can be sampled in a statistically correct way using so-called wheel
moves. Unfortunately, the standard Monte Carlo procedure for the force network en-
semble is inefficient for the estimation of P( f ) for large contact forces f . The reason
is that by far the largest fraction of generated force networks contains only small
forces. For unambiguous conclusions on the asymptotic behavior of P( f ), extremely
long (of the order of years or even centuries) computer calculations are needed. To
obtain better statistics for large contact forces, we developed an umbrella sampling
method for the force network ensemble. The umbrella sampling method has been in-
troduced in the seventies by Torrie and Valleau (G. M. Torrie, J.P. Valleau, J. Comp.
Phys., 1977, 23, 187-199). Since then, the method was “re-invented” by different au-
thors. The central idea is to sample the solution space of the force network ensemble
with a biased Monte Carlo simulation in such a way that many forces networks with
large contact forces are found. This results in excellent statistics for large contact
forces, however, the result can not be used directly because the solution space is in-
correctly sampled. Fortunately, the error can be corrected exactly afterwards, adding
a statistical weight to the sampled force networks. One needs to develop some feeling
to sample the solution space of the force network ensemble in an efficient way.

The outline of this thesis is as follows. In Chapter 1, an overview is given of the
different methods to study the statistics of force networks. The experimental stud-
ies with carbon paper and photoelastic disks and the molecular simulation studies
are reviewed. We also explained the umbrella sampling method that we developed
to obtain excellent statistics for large forces. In Chapter 2, we applied the umbrella
sampling method to study the tail of the force distribution P( f ) for different two-,



three- and four-dimensional systems. The average number of contacts z of a parti-
cle and the packing configuration are shown not to be important for the asymptotic
behavior of P( f ). Only the dimensionality of the system has a significant influ-
ence: P( f ) ∼ exp[−c f α ] with α ≈ 2.0 for two-dimensional systems, α ≈ 1.7 for
three-dimensional systems and α ≈ 1.4 for four-dimensional systems. In Chapter 3,
a possible explanation is found for the Gaussian decay of large contact forces in
two-dimensional systems. It was found that mechanical balance on each particle is
essential for the tail of the contact force distribution. Under this constraint maximiz-
ing the entropy results in a contact force distribution with a generic Gaussian tail.
This distribution is almost in perfect agreement with the umbrella sampling simula-
tions for systems with and without friction, both for triangular and for square lattices.
Removing the mechanical equilibrium constraint on each particle, maximization of
the entropy results in an exponential tail of P( f ). This is consistent with the “Boltz-
mann” argument. We conclude that the tail of P( f ) is determined by local mechanical
equilibrium, which throws serious doubts on the statement that exponential statistics
are a generic property of static granular materials. In Chapter 4, several aspects are
highlighted. We show that in the presence of shear stress P( f ) is strongly direction
dependent. As a result the tail of the orientation-averaged P( f ) may look (partly)
exponential even though for each individual direction the tail is Gaussian. We de-
velop methods to find the maximum possible force in a system and to determine the
dimension of the force space. We demonstrate that the wall-contact force distribution
may differ essentially from the bulk-contact force distribution. This chapter ends
with a detailed comparison between P( f ) in the force network ensemble and P( f )
from molecular simulations of particles with a “real” pair interaction. We show that
these distributions are different in general. Nevertheless our preliminary calculations
suggest that applying the constraint of local mechanical equilibrium, the force distri-
bution of the “real” system crosses over towards the distribution of the force network
ensemble.



