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1
Introduction

In this thesis I aim to contribute to a molecular understanding and -description of the
phase behaviour of liquid crystalline materials. In particular, I aim at the development
of a molecular-based equation of state (EoS) for describing nematic (only orientationally
ordered) liquid crystals (LCs) and their mixtures. Special emphasis is put on the role of
intra-molecular flexibility on the liquid crystalline phase behaviour. Also, the solubility
of small gases in nematic solvents is studied—an area that could be important for
potential applications of LCs as novel solvents in gas-absorption processes. In the first
part of this introductory chapter, the reader is provided with some background on the
liquid crystalline state of matter, the status of LC research, and common and potential
applications of LCs (Sections 1.1 and 1.2). Subsequently, available theories for the
nematic state are briefly reviewed, and the foundations of the perturbation methodology
which is at the basis of the EoS developed in this work are discussed (Section 1.3).
Finally, an outline of the work performed in this thesis is presented (Section 1.4).
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2 1 Introduction

1.1 Background
Most matter can exist in a solid, liquid, or gaseous state. Whereas molecules in the
solid state are arranged following a strict, long-ranged positional and orientational
ordering, in the liquid state all ordering randomizes over a few molecular diame-
ters. Some substances can enter liquid crystalline states, commonly referred to as
mesophases, which are characterized by a molecular ordering that is in between
that of a liquid and a perfectly ordered crystal [1–4]. Many ordering structures are
possible; each structure corresponding to a certain liquid crystalline phase. Some
examples are included in Fig. 1.1, where I show a nematic (N) phase and a smectic
(Sm) phase, each characterized by, respectively, long-ranged partial orientational
ordering, and long-ranged partial orientational and -positional ordering.

A key characteristic of molecules/particles that form mesophases (in this work
referred to as LC molecules or mesogens) is a certain anisotropy in their shape
or interactions with other molecules/particles. As an example, a nearly spheri-
cal molecule like methane will not form any mesophases. But how about hexane?
Clearly, being a chain molecule, the molecular shape of hexane can be regarded as
anisotropic. Nonetheless, mesophases of hexane are not observed. The reason is that
the carbon atoms forming the backbone of a hexane molecule are sp3 hybridized and
therefore form a bond with neighbouring atoms that is relatively flexible to bend-
ing and torsional rotations. As a result, the atoms in the chain are free to visit
many different chain conformations, thereby diminishing much of the anisotropy of
the molecular shape. Some examples of organic molecules that do show mesophase
behaviour are depicted in Fig. 1.2. As can be observed, the shape of the molecules
is characterized by a rigid, anisotropic molecular core (the ring structures linked by
rigid sp2 bonds) and a semi-flexible alkyl tail. Given the importance of the rigid an-
isotropic core for inducing the formation of mesophases, this part of a LC molecule
is usually referred to as the mesogenic unit. I should stress however, that anisotropic
attractive interactions, such as those arising from the dipolar nitrile-group (R-CN)
at the head of the PCH5 molecule, are also an important factor to be considered. I
further note, that besides elongated molecules (Fig. 1.2) also oblate (i.e. sheet-like,
or disk-like) molecules form liquid crystalline phases. In Section 1.3.2, I further
discuss molecular attributes to liquid crystalline phase formation.

Due to the importance of temperature on the formation of mesophases of low-
molecular-weight organic molecules such as those drawn in Fig. 1.2, these substances
are generally referred to as thermotropic LCs. A different class of LCs arises, how-
ever, if the characteristic length scale of a mesogen becomes large compared to the
atomistic length scale. For such systems, the effect of temperature is usually far
less important, and the phase behaviour is primarily determined by the density (or
concentration) of the mesogens. These systems are referred to as lyotropic LCs.
Some examples of systems exhibiting lyotropic liquid crystalline phase behaviour
are solutions of polymers, amphiphilic molecules, or colloids [6–8]. In principle, the
classification of a liquid crystal as being either thermotropic or lyotropic is somewhat
artificial since most real nematogens display features of both. Although even today
it is common to describe a LC by a theory developed for either one of these classes
(i.e. the theory of Onsager for lyotropic LCs [9] vs. the theory of Maier and Saupe
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Temperature
=⇒

Density
⇐=

Smectic Nematic Isotropic

Figure 1.1: Schematic representation of different ordering structures found in liquid crystalline materials.
Included are a smectic phase (characterized by partial orientational ordering and partial 1-dimensional
positional ordering), a nematic phase (characterized by partial orientational ordering) and an isotropic
liquid phase. The colour of the particles is a measure for their orientation. (Part of this image was
taken from Figure 1 of Ref. [5]. c© IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved.)

for thermotropic LCs [10–12]), from early on (for example in the work of Flory [13],
Gelbart and Baron [14, 15], or Cotter [16, 17]) there has been an awareness that the
description of both should originate from one unified theoretical framework. Recent
theoretical effort (by for example the group of Jackson [18–21]) is along this line. In
Section 1.3.2, I will provide some more background on this point.

As a result of the ordering of molecules in a LC material, many of the material’s
physical properties (e.g. index of refraction, elastic modulus, etc.) are anisotropic.
Although, at first sight, this is no different than in crystalline solids, the fluidity of
LC materials offers an advantage in that the ordering of molecules—and thus the
physical properties of the material—can be easily tuned by external stimuli such as
temperature, fields (shear, electric or magnetic) or a change in chemical environ-
ment [4]. This coupled effect of (1) easily tunable-, and (2) anisotropic material
properties has led to a large number of technological applications. For example,
due to the anisotropy that is induced by the orientational ordering of molecules,
nematic phases are birefringent; meaning that light linearly polarized along one axis
of a certain reference frame has a different speed of travelling through the material
than light polarized along another axis. This combined with the possibility of in-
fluencing the degree of ordering (and thus the birefringence) by the application of
an electric field has laid the basis for the now ubiquitous liquid crystalline display
(LCD) technology used for example in laptops and television screens [2, 4]. Besides
LCDs, one can think of numerous other examples of LC technology, such as switch-
able windows, highly accurate LC thermometers, ultra-strong polymer fibres (such
as Kevlar), and chemical/biological sensors [4].

While the study of the opto-electronic properties of LCs for LCD purposes re-
mains a dominant research area, the past few decades have shown the emergence of
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(a) C18H25N

(b) C18H21NO

Figure 1.2: A schematic representation of two typical thermotropic liquid crystal molecules. In (a) I show
4-(trans-4’pentylcyclohexyl)-benzonitrile (PCH5), whereas in (b) I show N-(4-Methoxybenzylidene)-4-
butylaniline (MBBA). White denotes hydrogen, gray denotes carbon, blue denotes nitrogen, and red
denotes oxygen.

other interesting fields in which LCs could play a vital role. An example is the use
of LCs as structured solvents. In the materials- and nano sciences, for example, the
self-organizing mechanisms observed in liquid crystalline systems have been iden-
tified as a promising route to develop new, smart nanostructured materials or to
produce nanoparticles of controlled sizes. As an example, the supramolecular order-
ing observed in certain mesophases can be utilized as a template for the production
of mesoporous materials. Moreover, the partitioning of space as observed in certain
lyotropic LCs (e.g. micelles) can be used to produce nanoparticles of well-defined
sizes. In a subsequent step, LCs can provide the means to organize these nanoparti-
cles into structured arrangements, thereby enabling a transferring of the properties
of the nanoparticles to macroscopic scales. For a recent review on the use of LCs in
materials- and nanosciences, the reader is referred to Ref. [22].

Recently, the use of LCs as structured solvents has also made its way into pro-
cess technology. In a recent patent application [23], LCs were proposed as novel
solvents for gas-absorption processes. It has been shown that the orientational or-
dering induced by the isotropic-to-nematic transition leads to a step-wise decrease
in solubility of small solutes [24–26]. Therefore, when using a nematic LC as the
solvent in a gas-absorption process, the phase transition could in many respects be
utilized as a solubility switch. This potential application of LCs has been one of the
main motivations for carrying out the work performed in this thesis.

Clearly, whether one is interested in developing new LC materials for specific
tasks or designing new processes based on LCs, proper knowledge on the thermo-
physical properties of LCs—specifically on the link of molecular aspects to thermo-
dynamic properties—is essential. Despite a long history of liquid-crystalline-state
theory, it seems fair to say that analytical models (or equations of state) with such
capabilities are still not fully developed. The work performed in this thesis is meant
to contribute to such developments.
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Figure 1.3: A schematic representation of a binary phase diagram of a LC with CO2 [23, 24] , showing
an isotropic (I), nematic (N) and gaseous (G) phase. The three-phase NIG equilibrium is denoted by
the dotted line. The red box shows a possible absorption-desorption cycle for the removal of CO2

from a process gas stream. At step 1-2, the solvent (in its isotropic liquid phase) is loaded with solute
until saturation. After that, at step 2-3, the solvent is cooled down a few degrees to reach the NIG
equilibrium. The decreased solubility of CO2 in the nematic phase results in a desorption of CO2 to a
gas phase. Due to the low vapour pressure of the LC, the gas phase is almost pure in CO2. Finally, at
step 3-1, the nematic solvent is heated a few degrees until the initial isotropic solvent is regenerated.
(Part of this image was taken from Figure 1 of Ref. [5]. c© IOP Publishing. Reproduced by permission
of IOP Publishing. All rights reserved.)

1.2 Liquid crystals as absorption liquids
One of the main motivations for the work performed in this thesis is a recent pro-
posal for the use of nematic, thermotropic liquid crystals as novel solvents for gas-
absorption processes [23]. Given that the phase transition from a normal (isotropic)
liquid phase to a nematic phase is of first order, it results in a step-change of cer-
tain thermodynamic properties. The basic idea of the proposal from Ref. [23], is to
utilize this phase transition to induce a step-wise decrease in the solubility of gases
in the solvent.

To explain the principle, a schematic of a binary phase diagram of a LC with a
small solute such as CO2 is included in Fig. 1.3. In going through the diagram in a
sequence 1-2 (loading), 2-3 (desorption), 3-1 (regeneration), a possible absorption-
desorption cycle for a process based on a nematic LC solvent is pointed out. Whereas
in conventional processes the lowering of the solubility required at the desorption
step is accomplished by a substantial heating of the solvent (think of for example
the amine-based process for carbon capture [27–29]), the scheme in Fig. 1.3 shows
a possibility for desorption upon cooling. Moreover, since a phase transition (from
isotropic to nematic) is employed to induce the change in solubility, the desorption
takes place over a very narrow range in temperature and pressure. This should be
placed in sharp contrast to the relatively large temperature and pressure swings used
in common industrial absorption processes [30]. These insights combined with the
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notion that the I-N transition generally involves a relatively small phase transition
enthalpy, indicate that the use of LC solvents could potentially lead to a drastic
decrease in the energy consumption of absorption-desorption processes.

For a successful implementation of a process such as that being sketched here, the
nematic LC solvent should (1) have a relatively low viscosity (for low pressure drop
and sufficiently high transport properties), (2) be selective towards the compound
that needs to be absorbed (think of CO2/CH4 selectivity in natural gas sweeten-
ing [31]), (3) be stable to impurities, (4) have a suitable thermal operating window
(stability of nematic phase), and, above all, (5) have a large maximum loading of
solute. Given the large variety of thermotropic LCs [32], a suitable choice of func-
tional groups within a LC molecule could possibly lead to fulfilment of the above
criteria. Such a tailoring of LC molecules for specific tasks could in principle be done
experimentally, but in practise the large number of molecular structures makes this
approach infeasible. If one takes into account that the optimal LC solvent might well
be a mixture of different LCs [33–35], the experimental burden becomes especially
unrealistic. The systematic optimisation of LC solvents thus requires a predictive
molecular model. When used in a solvent design method [36–40], this could allow
for a rapid, targeted screening of LC molecules and their mixtures, thereby facilitat-
ing evaluation and (possible) implementation of the absorption-desorption process.
The work performed in this thesis is meant to contribute to the development of a
predictive equation of state for LCs and their mixtures.

I should note that the situation sketched above is not unique in materials science.
Also for zeolites, metal-organic frameworks (MOFs), and ionic liquids, the design
space is large; and novel molecular modelling techniques are usually required for
finding optimal molecules or molecular structures for specific tasks. Some recent
examples involve the use of GPU accelerated molecular simulations for screening of
zeolites and MOFs for carbon and methane capture applications [41, 42], or the use
of COSMO-RS for screening of ionic liquids for carbon capture [42].