Samenvatting

Granulaire materialen zoals zand en graankorrels hebben eigenschappen overeenkom-
stig met zowel vloeistoffen als vaste stoffen. Zo kan droog zand in een zandloper
net als water stromen, terwijl zand in zandkasteel juist meer op een vaste stof lijkt.
Door deze bijzondere eigenschappen staan granulaire materialen in de belangstelling
bij natuurkundigen. Een deel van het onderzoek naar deze materialen richt zich
op de statistiek van contactkrachten tussen individuele deeltjes (zandkorrels) en hoe
men deze kan gebruiken om eigenschappen van materialen te begrijpen en te voor-
spellen. Contactkrachten in granulaire materialen zijn georganiseerd in zogenaamde
krachtennetwerken. De grootte van deze krachten kan sterk variëren over de ruimte.
Sommige korrels ondervinden bijvoorbeeld contactkrachten die veel groter zijn dan
de gemiddelde contactkracht, zie bijvoorbeeld Fig. 1.2 en 1.8 van dit proefschrift.
De aanwezigheid van veel grote contactkrachten in een zandhoop, al dan niet veroor-
zaakt door een externe kracht, kan de zandhoop doen instorten. Een veelgebruikte
grootheid om krachtennetwerken te karakteriseren is de kansverdeling P( f ) van de
contactkracht f tussen twee korrels. Voor stilstaande systemen heeft deze verde-
ling vaak een maximum in de buurt van de gemiddelde kracht 〈 f 〉, zie bijvoorbeeld
Fig. 1.1 van dit proefschrift.

Het asymptotisch gedrag van de contactkrachtverdeling P( f ) voor granulaire ma-
terialen staat momenteel ter discussie. Eén van de centrale vragen is of de P( f ) voor
grote f (de staart) een exponentiële, Gaussische, dan wel een andere vorm heeft.
Verder wordt de relatie tussen P( f ) en materiaal- en systeemeigenschappen onder-
zocht. In een recent nummer van het toonaangevende blad Nature (volume 435, 23
juni 2005) besteden maar liefst drie artikelen aandacht aan dit onderwerp. Twee
verschillende experimentele methoden worden vaak gebruikt om contactkrachten in
statische (in rust zijnde) granulaire materialen te bepalen. Bij de eerste methode ge-
bruikt men carbonpapier om de grootte van de wandcontactkrachten te meten tussen
korrels en de wand van de container waar het materiaal zich in bevindt. De afdrukken



die ontstaan op de plaatsen van de contacten tussen de korrels en de wand kunnen
direct worden vertaald naar contactkrachten. Steeds vindt men dat contactkracht-
verdelingen tussen korrels en de wand die op deze manier worden gemeten een ex-
ponentiële staart hebben. Deze waarneming wordt vaak gebruikt om een analogie
te suggeren met de Boltzmann verdeling in het microcanonieke ensemble. In dit
ensemble voldoen de N variabelen xi aan ∑

N
i=1 xi = N 〈x〉 en xi ≥ 0. In de thermody-

namische limiet levert equipartitie van N variabelen xi een exponentiële verdeling (de
zogenaamde Boltzmann verdeling) op voor xi. Bij de tweede en meer recente manier
om bulkcontactkrachten te meten in tweedimensionale systemen maakt men gebruik
van het zogenaamde foto-elastisch effect. Veranderingen in de optische eigenschap-
pen van plastic schijven kunnen direct worden vertaald naar contactkrachten tussen
de schijven. Verdelingen van contactkrachten die op deze manier worden gemeten
laten duidelijk een sneller dan exponentieel verval zien. Hetzelfde is waargenomen
in experimenten met emulsies (driedimensionale systemen).

Omdat het vaak lastig is om contactkrachten direct in de bulk van het materiaal te
meten, hebben verschillende onderzoeksgroepen moleculaire simulaties gebruikt om
contactkrachtverdelingen te meten. Moleculaire simulaties kunnen worden gezien
als computer-experimenten waarin de evolutie van een modelsysteem bestaande uit
wisselwerkende deeltjes wordt berekend. Hieruit kunnen allerlei gemiddelden, zoals
de verdeling van de gemiddelde contactkracht worden berekend. Hoewel een aantal
van dit soort studies een exponentiële staart van P( f ) claimen, is het numerieke be-
wijs hiervoor veel minder overtuigend dan bij de experimenten met carbonpapier. De
verschillen in de resultaten roepen drie belangrijke vragen op: (1) Welke eigenschap-
pen bepalen het gedrag van P( f ) voor grote krachten? (2) Is er een fundamenteel
verschil tussen de statistiek van wandcontactkrachten en bulkcontactkrachten? (3) Is
de Boltzmann-analogie valide om de staart van P( f ) te kunnen verklaren? Het beant-
woorden van deze vragen wordt sterk gehinderd door het feit dat grote contactkrach-
ten de facto veel minder vaak voorkomen dan contactkrachten rond de gemiddelde
kracht 〈 f 〉, zowel in experimenten als in moleculaire simulaties.