1.3 Theory of anisotropic fluids
1.3.1. Describing orientational order
The orientational ordering of the molecules in a liquid crystal is imperfect. Since
the properties of a liquid crystal critically depend on the degree of ordering, it is
evident some sort of quantification is required. For this purpose, let us assume an
(idealized) system of cylindrically symmetric, anisotropic molecules. I introduce the
director (nnn), which is defined as the average direction of all molecules in a phase.
For a nematic phase, the director points in the direction of preferred orientation of
the molecules; therefore, it is convenient to define the orientation (ωωω = (θ, φ)) of a
single molecule with respect to this director (Fig. 1.4).
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Figure 1.4: Definition of the orientation of a molecule. The director nnn is a vector pointing in the
preferred direction of the molecules in a phase. The orientation ωωω = (θ, φ) of a molecule is defined as
the polar angle θ and azimuthal angle φ with respect to this director. Due to the cylindrical symmetry
of the nematic phase, the state of orientational ordering is independent of φ.

For the cylindrically symmetric molecules considered here, the probability for
a molecule to be in a certain orientation ωωω solely depends on the polar angle θ.
Therefore, the distribution of all molecular orientations can be described by the
probability density f(ωωω) = f(θ). In the remainder of this thesis this probability
density will be referred to as the orientational distribution function (ODF). Clearly,
for a nematic phase the ODF will be peaked for molecular orientations close to
the director (θ ≈ 0). For an isotropic phase, all molecular orientations have equal
probability and the ODF is a constant. In fact, on imposing the normalization
condition

∫
f(ωωω)dωωω = 1, I can write

fiso(ωωω) =
1∫
dωωω

=
1∫ 2π

0

∫ π
0

sin(θ)dθdφ
=

1

4π
(1.1)

Although the ODF contains all the information needed for describing the state of
ordering in a material, it is often sufficient to specify a scalar valued measure for the
degree of ordering. For nematic phases, the degree of ordering is characterized by an
orientational average of the second order Legendre polynomial of cos(θ), according
to [3]

S2 = 〈P2(cos θ)〉ωωω

=
1

2

〈
3 cos2(θ)− 1

〉
ωωω

=
1

2

∫ (
3 cos2(θ)− 1

)
f(ωωω)dωωω

= π

∫ 1

−1

(
3 cos2(θ)− 1

)
f(θ)d cos(θ)

(1.2)

The so-obtained scalar S2 is usually referred to as the nematic order parameter. To
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appreciate this definition, let us look at the limiting cases of an isotropic- and a
perfect nematic phase. For the isotropic phase, substitution of Eq. (1.1) in Eq. (1.2)
leads to

S2, iso =
1

4

∫ 1

−1

(
3 cos2(θ)− 1

)
d cos(θ) = 0 (1.3)

For a perfect nematic phase, the ODF is zero everywhere except for θ = 0 and
θ = π. Therefore, given the normalization condition

∫
f(ωωω)dωωω = 1, the ODF can

be defined as a sum of two Dirac-delta functions, according to

fperfect nem(ωωω) =
1

2π
{δ(cos(θ)− 1) + δ(cos(θ) + 1)} (1.4)

Substituting the above result for the ODF in Eq. (1.2), leads to the nematic order
parameter of a perfect nematic phase:

S2, perfect nem =
1

2

∫ 1

−1

(
3 cos2(θ)− 1

)
{δ(cos(θ)− 1) + δ(cos(θ) + 1)} d cos(θ)

=
1

2

{
(3× 12 − 1)× 1

2
+ (3× (−1)2 − 1)× 1

2

}
= 1

(1.5)

For imperfect orientational ordering, as observed in systems of real mesogens, the
nematic order parameter typically takes on a value between 0.3 and 0.9 [4]. A typical
course of S2 with temperature is presented in Fig. 1.5.

Historically, the nematic order parameter has been of great importance from both
a practical- and theoretical point of view. Due to a large number of experimental
methods for measuring the order parameter (e.g. X-ray analysis, NMR, etc. [43]),
it is one of the primary quantities used for comparison to results from nematic-
state theories. For this reason some phenomenological theories, such as the Landau-
deGennes theory [3, 44], consider the order parameter as a theoretical input. On the
contrary, several molecular-based approaches result in a Helmholtz energy functional
for nematic fluids described in terms of the order parameter (see Ref. [19] for a recent
review). In such theories the order parameter is not invoked from the outset (as in
the Landau-deGennes theory), thereby clearly showing its fundamental nature.

1.3.2. Theory of the nematic state
To start this brief discussion on nematic-state theory, let me first answer the follow-
ing question: Why should a fluid form a nematic phase? After all, the orientational
ordering of molecules leads to a decrease in orientational entropy—why would a
fluid pay the price of a decreased entropy? Well, the stability of a system with given
temperature T and volume V is determined by a minimum of the Helmholtz energy,
which is defined as a balance between an energetic term U and an entropic term
TS, according to A = U − TS. There are thus two possible answers, and both are
valid:

1. there is (either) an energetic incentive. With U = U ig+U intermol, we know that
it is a lower (more negative) average intermolecular potential energy (U intermol)
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Figure 1.5: A typical course of the nematic or-
der parameter S2 with temperature T . The
temperature is displayed relative to the temper-
ature at the isotropic-nematic phase transition
TI→N. For T/TI→N < 1, the phase is nematic,
resulting in an order parameter larger than zero.
For T/TI→N > 1, the phase is isotropic, corre-
sponding to an order parameter equal to zero. It
is important to note that at the transition, the
change of the order parameter is discontinuous,
corresponding to a first-order phase transition.

that causes a nematic phase to form. The lowering of the intermolecular
potential can be understood from angle-dependent attractive intermolecular
forces that favour the alignment of molecules. If the temperature is lowered,
the relative effect of these attractions with respect to the loss in orientational
entropy grows until at some point these forces become the dominant feature,
leading to a (thermotropic) transition to a nematic phase. Maier and Saupe
(1959) were the first to give a molecular-based description of this effect [10–12].

2. (or) there is a compensating entropic effect. For systems of molecules with an-
isotropic shape, the alignment of molecules—and the more efficient molecular
packing that results from it—leads to an increase in the free volume (i.e. con-
figurational entropy) of the system. If the density of nematogens increases,
the gain in configurational entropy can become so large that it exceeds the
loss in orientational entropy. If this is the case, a (lyotropic) phase transition
to an orientationally ordered (nematic) phase results. In a landmark paper
from 1949 [9], Lars Onsager laid the foundation for a statistical-mechanical
treatment of such entropy-driven ordering transitions.

Clearly, in systems of real nematogens, both entropic effects (due to the repulsion
between hard molecular cores) and energetic effects (due to attractive intermolecular
interactions) can work as a driving force for mesophase formation. A molecular
theory intended to describe mesophase behaviour should therefore encompass both
effects. Before I discuss the general framework (i.e. molecular perturbation theory)
needed to develop such a theory, let me elaborate on the two basic theories of the
nematic state: the Maier-Saupe theory, and the theory of Onsager.

The Maier-Saupe theory
In its original form, the Maier-Saupe (MS) theory leads to the following mean-field
potential for the orientation-dependent (anisotropic) part of the interaction energy
of a molecule with all other molecules in a nematic fluid [10–12]

Ψ ∝ −ρ2S2P2(cos θ) (1.6)
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Here, ρ is the density of the system, P2(cos θ) is the second order Legendre poly-
nomial of cos θ, and S2 is the nematic order parameter (defined by Eq. (1.2)). The
total energy due to the anisotropic part of the interactions Uaniso can be obtained
from an ensemble average of this mean-field potential. Accordingly, it follows that

Uaniso =
1

2
N

∫
Ψ exp (−βΨ) d cos θ∫
exp (−βΨ) d cos θ

= −1

2
NεLCρ2S2

∫
P2(cos θ) exp (−βΨ) d cos θ∫

exp (−βΨ) d cos θ

= −1

2
NεLCρ2S2

2

(1.7)

where N is the number of molecules, and εLC is a (positive) pure-component param-
eter independent of temperature, density or pressure. In principle, it can be shown
that the mean-field potential as introduced in Eq. (1.6) follows from an underlying
angle-dependent intermolecular potential of the form u(r) = −ε(1/r6) cos2(γ) [14],
where r is the separation between the molecular centres of mass, and γ is the angle
between the molecular axes. It is possible, therefore, to relate the mean-field pa-
rameter εLC to the underlying energy parameter ε of this anisotropic intermolecular
potential, thereby constituting a clear molecular basis of the MS approach.

The orientational entropy of the system can be obtained from the Boltzmann
equation S = −Nk

∑
i pi ln pi which relates the entropy S to the probability pi of

a certain distribution of molecular orientations [45]. In our case, the probability is
defined by f(ωωω); leading to the following anisotropic contribution to the entropy of
the system

Saniso = −Nk
∫
f(ωωω) ln(4πf(ωωω))dωωω (1.8)

Please note the introduction of the normalization constant 4π (cf. Eq. (1.1)) to en-
sure the anisotropic contribution goes to zero for an isotropic distribution of molecu-
lar orientations. Combining energetic and entropic terms, one obtains the following
functional for the anisotropic Helmholtz energy contribution resulting from the MS
theory

Aaniso[f(ωωω)]

NkT
=

∫
f(ωωω) ln(4πf(ωωω))dωωω − 1

2

εLC

kT
ρ2S2

2 [f(ωωω)] (1.9)

Generally, f(ωωω) is found self-consistently from the EoS by ensuring it minimizes the
total Helmholtz energy of the system. Typically, the pure-component parameter
εLC is regressed to experimental PV T -data of a nematic phase, data for the phase
transition temperature (TN→I), or to data for the nematic order parameter. For
a limited number of mesogens, this leads to reasonable correlation of isotropic-
nematic transition temperatures or the temperature dependence of the nematic order
parameter [46]. The fact that the MS theory does not include any entropic driving
force for mesophase formation, however, generally results in a rather poor description
of density-dependent properties (such as S2(ρ)) [1]. Furthermore, when using a
realistic magnitude of the anisotropic attractive interactions (which are related to
εLC), predicted isotropic-nematic transition temperatures are significantly too low
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(see Ref. [14] and references therein), indicating an underestimation of the driving
force for the phase transition. To improve on such shortcomings, many empirical
extensions of the MS theory have been developed [46]. Probably the one with the
most physical appeal is the following

εLC = εLC
E + TεLC

S (1.10)

With this extension, one obtains two independent pure-component parameters: one
for the energetic driving force for mesophase formation (εLC

E ), and one for the en-
tropic driving force (εLC

S ). Clearly, the regression of these two parameters provides
great flexibility in correlating experimental results, which is probably one of the rea-
sons the MS theory has found such widespread use. Moreover, when coupled to an
accurate EoS for describing the properties of the isotropic phase, quite accurate cor-
relation of for example isotropic-nematic transition temperatures, the density differ-
ence at the phase transition, and the nematic order parameter, can be obtained [47].
Having that said, I should stress that the incorporation of the entropic driving force
is purely empirical, leading to a theory with little predictive value. Moreover, due
to this extension, part of the energetic parameter (εLC

E ) implicitly includes a cou-
pling between entropic and energetic effects [14, 15, 19]. As a result, in Eq. (1.10),
εLC
E is not only related to the parameters of the attractive intermolecular potential
underlying the mean-field potential of Eq. (1.6), but also to the geometrical features
of the molecules. The fact that the extended MS theory does not provide one with
these dependencies adds to the empirical nature of the approach. For practically
relevant applications, the MS model is more a phenomenological theory, incapable
of providing a link to details of the molecular model or intermolecular potential.
For the purposes aimed at in this thesis (i.e. the development of a molecular-based
EoS for LCs that is suitable for use in solvent design methods), such a theory is
inadequate.

The Onsager theory
A more rigorous route towards a molecular description of mesophases is provided
by the Onsager theory. Although the Onsager theory will be discussed in depth in
Chapter 4 of this thesis, it is instructive to give a brief overview of the theory at
this point.

Onsager showed that by treating molecules of different orientation as different
chemical species, one can reformulate the virial expansion of Mayer and Mayer [48]
(which at the time was developed for isotropic fluids only) to anisotropic fluids [9].
Although Onsager considered the specific case of hard rods, his results can be gen-
eralized to systems of hard, purely repulsive molecules of general anisotropic shape,
leading to the following general Helmholtz energy functional

A[f(ωωω)]

NkT
= Aid

iso +

∫
f(ωωω) ln(4πf(ωωω))dωωω +B2[f(ωωω)]ρ+B3[f(ωωω)]ρ2 + . . . (1.11)

Here, ρ = N/V is the homogeneous number density, and B2, B3, and so on, are
the virial coefficients. Onsager suggested to cut off the virial expansion after the
first term, resulting in a second virial theory that is only exact in the low density
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limit. To obtain the orientation-dependence of the second virial coefficient B2[f(ωωω)]
of two hard, purely repulsive molecules, he provided a relation to their orientation-
dependent pair-excluded volume Vex(ωωω1,ωωω2) (i.e. the volume inaccessible to the
center of mass of a molecule 1 due to the presence of a molecule 2), according to

B2[f(ωωω)] =
1

2

∫ ∫
Vex(ωωω1,ωωω2)f(ωωω1)f(ωωω2)dωωω1dωωω2

=
1

2
〈Vex(ωωω1,ωωω2)〉ωωω1,ωωω2

(1.12)

Fig. 1.6 shows the pair-excluded volume for some typical model mesogens of aspect
ratio L∗ = L/D > 2, where L and D are the molecular length and diameter, re-
spectively. What should be clear from this figure is that the pair-excluded volume
of two anisotropic molecules in an aligned orientation (Vex ∝ 2L) is smaller than
that of two molecules in a perpendicular orientation (Vex ∝ L2). Accordingly, upon
orientational ordering of molecules the second virial coefficient decreases, thereby
constituting a clear driving force for mesophase formation. With this simple sec-
ond virial theory, Onsager was able to show that the isotropic-nematic transition of
purely repulsive molecules can be understood from a competition between two en-
tropic terms: on the one hand an orientational-entropy term, favouring an isotropic
distribution of molecular orientations; and on the other hand an excluded-volume
term, favouring an aligned distribution of molecular orientations.

The fact that the excluded-volume term is weighted by density leads to the
insight that the only system capable of forming a stable nematic phase at zero
density is one of infinitely long rods. Therefore, the 2nd virial approximation as
suggested by Onsager is only valid for such systems. To extend the approach to
molecules of more moderate anisotropy, the effect of higher virial coefficients needs
to be incorporated. Since the orientational dependence of these coefficients is usually
difficult to obtain, it is common to use decoupling approximations [49–52] or Scaled
Particle Theory [16, 53] to approximate the effect of higher virial coefficients by a
non-linear dependence on density as

Ares[f(ωωω)]

NkT
≈ Ares(B2[f(ωωω)], ρ)

NkT
(1.13)

For a detailed discussion of how decoupling approximations or Scaled Particle The-
ory can be applied to obtain the density dependence of Eq. (1.13), the reader is
referred to Chapter 4 of this thesis.

What should be apparent at this point is that, through the pair-excluded vol-
ume, the theory of Onsager explicitly considers the anisotropic shape of molecules.
Therefore, in contrast to the MS theory, the approach of Onsager provides a rigor-
ous link between molecular parameters and the entropic driving force for mesophase
formation. For a system of hard spherocylinders (which is very similar to the hard
rods considered by Onsager), for example, one obtains Vex = C1 + C2 sin(γ) with
C1 = (4/3)πD3 +2πD2L and C2 = 2L2D, where L and D are the length and diame-
ter of the spherocylinders, respectively [9]. Furthermore, the Onsager approach can
be extended to mesogens with attractive interactions by means of molecular pertur-
bation theory [19, 54]. By taking appropriate limits for molecular size parameters,



1.3 Theory of anisotropic fluids

1

13

(a) (b)

Figure 1.6: A 2-D schematic representation of the pair-excluded volume (denoted by the area between
dashed lines) of two model mesogens of aspect ratio L∗ = L/D > 2, where L and D are the molecular
length and diameter, respectively. In (a) I show a parallel orientation, and in (b) a perpendicular
orientation. For the parallel orientation Vex ∝ 2L, whereas for the perpendicular orientation Vex ∝ L2.

such a theory can be reformulated to a form equivalent with the original theory of
Maier and Saupe (cf. Eq. 1.9) [19], clearly showing the generality of the Onsager
approach.

In the following sections, I will discuss the basics of molecular perturbation
theory. Furthermore, I point out one of its major successes, i.e. the SAFT-family
of equations of state for isotropic fluids. After that, I elaborate on possible routes
to couple such a formalism to the theory of Onsager for developing a fluid theory
for nematic fluid mixtures.

1.3.3. Molecular perturbation theory
Let’s suppose one would like to describe the thermodynamics of a system in which
the molecules interact by a given intermolecular pair-potential u(r). Let’s call this
system the target system. If obtaining the properties of the target system is prob-
lematic, one could consider a system with a different intermolecular potential of
which the thermodynamic properties are known. Let’s call that system the refer-
ence system. If one could somehow link the target system to the reference system,
the problem is solved. If the two systems are similar (where similarity will be defined
later in this section), molecular perturbation theory provides this link.

If we denote the reference system by a subscript ’0’, the pair-potential of the
target fluid can be written as

uλ(r) = u0(r) + λupert(r) (1.14)

where upert(r) = uλ(r)− u0(r) is the difference between the potential of the target
fluid and the reference fluid. The parameter λ couples the two systems; for λ = 1
we obtain the target fluid, whereas for λ = 0 the reference fluid is retained. The
Helmholtz energy (and thus all other macroscopic thermodynamic properties) for a



1

14 1 Introduction

system with an intermolecular potential defined by Eq. (1.14) can be obtained from

A = A0 +

∫ 1

0

(
∂A

∂λ

)
NTV

dλ (1.15)

Using the relation of the Helmholtz energy to the partition function, one can rewrite
the derivative to λ as an ensemble average of the perturbation-part of the potential
energy over the configurations of the target system. For a homogeneous, isotropic
system, such an ensemble average can be written in terms of the radial distribution
function (rdf) of the target system gλ(r), according to(

∂A

∂λ

)
NTV

=

〈
N∑
i=1

N∑
j>i

upert
ij

〉
λ

(1.16)

= 2πNρ

∫ ∞
0

upert(r)gλ(r)r2dr (1.17)

To proceed, the rdf of the target system can be expanded around that of the reference
system as

gλ(r) ≈ g0(r) +

(
∂gλ(r)

∂λ

)
NTV

∣∣∣∣
λ=0

λ+ . . . (1.18)

Provided similarity between the rdf of the reference- and the target system, the
expansion is rapidly convergent. When truncated after the first term, a first order
perturbation theory results

A = A0 + 2πNρ

∫ ∞
0

upert(r)g0(r)r2dr (1.19)

= A0 +A1 (1.20)

Clearly, to provide the required similarity, a proper choice for the reference system
is critical. It turns out that at densities typical for the liquid state, molecular
structure (and thus the rdf) is primarily determined by the repulsion between hard
molecular cores [54]. Therefore, a good approximation for the reference system can
usually be obtained from purely repulsive systems, such as a system of hard spheres.
The properties of such purely repulsive fluids (think of rdf, Helmholtz energy) are
relatively well developed and can be obtained from various statistical-mechanical
techniques [54].

1.3.4. The SAFT approach
The development of molecular perturbation theory was revolutionary in some re-
spects, since it for the first time allowed a quantitative molecular-based description
of the fluid phase behaviour of simple, nearly spherical fluids, such as Argon [55].
Its application to molecules of more complicated architecture (e.g. chains and rings
typical for many organic molecules), however, required another impressive theoret-
ical development: Wertheim’s thermodynamic perturbation theory (TPT) [56–60].
TPT provides one with a Helmholtz energy contribution for strongly associating
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Figure 1.7: The perturbation scheme of some different versions of the SAFT theory. Included are
the SAFT-VR theory [68–70, 73, 74], and the PC-SAFT approach of Gross and Sadowski [71, 72].
Contributions other than due to dispersion interactions (e.g. association [75, 76], polarity [77, 78],
electrostatic [79, 80]) are left out for clarity.

(hydrogen-bonding) compounds, which, in the limit of infinite association strength,
also provides the means to bond spherical segments into chains, thereby leading to
a theory capable of describing the phase behaviour of chain fluids.

The framework of molecular perturbation theory and TPT have proven very pow-
erful in predicting fluid properties. As pioneered by Chapman, Jackson and Gub-
bins [61–64], these two approaches form the basis of one of the most successful equa-
tions of state up to date: the Statistical-Associating-Fluid-Theory (SAFT) [65, 66].
In this approach, molecules are usually modelled as chains of freely-jointed spherical
segments—the total interaction of which is described by different contributions, such
as dispersion (i.e. Van der Waals attraction), polarity or association. It is common
to use a fluid of hard spheres as a reference, and add the other contributions to
the Helmholtz energy (dispersion, chain formation, etc.) as a perturbation. The
Helmholtz energy of a fluid described by a SAFT approach can be written as

A = Aig +Ahs +Adisp +Ach +Apolar +Aass + . . . (1.21)

Many versions of SAFT have been developed (e.g. SAFT [61–64], soft-SAFT [67],
SAFT-VR [68–70], PC-SAFT [71, 72], etc.). Differentiation between the various
versions is established by the choice of the perturbation scheme (i.e. the reference
system used for each perturbation contribution), the perturbing potentials, or the
theoretical treatment of the different perturbation contributions. For illustration, I
graphically show the perturbation scheme of some typical SAFT theories in Fig. 1.7.
For clarity, attractive contributions due to interactions other than dispersion are
omitted [65, 66].

Due to the molecular basis (i.e. a well defined molecular model and intermolec-
ular potential) of SAFT-type theories, they allow for a meaningful comparison to
results obtained from molecular simulations. Since such a comparison can be made
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Figure 1.8: A partially flexible tangent hard-
sphere chain molecule, or rod-coil molecule, as
a model for mesogenic compounds. One part of
the molecule is fixed in a rigid, linear conforma-
tion (gray segments) while the other part is full
flexible.

at many different levels of theoretical development (for example for all pertur-
bation contributions separately), it makes possible the development of a rigorous
statistical-mechanical theory that, at least for the molecular model and potential
under consideration, leads to an accurate description of thermodynamic proper-
ties. When applied to correlate the phase behaviour of real fluids, this provides one
with the insight whether observed discrepancies are due to assumptions made for
the molecular model/intermolecular potential or due to the theoretical treatment of
this model/potential. Compared to non-molecular based methods, this allows for
much more directed theoretical development.

Considering (1) its firm rooting in statistical mechanics, and (2) its success in
describing the phase behaviour of isotropic fluids, the SAFT approach may serve
as a rigorous platform from which to build an EoS for anisotropic fluids. In the
following section I elaborate on a possible route for doing this.

1.3.5. Extending SAFT to anisotropic fluids
Although a model of freely-jointed spherical segments is certainly a coarse approx-
imation for most real molecules (which commonly involve bond-bending, torsional
potentials, ring structures, branching, etc.), the accurate representation of phase
equilibria as generally obtained with SAFT-type theories [70, 72] strongly sug-
gests such a coarse-grained representation captures essential parts of the underlying
physics of isotropic fluids. Recent developments confirm that both, the molecular
model is meaningful and the theory is sufficiently predictive. SAFT was for example
shown to adequately correlate, extrapolate, and even predict results from molecular
simulations, which allows for force field development [81–85].

An essential characteristic of mesogenic substances is a (partially) rigid, aniso-
tropic molecular core. As a molecular model that captures this characteristic, I
propose a partially flexible chain of spherical segments (see Fig. 1.8). In this study,
molecules of this molecular model will be referred to as rod-coils. Although one
could think of many other molecular models (e.g. rigid anisotropic particles such as
spherocylinders [18, 19] or chains of such particles [86]), I feel the rod-coil model as
proposed here may serve as a suitable starting point, since

1. it contains the most important difference between mesogenic and non-mesogenic
compounds, namely a rigid, anisotropic core.

2. it maintains a certain degree of intra-molecular flexibility—a feature generally
considered to be important for the (de)stabilization of mesophases.

3. it allows for a segment-based approach, leading to compatibility with available
SAFT-type theories.
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Figure 1.9: The proposed perturbation scheme for anisotropic, liquid crystalline fluids, based on the
molecular model from Fig. 1.8. The Helmholtz energy contributions due to chain formation and dis-
persion interactions are developed in Chapters 2-5, and Chapters 6 and 7 of this thesis, respectively.