In dit proefschrift wordt getracht een antwoord te geven op deze vragen met be-
hulp van computersimulaties in het zogenaamde krachten-ensemble van Snoeijer et
al. (J.H. Snoeijer, T.J.H. Vlugt, M. van Hecke, W. van Saarloos, Phys. Rev. Lett.,
2004, 92, 054302). Dit ensemble beschrijft de statistiek van repulsieve contact-
krachten voor een bepaalde stapeling van de deeltjes. De cruciale aanname hierbij
is dat de korrels erg hard (nagenoeg onvervormbaar) zijn, zodat een geringe ver-



plaatsing van een korrels kan leiden tot compleet andere contactkrachten. In het
krachten-ensemble wordt uitgegaan van een systeem waarbij de korrels vaste posi-
ties hebben en de contactkrachten zodanig gekozen zijn dat alle korrels in mecha-
nisch evenwicht zijn (de nettokracht op iedere korrel is nul) en de elementen van de
stress tensor een voorgeschreven waarde hebben. Bovendien wordt aangenomen dat
elke realisatie van repulsieve contactkrachten (het krachtennetwerk) die hieraan vol-
doet, even waarschijnlijk is. De aldus verkregen verzameling van krachtennetwerken
wordt het “krachten-ensemble” of “force network ensemble” genoemd. Wiskundig
gezien is het krachten-ensemble te schrijven als de verzameling van oplossingen van
de ondergedetermineerde matrixvergelijking A f = b met de voorwaarde dat alle ele-
menten van f groter of gelijk aan nul dienen te zijn. Dit laatste komt door het feit dat
we uitsluitend repulsieve contactkrachten beschouwen. De oplossingen van deze on-
dergedetermineerde matrixvergelijking kunnen worden geschreven als f = f0 +∑akvk

waarin f0 een particuliere oplossing is, de vk de nulvectoren zijn van matrix A en de
ak willekeurige coëfficiënten zijn. De sommatie gaat over alle nulvectoren en alleen
oplossingen met uitsluitend positieve elementen van f zijn toegestaan.

Het genereren van krachtennetwerken voor willekeurige korrelposities kan wor-
den uitgevoerd met behulp van Monte Carlo simulaties. Bij deze simulaties wor-
den (pseudo-)willekeurige getallen gebruikt om de configuratieruimte efficiënt te
doorlopen. De simulatie-resultaten kunnen worden gebruikt om gemiddelden van
bepaalde grootheden af te schatten. Door het gebruik van zogenaamde “wheel moves”
kan de oplossingsruimte van het krachten-ensemble op een statistisch correcte manier
worden doorlopen en kunnen gemiddelde grootheden zoals de verdeling van contact-
krachten P( f ) worden berekend. Helaas levert de standaard Monte Carlo procedure
voor het krachten-ensemble slechte statistiek op van P( f ) voor grote contactkrachten
f . De reden is dat verreweg de meeste krachtennetwerken uitsluitend kleine krachten
bevatten (i.e. krachten van grootte orde 〈 f 〉). Om ondubbelzinnige uitspraken te
kunnen doen over het asymptotisch gedrag van P( f ) zouden extreem lange compu-
terberekeningen (in de orde van jaren tot eeuwen) nodig zijn. Om een betere sta-
tistiek voor grote contactkrachten te verkrijgen hebben we een “umbrella sampling”
methode voor het krachten-ensemble ontwikkeld. Het concept umbrella sampling is
reeds in de jaren ’70 van de vorige eeuw bedacht door Torrie en Valleau (G.M. Torrie,
J.P. Valleau, J. Comp. Phys., 1977, 23, 187-199), en sindsdien verschillende keren
opnieuw “uitgevonden” door verschillende auteurs. Het centrale idee is om in een
aangepaste Monte Carlo simulatie zodanig de oplossingsruimte van het krachten-



ensemble te doorlopen dat er veel krachtennetwerken worden gevonden met grote
contactkrachten. Dit levert een uitstekende statistiek op voor grote contactkrach-
ten, echter, het resultaat is niet direct te gebruiken omdat de oplossingsruimte van
het krachten-ensemble op een statistisch niet-correcte manier is doorlopen. Hiervoor
moet achteraf gecorrigeerd worden; het mooie is dat dat ook exact kan door aan de
gevonden krachtennetwerken een verschillende statistische gewichten toe te kennen.
Wel vereist het enig “fingerspitzengefühl” om op precies de gewenste en meest effi-
ciënte manier de oplossingsruimte van het krachten-ensemble te doorlopen.