To allow for a theoretical description based on Onsager’s approach (and espe-
cially the rescaling of higher virial coefficients as introduced in Chapter 4), it is
best to treat the effects of chain connectivity and rigidity in the repulsive reference
contribution to the EoS. Therefore I propose a perturbation scheme for anisotropic
fluids as depicted in Fig. 1.9. The scheme is similar to that used in the PC-SAFT
approach. The main difference is the incorporation of the effect of molecular rigidity
in the repulsive reference- and attractive dispersion contribution.

1.4 Scope and outline of this thesis
The main goal of this thesis is to contribute to the development of a molecular-based
equation of state for anisotropic fluids. More specifically, I make a first attempt to
extend the SAFT formalism to nematic liquid crystals by developing a fluid theory
via the perturbation scheme illustrated in Fig. 1.9. Accordingly, the work performed
in this thesis can be divided in two parts, namely:

part A The development of an Onsager-based reference EoS that can describe the
isotropic- and nematic fluid-phase behaviour of mixtures of hard, purely
repulsive rod-coil molecules (Chapters 2-5).

part B The development of a perturbation contribution due to dispersion interac-
tions of rod-coil molecules (Chapters 6 and 7).

Although other attractive interactions than dispersion (e.g. polarity, association)
are also expected to be of importance for the formation of mesophases, these are
not considered in this thesis. Moreover, a detailed comparison of the EoS to experi-
mental data is left for future work; this thesis focuses on theory development, where
the decisive evaluation is done by systematically comparing theory to results from
molecular simulations.

Given the interest in the potential application of LCs as solvents for absorption
processes (Section 1.2), it is desired the EoS developed in this thesis is applicable
to mixtures of both mesogenic- and non-mesogenic compounds. Furthermore, the
EoS should be of simple analytical form, suitable for use in engineering-oriented
applications. A first step towards these goals was provided by the Phd work of
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Franco-Melgar et al. [18, 19, 87]. In this comprehensive work, the Onsager-Trial-
Function (OTF) approach was employed to develop a fully algebraic description
of the isotropic-nematic transition of pure-component systems of rigid mesogens.
The approach was generalized to rigid mesogens of many different shapes, the only
requirement being a generic form of the pair-excluded volume (i.e. a series in sin(γ),
where γ is the angle between the molecular axes). In this thesis, I aim at a theoretical
approach of similar simplicity. However, in contrast to the work of Franco-Melgar
et al., I aim at a description of (1) non-rigid (rod-coil) molecules, and (2) mixture
systems. As I show, these objectives pose considerable challenges.

The first problem is addressed in Chapter 2, which concerns the description
of the pair-excluded volume. Due to intramolecular degrees of freedom, the pair-
excluded volume of rod-coil molecules is not only a function of the angle (γ) between
the overall molecular axes, but also of the molecular conformations. A rigorous de-
scription of the effect of conformational degrees of freedom on the excluded volume
could in principle be achieved using MC simulations; however, this would result in
a theory not suited for engineering applications. For the purposes aimed at in this
thesis, a simpler treatment is required. Therefore, I propose a decoupling of the
conformational distribution function which allows the internal degrees of freedom of
the molecules to be averaged out. In the resulting theory, the orientation-dependent
pair-excluded volume is obtained from an ensemble average over these internal de-
grees of freedom. Although the ensemble average needs to be obtained from MC
simulations, I develop a general correlation which, when used in an Onsager-type
theory, results in an analytical treatment of the effect of molecular flexibility on
the isotropic-nematic transition. The correlation is cast in the general form of a
series in sin(γ), thereby allowing an extension of the generalized Onsager approach
of Franco-Melgar et al. to non-rigid molecules.

Apart from an accurate description of the excluded volume, a fluid theory for
the isotropic-nematic transition relies on an accurate description of the isotropic
phase. In Chapter 3, some commonly used equations of state (TPT2, GFD, SPT)
are extended to rod-coil fluids. A novel EoS is developed that leads to a considerably
improved description of the isotropic phase behaviour of rod-coil fluid mixtures.

In Chapter 4, the decoupling of the conformational distribution function (as pro-
posed in Chapter 2) is used to extend Onsager’s 2nd virial theory (as introduced
in Section 1.3.2) to partially flexible (rod-coil) fluids. Several methods for treating
molecules of moderate shape anisotropy (i.e. small chain length, large flexibility)
are introduced. By combining the extended Onsager theory with the correlation for
the pair-excluded volume from Chapter 2 and the novel EoS for the isotropic phase
from Chapter 3, an analytical theory for the isotropic-nematic transition of rod-coil
fluids is obtained. It is shown that the theory compares accurately to a wide range
of results obtained from MC simulations. The effect of molecular shape and flexi-
bility on the isotropic-nematic phase behaviour is thereby systematically examined.
The theory is simplified to an algebraic EoS with a self-contained description of
orientational ordering.

In Chapter 5, the Onsager theory from Chapter 4 is extended to mixtures. Con-
siderable effort is put in reformulating the theory to analytical form. However, an
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algebraic form as obtained for pure-component systems seems not possible. Theo-
retical results for the binary phase diagram are compared to results obtained from
MC simulations. As for the pure-component case, excellent agreement is obtained.
The EoS is used to study several phenomena. Most importantly, the solubility of
small hard-sphere solutes in nematic rod-coil solvents is studied. It is shown that
using a mixture of LCs as the solvent gives the possibility to maximize the solubility
difference across the isotropic-nematic phase transition.

In part B of this thesis, the effect of attractive dispersion interactions is included
in the reference model by means of the perturbation theory of Barker and Henderson.
As for the reference case, an accurate EoS for the isotropic phase is important
to obtain a reliable description of the isotropic-nematic equilibrium. Therefore,
in Chapter 6, I first develop an EoS that can describe the isotropic (i.e. vapour
and liquid) phase behaviour of rod-coil fluids, whose segments interact through
a Lennard-Jones (LJ) 12-6 potential. In the course of the development I come to
various new insights regarding the application of the Barker-Henderson perturbation
theory to a hard-chain reference fluid. Most importantly, it is shown that in such a
perturbed-chain approach an accurate description of the soft repulsion between the
segments in LJ chain fluids can not be obtained by naively applying the conventional
Barker-Henderson effective segment diameter. A new effective diameter is developed
that depends on temperature, chain length and density. When used in the theory, a
significantly improved description of the vapour-liquid phase behaviour is obtained.

In Chapter 7, the work of Chapters 2-6 is combined to develop an EoS for describ-
ing isotropic-nematic phase equilibria of LJ chain fluids. In addition, an anisotropic
dispersion contribution is included to the EoS. The EoS is used to systematically
study the effect of chain length, flexibility, and attractive dispersion interactions
on the vapour-liquid-nematic phase behaviour. Theoretical results are compared to
molecular simulations for isotropic-nematic equilibria of a system of rigid linear LJ
10-mers. Excellent agreement is obtained. The results indicate that the difference
between the isotropic- and nematic dispersive Helmholtz energy contribution to the
EoS is predominantly caused by the density difference at the isotropic-nematic phase
transition. For LJ chain fluids, therefore, no anisotropic dispersion contribution is
required. These results suggest a reliable description of the dispersion interactions
of real LCs can be obtained from conventional theories that were developed for
isotropic fluids.
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2
An analytical approximation for the orientation-
dependent pair-excluded volume of rod-coil fluids

A key ingredient in Onsager-like theories is the orientation-dependent excluded volume
of two molecules. Although for convex molecular models this is generally known in
analytical form, for more realistic molecular models that incorporate intramolecular flex-
ibility, one usually has to rely on crude approximations or computationally expensive
MC techniques. In this thesis, we aim at simple (approximate) analytical methods,
while maintaining the theoretical rigour of the MC method. Therefore, we propose a
decoupling of the conformational distribution function of a chain fluid into a part de-
scribing the orientation of the overall molecular axis and a part describing the internal
degrees of freedom (bond- and torsion angles) of the molecules. This decoupling allows
us to treat the orientation-dependent excluded volume of two partially flexible (rod-coil)
molecules as an ensemble average over their internal degrees of freedom. We perform
MC simulations to calculate this ensemble average for a wide range of different rod-coil
molecules. An accurate, analytical approximation is developed by correlating the results.
The correlation is valid over a large range of chain lengths and flexibilities; therefore
when used in an Onsager-like theory for the isotropic-nematic transition (Chapter 4), it
allows for an analytical treatment of the effects of molecular flexibility. The correlation
is extended to mixtures by applying simple combining rules for the parameters involved.
We have expressed the excluded volume as a second order power series in sin(γ), where
γ is the angle between the molecular axes. Such a representation is appealing since
the solution of the Onsager Helmholtz-energy functional usually involves an expansion
of the excluded volume in Legendre coefficients. Moreover, when using the excluded-
volume expression in an Onsager-type theory in the OTF approximation, it allows for an
algebraic description of the nematic state (see Chapter 4). Both for pure components
and mixtures, the correlation reduces to an exact expression in the limit of completely
linear chains.

Parts of this chapter have been published as:
T. van Westen, T.J.H. Vlugt and J. Gross J. Chem. Phys. 137 (2012) 044906 [88].
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2.1 Introduction
It is well recognized that theoretical descriptions of molecules that form liquid crys-
talline phases should go beyond the simple rigid models such as for example rods,
disks, spherocylinders or ellipsoids [89–93]. Although these models play an impor-
tant role in gaining understanding in the rich phase behaviour of liquid crystals [94–
98], Flory already suggested in 1956 that a certain degree of intramolecular flexibil-
ity—a characteristic of any ’real’ liquid crystal molecule—would have a considerable
effect on the liquid crystalline phase behaviour [90]. Now, several molecular simu-
lation studies [91–93, 99] have confirmed this hypothesis. For the isotropic-nematic
phase transition in particular, one finds that introducing flexibility into the molec-
ular model destabilizes the nematic phase (due to a decreased anisotropy of the
molecules) and thereby shifts the phase transition to higher density and pressure.

Inspired by the seminal work of Flory and these more recent observations, sev-
eral authors have worked towards incorporating the effects of molecular flexibility in
a theoretical description of the isotropic-nematic transition [100–108]. The starting
point for all of these studies is Onsager’s theory [9, 109]. For a system of infinitely
thin hard rods, Onsager showed that the isotropic-nematic phase transition can be
understood from a competition between an orientational entropy, which is maxi-
mized by an isotropic distribution of molecular orientations, and a configurational
entropy (free volume), which is maximized by aligning the molecules to minimize
the excluded volume. To extend the theory of Onsager to molecules with a certain
degree of intramolecular flexibility, an additional chain-conformational entropy has
to be taken into account. The first to do this were Khoklov and Semenov [100–102].
In their analysis on worm-like chains, a correction to the orientational-entropy term
of the Onsager Helmholtz-energy functional was introduced to account for the ad-
ditional conformational degrees of freedom. The effect of these degrees of freedom
on the excluded volume was approximated by breaking up a molecule into a num-
ber of uncorrelated rigid subsections of length equal to the molecule’s persistence
length. More recent theoretical efforts due to, for example, Fynewever and Yethi-
raj [103], suggest that a more rigorous treatment of the effect of chain flexibility on
the excluded volume leads to a more accurate description of the isotropic-nematic
transition of semi-flexible chain molecules. In such an approach, a MC simulation
of two chain molecules is performed to calculate an ensemble average of the pair-
excluded volume over all (relevant) molecular conformations. Although, in contrast
to the Khoklov-Semenov theory, this allows an application of the method to other
molecular models than the worm-like chain, the dependence on MC simulations ren-
ders a computationally expensive approach, not suited for the routine engineering
applications aimed at in this thesis.

Given its good performance [103], it would be desirable to apply the method
of Fynewever and Yethiraj to the rod-coil model laid out in Section 1.3.5 of this
thesis. Therefore, in the present chapter, we develop a general correlation for the
orientation-dependent pair-excluded volume of rod-coil molecules of arbitrary chain
length and flexibility. The use of this correlation in Onsager-like theories for the
isotropic-nematic phase transition eliminates the need to perform individual MC
simulations for calculating the excluded volume while accurately, albeit in an average
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way, covering the effects of intramolecular flexibility (see Chapter 4 for details).
This chapter is organized as follows. In Section 2.2, we discuss the rod-coil

molecular model. After that, in Sec 2.3 some theoretical background is given on
the second virial coefficient and pair-excluded volume of non-rigid chain molecules.
Furthermore, we derive the method of Fynewever and Yethiraj based on a decoupling
of the conformational distribution function. The algorithm for calculating the pair-
excluded volume from MC simulations is presented in Section 2.4. In Section 2.5,
the correlation for the pair-excluded volume of rod-coil molecules is developed and
tested against MC simulations of two chain molecules. Our findings are summarized
in Section 2.6.

2.2 Molecular model
The molecular architecture of typical (thermotropic) liquid crystal molecules of pro-
late type consists of a rather rigid, anisotropic core with one or more (semi-)flexible
tail-groups attached to its end(s) [1, 89]. To mimic this architecture, we assume
a chain of m tangent hard spheres of diameter σ, where one part of the chain is
arranged in a linear conformation (referred to as ’rod’) while the other part is fully
flexible (referred to as ’coil’). This model will be referred to as rod-coil fluid. We
employ a general m-mR notation to denote a rod-coil with a total number of m
segments and a number of mR segments in the rigid block. A completely linear or
flexible chain is simply referred to as a linear or flexible m-mer, respectively.

As a measure for the partial flexibility of a molecule, a dimensionless rigidity
parameter is introduced, which is defined as the ratio of the total number of rigid
bond-angles to the the total number of bond-angles in a molecule:

χR =

{ mR − 2

m− 2
for m > 2

1 for m ≤ 2
(2.1)

The rigidity parameter serves as an input for the excluded-volume expression devel-
oped in this chapter. The parameter varies conveniently from zero to unity between
the completely flexible- and rigid chain limit, respectively.

In principle, the flexibility (and thus χR) of ’real’ molecules is state-point (T , P
and ρ) dependent (see for example the recent work of Dennison et al. [110, 111]).
The fact that this state-point dependence is not included in the molecular model
outlined above constitutes some degree of approximation. It is important to men-
tion, however, that many accurate theories for the isotropic state (e.g. the SAFT
family of equations of state [61–63, 65, 72]) have been developed based on similar
approximations. In these theories, it is generally assumed that the intramolecular
conformation is not affected by the density of the fluid. The temperature depen-
dence of the non-bonded intramolecular interactions can then be considered in the
ideal gas contribution to the Helmholtz energy. The same reasoning could be applied
to liquid crystalline fluids. In doing this, the increase in the end-to-end distance of a
chain molecule that is observed in simulation studies of the isotropic-nematic tran-
sition [92, 99] is neglected. The assumption of density independent molecular flexi-
bility is in that respect analogous to the assumption made in SAFT theories, where



2

26 2 The pair-excluded volume

a comparable increase in end-to-end distance for vapour-liquid transitions [112] is
neglected.

2.3 The second virial coefficient and pair-excluded
volume of non-rigid chain fluids

As originally shown by Mayer and Mayer [48], the second virial coefficient of a system
of spherical molecules whose interactions are governed by the pair-potential u(r) can
be written as an integral of the Mayer-f function Φ(rrr1, rrr2) = exp(−βu(r))− 1 over
configurational space

B2 = − 1

2V

∫∫
Φ(rrr1, rrr2)drrr1drrr2

= −1

2

∫∫
Φ(rrr12)drrr12

(2.2)

Here, rrr12 is the vector between the center of mass of molecules 1 and 2. This result
involves an exact extension to mixtures, according to

B2 =
∑
i

∑
j

xixjB2,ij (2.3)

where xi is the mole fraction of a chemical species i, and the double sum is over all
possible pairs of chemical species in the mixture. By treating molecules of different
orientations (ωωω) as different chemical species, Onsager argued one can replace the
mole fractions xi in the above equation by the orientational distribution function
f(ωωω), leading to the following functional for the second virial coefficient of anisotro-
pic, rigid molecules [9]

B2[f(ωωω)] = −1

2

∫∫∫
Φ(rrr12,ωωω1,ωωω2)f(ωωω1)f(ωωω2)dωωω1dωωω2drrr12 (2.4)

Extrapolation to the case of non-rigid molecules is straightforward—now every
molecule with a different conformation (ω̃ωω) is treated as a different chemical species—
and we can write the second virial coefficient as a functional of the conformational
distribution function (CDF) f(ω̃ωω)

B2[f(ω̃ωω)] = −1

2

∫∫∫
Φ(rrr12, ω̃ωω1, ω̃ωω2)f(ω̃ωω1)f(ω̃ωω2)dω̃ωω1dω̃ωω2drrr12 (2.5)

For the hard, purely repulsive molecules considered here, the Mayer function is
minus unity for molecular configurations that show overlap and zero otherwise.
Therefore, minus the integral of the Mayer function over the separation rrr12 is equal
to the volume inaccessible to the center of mass of molecule 2 due to the presence of
molecule 1, i.e. the pair-excluded volume. As a result, the second virial coefficient
can be written as a conformational average of the pair-excluded volume, according
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to

B2[f(ω̃ωω)] =
1

2

∫∫
Vex(ω̃ωω1, ω̃ωω2)f(ω̃ωω1)f(ω̃ωω2)dω̃ωω1dω̃ωω2 (2.6)

Vex(ω̃ωω1, ω̃ωω2) = −
∫

Φ(rrr12, ω̃ωω1, ω̃ωω2)drrr12 (2.7)

To apply the above result in an Onsager-type theory for the nematic phase, one needs
not only the CDF of a chain fluid, but also the excluded volume of two molecules
for all possible molecular conformations. Evidently, this would result in a theory of
tremendous complexity.

In the present thesis, we aim at a simpler approach. We assume a molecule’s
CDF can be decoupled in a part depending only on the internal conformation ωωω′
(all bond and torsion angles) of the molecule and a part depending only on the
overall molecular axis ωωω (defined as the eigenvector corresponding to the smallest
eigenvalue of the molecule’s moment of inertia tensor), according to

f(ω̃ωω) ≈ f(ωωω′)f(ωωω) (2.8)

With this approximation we actually assume a molecule’s internal conformation
is unaffected by the density of the system (for a more detailed discussion on the
consequences of this approximation, the reader is referred to Chapter 4). Due to
the decoupling, the pair-excluded volume can be treated as an ensemble average
〈. . .〉 over all internal conformations of molecules 1 and 2. Accordingly, the second
virial coefficient can be written in the same form as proposed by Fynewever and
Yethiraj [103]

B2[f(ωωω] =
1

2

∫∫
〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′1,ωωω′2 f(ωωω1)f(ωωω2)dωωω1dωωω2 (2.9)

The great virtue of this approach is that due to the averaging, the non-rigid molecules
can be treated as if they are cylindrically symmetric. As a result, the ensemble av-
erage can be reduced to a function solely depending on the angle γ between the
overall molecular axes, according to

〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′1,ωωω′2 = Vex(γ) (2.10)

In the present chapter, we calculate Vex(γ) by means of MC simulations of two chain
molecules and fit a general correlation to the results.

2.4 Simulation details
To calculate the orientation-dependent excluded volume of two molecules, a slightly
altered version of the MC algorithm introduced by Fynewever and Yethiraj [103] is
used:
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1. Generate two isolated chain molecules independently using the Rosenbluth
method [113–116]. This method is known to produce much better statistics
compared to a random generation of chains. In this method, a molecule is
grown by choosing the orientation of each new bead from a predefined number
of trial directions. To remove the bias introduced by this and to recover correct
Boltzmann sampling, each molecule is assigned a statistical weight equal to
its Rosenbluth weight. The statistical weight W12 of the pair of molecules is
then the product of the two Rosenbluth weights W1 and W2.

2. Calculate the orientation of each molecule as the eigenvector corresponding to
the smallest eigenvalue of its moment of inertia tensor. Rotate chain 2 to the
desired angle γ.

3. Put the first bead of chain 1 at the center of a cubical simulation box with
volume Vbox and box length equal to the sum of the chain lengths of molecule
1 and 2, i.e. m1 +m2.

4. Move chain 2 to Nstep random positions and count the number of overlaps
Noverlap. Typically Nstep = 105 is sufficient for accurate sampling.

5. Repeat Steps 1-4 for Npair different chain pairs and calculate the excluded
volume as

Vex(γ) =
Vbox

Nstep

Npair∑
i=1

(NoverlapW12)i

Npair∑
i=1

(W12)i

(2.11)

Note that, at this step, all internal conformational dependencies of the ex-
cluded volume are averaged out. Additionally, we average out any up-down
asymmetry, i.e. Vex(γ) = Vex(π − γ). Typically, Npair = 2500 leads to suffi-
ciently accurate sampling.

6. Repeat Steps 1-5 Nexp different times and average the excluded volume over
the independent calculations. The value of Nexp is chosen such that the
standard deviation calculated from the independent calculations is sufficiently
small (∼0.5%).

7. Repeat Steps 1-6 for a number of different angles γ uniformly distributed
between 0 and π/2. For small chains (m < 20) we typically use 19 different
angles, for longer chains we reduce this to 7 different angles to reduce the
computational effort.

It is important to note that due to the forced cylindrical and up-down symmetry at
Step 5, the pair-excluded volume can eventually be represented by a series in sin(γ).
For reasons discussed previously, such a representation will be helpful for solving
the Onsager Helmholtz energy functional [18, 19, 117].
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the dimensionless excluded volume of a
pure rod-coil fluid of m=12 and mR =
2,4,6,8,10,12. Symbols are MC data; lines
are a guide for the eye.

2.5 Correlation for the excluded volume
2.5.1. Pure components
The natural starting point to find a suitable functional form for the pair-excluded
volume of rod-coil molecules is the work of Williamson and Jackson [118]. Based on
the work of Kihara [119] on the excluded volume of hard homo-segmented tangent
dimers, Williamson and Jackson derived an exact expression for the dimensionless
excluded volume of linear, homo-segmented tangent hard-sphere chains of arbitrary
chain length m. Since the analytical solution of this expression is rather involved, a
linear function in sin(γ) was fitted to the numerical results to obtain

V ∗ex(γ) =
Vex(γ)

Vm
=

11m− 3

m
+ 3.5339

(m− 1)2

m
sin(γ) (2.12)

Here, Vm is the molecular volume of a chain of m tangent hard spheres. It is
important to note that the first term, i.e. the excluded volume for the parallel
orientation, and the factor (m − 1)2/m of the second term are exact. Only the
factor 3.5339 sin(γ) results from the fitting. This expression is very accurate and
when used in Eq. (2.9) to calculate the (isotropic) second virial coefficient of hard
linear tangent-sphere chains of length ranging from 2 to 10, one finds a near exact
agreement (deviation at worst 0.02%) with MC data [118, 120].

To extend Eq. (2.12) to rod-coil molecules, it is instructive to examine the be-
haviour of the excluded volume as a function of the rigidity parameter χR. As
an example, we show the excluded volume of a set of rod-coils with m = 12 and
mR = 2, 4, 6, 8, 10, 12 in Fig. 2.1. In this figure, the symbols represent MC data and
the lines are a guide for the eye. In the limit of completely linear molecules, i.e.
χR = 1, the excluded volume can perfectly be represented by a function of sin(γ).
However, when the rigidity is decreased, the excluded volume requires a higher order
term, such as a sin2(γ)-term, suggesting the following general functional form for
the excluded volume of rod-coils

V ∗ex(γ) = C1(m,χR) + C2(m,χR) sin(γ) + C3(m,χR) sin2(γ) (2.13)

Independent fits of Eq. (2.13) to the excluded volume of different rod-coils (not
included for brevity) suggested a linear dependence of the C1, C2 and C3 parameters
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Figure 2.2: Excluded volume of a pure rod-
coil fluid with m=16 and mR=2,4,8,12,16.
Comparison between Eqs. (2.13)-(2.19)
(lines) and MC data (symbols) not included
in the regression.
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on the chain length m and a χR-dependence that can be well captured by a power
law. We find the best representation of our pure component two-chain MC data
using the following functional forms for C1, C2 and C3

C1(m,χR) =
11m− 3

m
+

(m− 1)2

m

3∑
k=1

ak(1− χR)k (2.14)

C2(m,χR) = 3.5339
(m− 1)2

m
χ2

R (2.15)

C3(m,χR) =
(m− 1)2

m

2∑
k=1

bk(1− χR)k (2.16)

where we have introduced an additional m-dependence in the a2, a3 and b2 param-
eters as

a2 = a21 +
a22

m
(2.17)

a3 = a31 +
a32

m
(2.18)

b2 = b21 +
b22

m
(2.19)

Here a1, a21, a22, a31, a32, b1, b21 and b22 are adjusted constants. Note that for
the case of linear chains (which by definition also includes hard spheres and dimers)
Eqs. (2.13)-(2.19) simply reduce to the linear chain limit from Eq. (2.12). The linear
dependence on m is introduced by the factor (m− 1)2/m; this is based on analogy
to Eq. (2.12) and, as shown in the next section, it allows for a simple extension to
mixtures.