Dit proefschrift is als volgt opgebouwd. In hoofdstuk 1 wordt allereerst een
overzicht gepresenteerd van de verschillende methodes om de statistiek van krachten-
netwerken te bestuderen. Met name wordt ingegaan op de eerder genoemde experi-
mentele studies met carbonpapier en foto-elastische schijven, alsmede moleculaire
simulatie studies. Vervolgens wordt uitgelegd hoe umbrella sampling kan worden
gebruikt om de contactkrachtverdeling P( f ) nauwkeurig uit te rekenen voor grote
krachten f . In hoofdstuk 2 wordt deze methode verder gebruikt om P( f ) te bestude-
ren voor verschillende twee-, drie- en vierdimensionale systemen, waarbij met name
gekeken is naar het effect van het gemiddelde aantal contacten z van een deeltje, de or-
dening van de korrels en de dimensie. De resultaten laten zien dat alleen de dimensie
van het systeem een significante invloed heeft op het asymptotisch gedrag: we vin-
den dat P( f ) ∼ exp[−c f α ] met α ≈ 2.0 voor tweedimensionale systemen, α ≈ 1.7
voor driedimensionale systemen en α ≈ 1.4 voor vierdimensionale systemen. In
hoofdstuk 3 wordt getracht een antwoord te geven op de vraag waarom tweedimen-
sionale systemen een verdeling van contactkrachten hebben die Gaussisch afvalt voor
grote f . Het blijkt dat de voorwaarde dat de nettokracht op iedere korrel nul is (me-
chanisch evenwicht), van essentieel belang is. Maximalisatie van de entropie onder
deze voorwaarde resulteert in een contactkrachtenverdeling met een generieke Gaus-
sische staart. Deze gevonden kansverdeling is in vrijwel perfecte overeenstemming
met umbrella sampling simulaties voor systemen met en zonder frictie, zowel voor
een hexagonaal als vierkant rooster. Wanneer de voorwaarde van mechanisch even-
wicht op iedere korrel wordt losgelaten, resulteert maximalisatie van de entropie in
een exponentiële verdeling, in overeenstemming met het eerder genoemde “Boltz-
mann” argument. Hieruit kan worden geconcludeerd dat de staart van P( f ) bepaald
wordt door lokaal mechanisch evenwicht en dat serieus moet worden getwijfeld aan
de veelgehoorde opvatting dat exponentiële statistiek een generieke eigenschap is
van statische granulaire materialen. Tenslotte worden in hoofdstuk 4 een aantal as-



pecten nader belicht. We laten zien dat in de aanwezigheid van afschuifspanningen de
krachtenverdeling een sterke oriëntatie-afhankelijkheid vertoont. Als gevolg daarvan
lijkt de staart van de oriëntatie-gemiddelde krachtenverdeling gedeeltelijk exponen-
tieel hoewel de staart van de verdeling voor iedere oriëntatie afzonderlijk Gaussisch
is. We ontwikkelen methodes om de maximaal mogelijke kracht in een systeem te
vinden en om de dimensie van de krachtruimte te bepalen. We tonen aan dat de wand-
contactkrachtverdeling essentieel kan verschillen van de bulkcontactkrachtverdeling.
Dit hoofdstuk besluit met een gedetailleerde vergelijking tussen P( f ) berekend in
het krachten-ensemble en P( f ) berekend uit moleculaire simulaties van deeltjes met
een “echte” paarinteractie. We laten zien dat deze krachtverdelingen in het algemeen
heel verschillend zijn. Niettemin suggereren onze voorlopige berekeningen dat wan-
neer we aan het “echte” systeem lokaal mechanisch evenwicht zouden opleggen, dat
dan de krachtverdeling van het “echte” systeem zou opschuiven in de richting van de
krachtverdeling van het krachten-ensemble.
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