A total of 8 dimensionless adjustable constants were determined by minimiz-
ing deviations of Eqs. (2.13)-(2.19) to simulation data of the following rod-coils:
3-2, 4-(2, 3), 5-(2,3,4), 6-(2,3,4,5), 7-(2,3,4,5,6), 8-(2,3,4,5,6,7), 12-(2,3,4,6,8,10),
18-(2,3,4,6,8,10,12,14,16), 24-(2,4,8,15,22) and 30-(2,4,10,15,20,25). The regression
gives an excellent result with an average relative error per data point of approxi-
mately 1.5%. The values of the 8 adjustable constants a1-b22 are shown in Table 2.1.

To test the adequacy of the correlation for molecule types not included in the
regression, we show the excluded volume of a rod-coil of respectively 16 segments
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Figure 2.3: Excluded volume of a pure rod-
coil fluid with m=40 and mR=2,15,25,35.
Comparison between Eqs. (2.13)-(2.19)
(lines) and MC data (symbols) not included
in the regression.

Table 2.1: The 8 model constants obtained by minimizing deviations of Eqs. (2.13)-(2.19) to MC data
of the excluded volume of pure rod-coil fluids.

i a1 a2i a3i b1 b2i

1 4.63 −4.71 1.31 0.305 −0.171
2 7.84 −6.18 3.32

and 40 segments, for different degrees of flexibility (as defined by Eq. (2.1)), in
Figs. 2.2 and 2.3. The symbols are MC data and the lines are calculated using
Eqs. (2.13)-(2.19). As can be observed, the correlation can well be extrapolated to
chain lengths not included in the fitting.

2.5.2. Mixtures
To extend the above approach to mixtures, i.e. two rod-coils of different chain
length and rigidity, we start by considering the limit of two completely linear chains
of different chain length m1 and m2. For this case, we show in Appendix A that
one can reformulate Eq. (2.12) as

V ∗ex(γ) =
11m̄12 − 3

m̄12
+ 3.5339

(m1 − 1)(m2 − 1)

m̄12
sin(γ) (2.20)

where we have introduced an average chain length m̄12 defined as

m̄12 =
m1 +m2

2
(2.21)

Here, the excluded volume is made dimensionless by dividing through Vm̄12
, i.e.

the molecular volume of a chain of m̄12 tangent hard spheres. It is important to
note that no additional approximations were introduced to extend Eq. (2.12) to
Eq. (2.20). Therefore, Eq. (2.12) can be considered as a special case of this general
result for mixtures.

As for pure components, the excluded volume of a mixture of two rod-coils can be
well represented by a second order series in sin(γ) and we find an excellent agreement
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Figure 2.4: Excluded volume for a mixture
of an 18-10 and 8-6 rod-coil (triangles) as
well as for a mixture of a 12-4 and 8-6 rod-
coil (circles). Comparison between predic-
tions from Eqs. (2.23)-(2.26) (lines) and MC
data (symbols).
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Figure 2.5: Excluded volume for a mixture of
a linear chain of 12 segments and a rod-coil
of m = 8 and mR = 2,4,6,8. Comparison
between predictions from Eqs. (2.23)-(2.26)
(lines) and MC data (symbols).
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with MC data by introducing a combining rule for the rigidity parameter as

χ̄R,12 =
χR,1 + χR,2

2
(2.22)

In analogy to our extension of Eq. (2.12) to mixtures (Eq. (2.20)), we now define
the excluded volume of the rod-coil mixture, as

V ∗ex(γ) = C1(m̄12, χ̄R,12) + C2(m̄12, χ̄R,12) sin(γ) + C3(m̄12, χ̄R,12) sin2(γ) (2.23)

where

C1(m̄12, χ̄R,12) =
11m̄12 − 3

m̄12
+

(m1 − 1)(m2 − 1)

m̄12

3∑
k=1

ak(1− χ̄R,12)k (2.24)

C2(m̄12, χ̄R,12) = 3.5339
(m1 − 1)(m2 − 1)

m̄12
χ̄2

R,12 (2.25)

C3(m̄12, χ̄R,12) =
(m1 − 1)(m2 − 1)

m̄12

2∑
k=1

bk(1− χ̄R,12)k (2.26)

For the case of a pair of linear chains of different chain length Eqs. (2.23)-(2.26)
reduce to the quasi-exact linear chain limit of Eq. (2.20). For the case of two rod-
coils of the same chain length and rigidity, one simply obtains the pure component
result from Eqs. (2.13)-(2.16).
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Figure 2.6: The excluded volume (large
spheres of diameter 2σ) of (1) a hard sphere
and a linear trimer and (2) a hard sphere
and a fully flexible trimer. For case (2), the
first and last segment of the excluded volume
have an additional overlap (marked gray) re-
sulting in a smaller excluded volume than for
case (1).
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Figure 2.7: The excluded volume of
a hard sphere and a fully flexible
chain of m segments. The dashed
line is the result from Eqs. (2.23)-
(2.26) without the correction from
Eq. (2.29); the solid line is the cor-
relation from Eqs. (2.23)-(2.26) with
the correction from Eq. (2.29) in-
cluded. The symbols represent MC
data.

In Fig. 2.4 we compare predictions of Eqs. (2.23)-(2.26) (lines) with MC data
(symbols) for a mixture of an 18-10 and 8-6 rod-coil and a mixture of a 12-4 and 8-6
rod-coil. The overall agreement is very good except for a small underestimation of
the excluded volume at small angles γ. Since the 8 constants a1-b22 (see Table 2.1)
were fitted to excluded volume data for identical chains only, it is expected that
predictions based on Eqs. (2.23)-(2.26) become less accurate when the two molecules
become less similar. A more stringent test is therefore the case of a linear chain and
a fully flexible chain. In Fig. 2.5 we show the excluded volume of a linear chain
of 12 segments and a rod-coil of 8 segments with variable degree of flexibility (as
defined by Eq. (2.22)). Indeed we see that predictions become less accurate when
the flexibility of the rod-coil is increased (and thus the two molecules become less
similar), however even for the case of a linear chain and a fully flexible chain the
overall agreement between MC data and predictions is very satisfying.

A clear limitation of Eqs. (2.23)-(2.26) is the case of a hard sphere and a rod-
coil. The functional form of C1(m̄12, χ̄R,12) is such that for this case the second term
equals zero and thus the calculated excluded volume is the same as for a hard sphere
and a linear chain. In this, any next-nearest (and higher order) neighbour effects
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Figure 2.8: The excluded volume of
a hard sphere and respectively a 6-
mR rod-coil (solid line), an 8-mR

rod-coil (dashed line) and a 30-mR

rod-coil (dash-dotted line). Com-
parison between the correlation from
Eqs. (2.23)-(2.26) with the correc-
tion from Eq. (2.29) included (lines)
and MC data (symbols).
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are neglected (as illustrated in Fig. 2.6), leading to a systematic overestimation of
the excluded volume (marked gray in Fig. 2.6). This limiting case is relevant, for
example for mixtures of liquid crystals with small solutes, and therefore we add a
scaling 1 −D(m̄12, χ̄R,12) to the first term of the C1 parameter from Eq. (2.24) to
correct for this overestimation as

C1(m̄12, χ̄R,12) =

(
11m̄12 − 3

m̄12

)
[1−D(m̄12, χ̄R,12)] + (2.27)

(m1 − 1)(m2 − 1)

m̄12

3∑
k=1

ak(1− χ̄R,12)k (2.28)

In general, each flexible bond-angle of the chain molecule will result in an overlap
volume (similar to that in Fig. 2.6) that needs to be corrected for. The overlap
volume for the first bond-angle in the chain only contains next-nearest neighbour
effects, the second will additionally contain next-next-nearest neighbour effects, and
so on. Because of this, the flexible bond angles at the beginning of a chain will result
in a somewhat smaller overlap volume than those further in the chains backbone
and, consequentially, require a smaller correction. For a very long chain, this effect
averages out and all overlap volumes can be considered as identical. For this case,
the correction to the excluded volume Vcorr = −(11m̄12 − 3)D(m̄12, χ̄R,12) should
scale linearly with the number of flexible bond angles, suggesting a functional form
as D(m̄12, χ̄R,12) = d1(1 − χ̄R,12). To obtain a smaller correction for shorter chain
lengths, a hyperbolic term in the chain length m̄12 is included as

D(m̄12, χ̄R,12) = [δ1m1 − δ1m2 ]
2

(
d1 −

d2

m̄12

)
(1− χ̄R,12) (2.29)

The term [δ1m1 − δ1m2 ]
2, with δ being a Kronecker delta, is a correction factor for

the case of a hard sphere and a partially flexible (rod-coil) chain fluid. For any other
case, it reduces to zero. The d1 and d2 parameters were fitted to MC data of the
excluded volume of several hard-sphere/rod-coil mixtures; the values are respectively
d1=0.125 and d2=0.206. As shown in Figs. 2.7 and 2.8 the scaling is excellent and
both the dependence of D on m̄12 and on χ̄R,12 is very well correlated for a wide
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range of chain lengths (at least up to m̄12 = 20.5) and rigidities. It is important to
note that the functional form of the C2(m̄12, χ̄R,12) and C3(m̄12, χ̄R,12) parameters
from Eqs. (2.25) and (2.26) remains unchanged.

2.6 Conclusion
We developed an analytical approximation for the orientation-dependent excluded
volume of two rod-coil molecules. The expression has a total of 8 adjustable con-
stants that were regressed to a wide range of pure-component excluded-volume data
(with chain lengths up to 30 segments) obtained from MC simulations of two chain
molecules. We find an excellent representation of the simulation data with an av-
erage relative deviation of approximately 1.5% per data point. The correlation
accurately covers the effects of intramolecular flexibility and can be extrapolated
to (larger) chain lengths not included in the regression with reasonable accuracy.
An extension to mixtures of different chains of equally-sized segments is possible by
introducing combining rules for the chain length and rigidity parameter. Both for
pure components and mixtures, the correlation reduces to an exact expression in
the limit of linear chains.
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An equation of state for the isotropic phase of lin-
ear, partially flexible and fully flexible tangent hard-
sphere chain fluids

A new equation of state (EoS) is developed that accurately describes the isotropic phase
behaviour of linear, partially flexible and fully flexible tangent hard-sphere chain fluids
and their mixtures. The EoS is based on the EoS of Liu and Hu [H. Liu and Y. Hu, Fluid
Phase Equilibr. 122, 75 (1996)] for fully flexible chain fluids. The effect of molecular
flexibility is described by a pure-component parameter that is introduced in the theory
at the level of the cavity correlation function of next-to-nearest neighbour segments in
a chain molecule. The EoS contains a total of three adjustable model constants. The
extension to partially flexible- and linear chain fluids is based on a refitting of the first
model constant to numerical data of the second virial coefficient of partially flexible
and linear tangent hard-sphere chain fluids. The numerical data was obtained from the
analytical approximation for the pair-excluded volume that was developed in Chapter 2.
The other two parameters were adjusted to MC data for the pressure of linear tangent
hard-sphere chain fluids. For both, pure component systems and mixtures of chains of
variable flexibility, the pressure and second virial coefficient obtained from the EoS are in
excellent agreement with the results from MC simulations. A significant improvement to
TPT1, TPT2, generalized Flory-dimer theory (GFD) and Scaled Particle Theory (SPT)
is observed.

Parts of this chapter have been published as:
T. van Westen, B. Oyarzún, T.J.H. Vlugt and J. Gross Mol. Phys. 112 (2014) 919-928 [121].
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3.1 Introduction
In the past three decades, there has been considerable effort to develop equations
of state for hard-chain fluids [59, 60, 122–125]. Predominantly, this is inspired
by the successes of molecular perturbation theory [54, 55, 126, 127]. In such an
approach, an accurate description of the thermodynamic properties of a hard, purely
repulsive reference fluid can be considered as a prerequisite for developing a reliable
fluid theory for describing physical properties of real (polymeric) fluids. Using the
reference fluid as a basis, the effect of attractive intermolecular interactions can be
added as a perturbation. Whereas the fully flexible hard-chain fluid has served as
a reference for the development of some successful equations of state for isotropic
fluids (e.g. the SAFT family of equations of state [63, 65, 72]), it is well-known
that the description of more complex fluids, like liquid crystals, requires a molecular
model that includes some rigidity in the chain’s backbone [89–93].

Any theoretical treatment aimed at a description of the liquid crystalline phase
transition critically relies on an accurate description of the properties of the isotro-
pic phase. Therefore, in the present chapter, we develop a new equation of state
(EoS) that is applicable to the isotropic phase of mixtures of both linear, partially
flexible and fully flexible tangent hard-sphere chain fluids. Inspired by the typical
structure of real (thermotropic) liquid crystal molecules [89], the ’partial’ flexibility
is introduced by arranging one part of the chain in a rigid, linear conformation while
maintaining the other part fully flexible. Following the work of Liu and Hu on fully
flexible chains [125, 128], the new EoS is derived by approximating the cavity corre-
lation function (CCF) of a chain fluid by a product of nearest- and next-to-nearest
neighbour contributions. We thereby extend their approach to linear and partially
flexible chains by reformulating the next-to-nearest neighbour CCF in terms of the
dimensionless rigidity parameter from Eq. (2.1). For the fully flexible case, this
parameter equals zero and the original EoS of Liu and Hu is retained.

This chapter is organized as follows. In Section 3.2 we list the details of the MC
simulations that were performed. The equation of state is derived in Section 3.3. In
Section 3.4, theoretical results for the pressure and second virial coefficient of both
pure component systems and mixtures of chains of variable degree of flexibility
are compared to the results from MC simulations obtained in this work and from
literature.

3.2 Simulation details
Both for the development and testing of the EoS presented in this chapter, we cal-
culated the isotropic fluid behaviour of tangent hard-sphere chain fluids from MC
simulations in the isobaric-isothermal NPT ensemble [116]. The different MC moves
used in the simulations are translation, rotation, volume change and (for partially
flexible molecules) configurational-bias regrowth moves [116, 129, 130] with relative
probabilities of 41.5% (49% for linear chains), 41.5% (49% for linear chains), 2% and
15% (0% for linear chains), respectively. A rectangular simulation box with inde-
pendently varying sides was used. Periodic boundary conditions were applied. The
maximum translational displacement, rotational displacement and volume expan-
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sion/contraction were adjusted to obtain approximately 20% acceptance. For the
simulation of pure component systems we typically used a number of 350 molecules.
For the equimolar binary mixtures, we used 400 molecules per molecule type in the
system. For the other mixtures, we used 360 chain molecules and 40 hard spheres.
A typical simulation run consisted of at least 106 MC cycles for equilibration and
106 MC cycles for production. The number of MC moves per cycle was set to the
total number of molecules in the system. Statistical errors in the calculated packing
fractions were in the range of 1-2%.

3.3 Equation of state
3.3.1. Fully flexible tangent hard-sphere chain fluids
The equation of state developed in this chapter is based on the equation of state
of Liu and Hu for fully flexible tangent hard-sphere chain fluids [125, 128]. In
this section, we shortly review their work and related work that is relevant to our
discussion.

Based on a sticky-point model for chemical association, Zhou and Stell [124] de-
rived an equation of state for a system of N chain molecules comprising m spherical
segments

Z =
PV

NkT
= 1 +mZhs − η ∂ ln y(m)

∂η
(3.1)

Here, η = (π/6)ρmσ3 is the packing fraction of the system, ρ = N/V is the total
number density of chain molecules, Zhs is the hard-sphere contribution to the com-
pressibility factor (which is a residual property) and y(m) is the m-particle cavity
correlation function (CCF) of the hard-sphere reference system, evaluated at the
positions which yield the configuration of the chain fluid. The CCF is defined as
the m-particle distribution function divided by the m-particle Boltzmann factor as
y(m) = g(m) exp[u(m)/kT ], where u(m) is the total intermolecular potential energy
of the assembly of m hard spheres [54]. Since the above equation involves properties
of the hard-sphere fluid only, it can be straightforwardly generalized to a mixture
of i = 1, . . . , Nc components as

Z =
PV

NkT
= 1 +

Nc∑
i=1

xi

miZ
hs − η

∂ ln y
(mi)
(i)

∂η

 (3.2)

The packing fraction of the mixture is defined as η = (π/6)ρ
∑Nc
i=1 ximiσ

3
i , where

xi = Ni/N is the mole fraction of component i. Since we will only evaluate mix-
tures of chains with equally-sized segments, the hard-sphere contribution can be
accurately obtained from the Carnahan-Starling EoS [131]

Zhs =
4η − 2η2

(1− η)3
(3.3)

Different approximations have been developed to calculate the m-particle CCF [124,
125, 128]. We use the approximation of Liu and Hu [125, 128], and assume correla-
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tions between nearest- and next-to-nearest neighbour segments only, leading to

y
(mi)
(i) ≈

mi−1∏
j=1

y
(2)
(i),j,j+1

mi−2∏
j=1

y
(2)
(i),j,j+2 (3.4)

Here, y(2)
(i),j,j+1 and y(2)

(i),j,j+2 are the pair-CCF for the nearest- (j, j+1) and next-to-
nearest neighbour pairs (j, j + 2) in a chain molecule of component i, respectively.
Assuming all pairs can be considered as identical (neglecting end effects), substitu-
tion of Eq. (3.4) in Eq. (3.2) results in

Z = 1 +

Nc∑
i=1

xi

miZ
hs − (mi − 1)η

∂ ln y
(2)
(i),j,j+1

∂η
− (mi − 2)η

∂ ln y
(2)
(i),j,j+2

∂η

 (3.5)

The nearest-neighbour CCF is accurately obtained from the Tildesley-Street equa-
tion for hard dumbbells as [132]

ln y(i),j,j+1 =
(3 + a20)η − (1 + b20)

2(1− η)
+

1 + b20

2(1− η)2
− (c20 + 1) ln(1− η) (3.6)

Here, a20 = −a2 + b2 − 3c2; b20 = −a2 − b2 + c2; c20 = c2 and a2 = 0.45696; b2 =
2.10386; c2 = 1.75503. To obtain an expression for the next-to-nearest-neighbour
CCF, Liu and Hu assumed a similar functional form as in the equation above

ln y(i),j,j+2 =
mi − 1

mi

[
a30η − b30

2(1− η)
+

b30

2(1− η)2
− c30 ln(1− η)

]
(3.7)

where the parameters a30, b30 and c30 were obtained by fitting molecular simula-
tion data [133, 134] for the compressibility factor of linear tangent trimers. The
parameters are given by a30 = −a3 + b3 − 3c3; b30 = −a3 − b3 + c3; c30 = c3 and
a3 = −0.74745; b3 = 3.49695; c3 = 4.83207. By combining Eqs. (3.5)-(3.7), the
compressibility factor can be written in the following compact form

Z =
1 + aη + bη2 − cη3

(1− η)3
(3.8)

where the a, b and c parameters are defined as

a =

NC∑
i

ximi

[
1 +

mi − 1

mi
a2 +

mi − 1

mi

mi − 2

mi
a3

]
(3.9)

b =

NC∑
i

ximi

[
1 +

mi − 1

mi
b2 +

mi − 1

mi

mi − 2

mi
b3

]
(3.10)

c =

NC∑
i

ximi

[
1 +

mi − 1

mi
c2 +

mi − 1

mi

mi − 2

mi
c3

]
(3.11)
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The resulting EoS provides an excellent description of the phase behaviour of fully
flexible tangent hard-sphere chain fluids and their mixtures [125, 128]. In the re-
mainder of this chapter it is referred to as the LH EoS. Compared to other equations
of state, such as TPT1, TPT2 and GFD, the LH EoS leads to a superior description
of both the compressibility factor and second virial coefficient.

3.3.2. Extension to linear and partially flexible chain fluids
In Eqs. (3.9)-(3.11), the a3-, b3- and c3-parameters govern the next-to-nearest neigh-
bour correlations in a chain. Therefore, to extend the LH EoS to describe chain
molecules of different flexibility constraints, the effect of molecular rigidity should
be reflected in these parameters. We choose to do this in terms of the rigidity pa-
rameter χR that was defined in Eq. (2.1) from Chapter 2. The a3-parameter was
fitted to the reduced isotropic second virial coefficient of pure-component tangent
hard-sphere chain fluids of length m = 1 to 120, using Eq. (3.9) and

B∗2 =
B2

Vm
= (3 + a) (3.12)

Here, Vm = (π/6)mσ3 is the molecular volume of a chain of m segments of diameter
σ (please note that for the the pure components considered here we have dropped
the subscript i for m and σ). The data for the second virial coefficient that was
used in the parameter regression was obtained from the analytical approximation
for the pair-excluded volume that was developed in the previous chapter. In terms
of the second virial coefficient, this correlation can be written as

B∗2 =
C1(m,χR)

2
+
πC2(m,χR)

8
+
C3(m,χR)

3
(3.13)

For the functional form of the coefficients C1(m,χR), C2(m,χR), and C3(m,χR) the
reader is referred to Eqs. (2.14)-(2.16). The model parameter a3 was individually
optimized for χR = {0.0 0.1 0.2 0.3 . . . 1.0}.

As could be expected from the functional form of the coefficients of Eq. (3.13),
the χR-dependence of a3 is captured accurately by the following polynomial

a3 = x(1) + x(2)χR + x(3)χ2
R + x(4)χ3

R (3.14)

Here, xxx = (−0.74745, 0.29915, 1.08727, −0.70898). The model constant x(1) was
forced to a value of -0.74745 to recover the original result of Liu and Hu for the fully
flexible chain limit at χR = 0. As shown in Fig. 3.1, the second virial coefficients
calculated from Eqs. (3.9), (3.12) and (3.14) are in excellent agreement with those
obtained from Eq. (3.13) and MC simulations [135]. It is important to note that for
rigid, linear chains, i.e. χR = 1, the expression for the second virial coefficient from
Eq. (3.13) reduces to the quasi-exact result of Williamson and Jackson [118].

The b3- and c3-parameters become important for interactions above the pair-
level. Their dependence on χR is difficult to know a priori. In this study, we assume
linear relations between the fully flexible (b3 = 3.49695, c3 = 4.83207 [128]) and
completely rigid chain limit. The b3- and c3-parameters for the rigid chain limit were
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Figure 3.1: The variation of the reduced sec-
ond virial coefficient B∗2 = B2/Vm with
chain-length m for different values of the
rigidity parameter χR. The lines are results
from the equation of state that was devel-
oped in this chapter. The upward triangles
(χR = 1.0) are the quasi-exact results from
Eq. (3.13). The downward triangles (χR =
0.5) and squares (χR = 0.0) are MC data ob-
tained by us (using a MC integration method
similar to that from Chapter 2) and from
Ref. [135], respectively. Standard deviations
of the MC data fall within the symbol size.
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obtained by fitting MC data for the pressure of linear tangent hard-sphere chains
of length m = 3 to 15 [133, 134, 136]. For completeness, all MC data used in the
regression is presented in tabular form in the supplementary material of Ref. [121].
For the values of b3 = −0.317719 and c3 = 3.48016 we found the best fit, with an
average relative deviation per data-point of 2.2% (compared to 6.7% for the original
LH EoS). Accordingly, the b3 and c3 parameters can be written as

b3 = 3.49695− 3.81467χR (3.15)
c3 = 4.83207− 1.35191χR (3.16)

Although the assumption of linearity is ad hoc, we show in Fig. 3.2 that it suf-
ficiently accounts for the effect of molecular rigidity on the packing fraction of a
chain fluid at fixed pressure. An interesting result that can be extracted from the
MC data is the inversion of the relationship between the pressure and the rigidity
parameter at increased densities, i.e. for low densities the pressure of a rigid, linear
chain fluid (χR = 1) is higher than that of a fully flexible chain fluid (as can be
expected from the pair-excluded volume/second virial coefficient) and for high den-
sities the pressure of a rigid, linear chain fluid is lower than that of a fully flexible
chain fluid. Apparently, at high density, linear chains pack better than their fully
flexible counterparts. The nature of this effect must be due to complex higher-body
interactions between the molecules in the fluid. We note that Phan et al. [137] al-
ready predicted this effect using a slightly modified version of the TPT2 equation
of state of Wertheim [60]. However, they suspected it was an artefact of the theory
and not intrinsic to the system, which we hereby clarify. The TPT2 of Phan et al.
also lends itself for an extension to partially flexible chain fluids (see Appendix B
for details). Results for this TPT2-implementation are also included in Fig. 3.2. Al-
though these results do not show any inversion of the rigidity-pressure relationship,
at higher pressure an inversion does occur (not included for brevity).
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Figure 3.2: The effect of molecular rigidity on the packing fraction of a system of 8-mR chain molecules
at a dimensionless pressure (a) P ∗ = PVm/kT = 0.3 and (b) P ∗ = PVm/kT = 2.6, respectively.
Closed symbols are results obtained from NPT MC simulations. Open symbols are results obtained
from the equation of state developed in this chapter (circle) and TPT2 (square). The lines connecting
these symbols are a guide for the eye. Results obtained from the original LH EoS are also included
(dash-dotted line).

3.4 Results
3.4.1. Pure components
In Figs. 3.3 and 3.4 we compare predictions from the EoS developed in this chapter
to the results from NPT MC simulations for the dimensionless pressure of linear
and partially flexible tangent hard-sphere chain fluids [136], respectively. For com-
parison, the pressure as obtained from the original LH EoS is also included. For all
systems considered, the new EoS shows a clear improvement in predicting the MC
data.

A more thorough assessment of the EoS is presented in Tables 3.1 and 3.2. Here
we show the percentage average absolute deviation (AAD) of the EoS with respect
to NPT MC data [133, 134, 136] of the dimensionless pressure for a range of dif-
ferent linear and partially flexible tangent hard-sphere chain fluids, respectively.
All MC data used for the comparison is presented in tabular form in the supple-
mentary material of Ref. [121]. The results are compared to those obtained from
TPT1 [63], TPT2 [137], generalized Flory-dimer theory (GFD) [123], the SPT of
Jaffer et al. [104] and the original LH EoS [128]. The model inputs for SPT (sec-
ond virial coefficient) and GFD (exclusion volume, i.e. pair-excluded volume of a
hard-sphere and chain molecule) were accurately obtained from Eq. (3.13) and the
correlation for the pair-excluded volume from Chapter 2, respectively. The appli-
cation of TPT2 to partially flexible chain fluids is based on its recursive form as
was developed by Phan et al. [137]. This EoS is summarized in Appendix B. In
summary, TPT2, GFD theory and SPT are applied explicitly accounting for the
partial flexibility of the molecular model used in this study.

Both for linear (AAD = 2.49%) and partially flexible (AAD = 1.99%) chain
fluids, the EoS developed in this chapter provides the most reliable description of
the MC data. Obviously, the description of the trimer system (and to some ex-
tent the 4-mer system) is somewhat less accurate since through the fitting to chains
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Table 3.1: The percentage average absolute deviation (AAD) of the dimensionless pressure of linear
m-mers as predicted from TPT1, TPT2, SPT, GFD, LH and the equation of state developed in this
chapter with respect to MC data [133, 134, 136, 138]. The numerical (MC) data used to calculate the
AAD is listed in the supplementary material of Ref. [121].

AAD / [%]

m η-range # data points TPT1 TPT2 SPT GFD LH This work

3 0.05-0.45 12 0.76 1.29 2.48 0.81 1.28 3.17
4 0.10-0.43 30 5.14 2.85 2.77 5.25 3.87 3.28
5 0.10-0.35 16 6.02 5.32 2.23 6.19 4.22 2.08
6 0.14-0.32 24 8.80 8.48 3.85 9.00 6.26 2.04
7 0.18-0.29 30 10.98 11.20 4.67 11.22 6.92 2.52
8 0.13-0.26 27 9.29 10.07 3.94 9.40 6.05 2.47
9 0.15-0.23 30 12.48 13.46 5.22 12.65 6.50 3.48
10 0.12-0.21 19 12.11 13.29 4.79 12.21 5.18 3.50
11 0.07-0.19 35 10.39 11.62 3.79 10.33 4.50 2.97
12 0.13-0.18 39 9.89 11.23 2.76 9.79 2.95 2.38
13 0.11-0.17 36 9.36 10.69 2.56 9.18 3.57 2.33
14 0.07-0.16 36 8.27 9.54 1.68 8.00 5.38 1.70
15 0.09-0.15 39 8.95 10.26 1.78 8.65 5.43 1.98
20 0.04-0.11 19 6.21 7.02 1.11 5.51 13.06 1.03

AAD / [%] 8.47 9.02 3.12 8.44 5.37 2.49

Table 3.2: The percentage average absolute deviation (AAD) of the dimensionless pressure of partially
flexible m-mR chains as predicted from TPT1, TPT2, SPT, GFD, LH and the equation of state
developed in this chapter with respect to MC data [136]. The numerical (MC) data used to calculate
the AAD is listed in the supplementary material of Ref. [121].

AAD / [%]

m-mR χR η-range # data points TPT1 TPT2 SPT GFD LH This work
7-6 0.80 0.29-0.37 11 15.08 12.14 5.66 14.55 11.97 3.83
8-7 0.83 0.17-0.32 18 10.62 9.60 3.22 10.25 6.98 1.93
8-6 0.67 0.17-0.37 16 8.50 6.32 5.27 7.43 5.27 2.20
10-8 0.75 0.16-0.28 11 9.06 8.27 3.95 8.24 4.57 1.15
10-6 0.50 0.16-0.35 10 6.09 4.09 13.06 4.22 1.92 3.13
14-13 0.92 0.09-0.17 9 7.72 8.35 2.10 7.14 5.27 1.64
14-12 0.83 0.14-0.19 4 9.09 9.28 2.54 8.30 2.33 1.46
14-10 0.67 0.14-0.25 12 11.12 10.08 6.32 9.68 4.58 1.81
15-14 0.92 0.07-0.16 10 7.52 8.10 1.69 6.88 6.69 1.50
15-13 0.85 0.07-0.18 13 7.97 8.05 2.80 7.06 5.57 1.33
15-12 0.77 0.14-0.21 12 10.27 10.01 3.71 9.18 3.00 1.90

AAD / [%] 9.37 8.57 4.58 8.45 5.28 1.99
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Figure 3.3: The dimensionless pressure P ∗ = PVm/kT vs packing fraction η for a system of (a) linear
6-mers, (b) linear 8-mers, (c) linear 14-mers and (d) linear 20-mers. The solid line corresponds to the
equation of state developed in this chapter, the dotted line to the original EoS of Liu and Hu [128] and
the symbols to MC data obtained by us (linear 6-mer) and from Ref. [136]. The figures in the insets
show the percentage absolute deviation (AD) of the equations of state with respect to the MC data.

with segment numbers greater than 3 we effectively included the effect of corre-
lations between segments separated for more than two bonds in the a3-, b3- and
c3-parameters of the next-to-nearest neighbour CCF (Eq. 3.7), whereas the LH
model was parametrized to trimer fluids. For systems of dimers and hard spheres,
the EoS in this chapter reduces to the Tildesley-Street and Carnahan-Starling equa-
tion, respectively. Thereby, an accurate description of these systems is maintained.

3.4.2. Mixtures
In Fig. 3.5, we compare predictions from the EoS developed in this chapter to the
results from NPT MC simulations for the dimensionless pressure of several mixtures
of linear and fully flexible tangent hard-sphere chain fluids. For comparison, the
pressure as obtained from the original LH EoS is also included. For all systems
considered, the new EoS shows an improvement in predicting the MC data. A
more extensive comparison to the results obtained from TPT1, GFD, SPT and
the LH EoS is presented in Table 3.3. To describe a mixture with GFD, we used
the one-fluid theory as was derived in Section II D of Ref. [139]. Accordingly,
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Figure 3.4: The dimensionless pressure P ∗ = PVm/kT vs packing fraction η for a system of partially
flexible (a) 8-7 chains, (b) 10-8 chains, (c) 14-10 chains and (d) 15-13 chains. The solid line corresponds
to the equation of state developed in this chapter, the dotted line to the original EoS of Liu and Hu [128]
and the symbols to MC data of Oyarzún et al. [136]. The figures in the insets show the percentage
absolute deviation (AD) of the equations of state with respect to the MC data.

the exclusion volume of the mixture was calculated using the average chain-length
of the mixture m̃ =

∑
i ximi. For SPT, we used the SPT of Jaffer et al. [104],

where the second virial coefficient of the mixture was obtained from the mixture
version of Eq. (3.13) (see Chapter 2 for details). To extend the treatment of Jaffer
to mixtures, we calculated the required molecular volume and -surface area by a
simple mole fraction weighted sum over the respective pure-component quantities.
For all systems considered, the EoS developed in this chapter leads to the most
accurate prediction of the MC data.

Let us now shift our analysis to the second virial coefficient. From statisti-
cal mechanics (graph/cluster theory [45]) we know that, under the assumption of
pairwise-additive interactions, the second virial coefficient of a mixture is defined as
a mole-fraction-weighted sum of the second virial coefficients of the individual pair
interactions over all possible pair interactions, according to

B̄2 =

NC∑
i

NC∑
j

xixjB2,ij (3.17)
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Figure 3.5: The dimensionless pressure P ∗ = PVm/kT vs packing fraction η for a binary mixture of
(a) linear 8-mers and hard spheres at xhs = 0.5, (b) linear 8-mers and hard spheres at xhs = 0.1, (c)
equimolar linear 8-mers and linear 5-mers and (d) equimolar linear 8-mers and fully flexible 8-mers. The
solid line corresponds to the equation of state developed in this chapter, the dotted line to the original
EoS of Liu and Hu [128] and the symbols to MC data obtained in this study. The figures in the insets
show the percentage absolute deviation (AD) of the equations of state with respect to the MC data.
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Table 3.3: The percentage average absolute deviation (AAD) of the dimensionless pressure of some
mixtures of tangent hard-sphere chains of variable degree of flexibility as predicted from TPT1, SPT,
GFD, LH and the equation of state developed in this chapter with respect to MC data. The numerical
(MC) data used to calculate the AAD is listed in the supplementary material of Ref. [121]. Approximately
25 data points per system were included.

AAD / [%]

m1-mR,1 m2-mR,2 x1 η-range TPT1 SPT GFD LH This work
8-8 1-1 0.50 0.10-0.26 3.94 17.42 3.96 2.96 1.44
8-8 1-1 0.90 0.10-0.26 7.07 4.69 7.10 4.60 1.60
8-8 5-5 0.50 0.07-0.28 6.29 2.88 6.36 4.44 1.82
8-6 1-1 0.50 0.06-0.26 2.88 20.14 2.58 2.48 1.89
8-6 1-1 0.90 0.10-0.27 4.30 11.22 3.42 2.45 2.15
8-6 5-5 0.50 0.07-0.27 3.57 6.27 3.14 2.62 2.17
8-2 8-8 0.50 0.05-0.27 6.46 8.88 4.80 2.01 0.82

AAD / [%] 4.93 10.21 4.48 3.08 1.70

Table 3.4: Comparison of the second virial coefficient of some mixtures of tangent hard-sphere chain
fluids as obtained from TPT1, the mixture version of Eq. (3.13) [88]/SPT, GFD, the LH EoS, the EoS
obtained in this chapter and MC (MC) simulations. The MC data was obtained using a MC integration
method similar to that from Ref. [88]. Standard deviations of the MC data are less than 1%.

B̄2

m1-mR,1 m2-mR,2 x1 TPT1 SPT GFD LH This work MC
20-11 30-30 0.4 565.0 500.5 544.6 315.5 496.2 496.0
20-11 30-30 0.8 408.9 333.3 390.5 234.1 328.8 329.6
20-11 2-2 0.4 78.5 64.6 76.2 52.2 63.2 64.0
20-11 2-2 0.8 232.7 180.9 222.8 139.2 178.3 179.7

For the EoS developed in this chapter, the second virial coefficient of the individual
pair interactions can be obtained as

B2,ij = (π/6)σ3mimj

[
1 +

mj − 1

mj
a2 +

mj − 1

mj

mj − 2

mj
a3

]
(3.18)

Apparently, the equation of state predicts asymmetric cross-virial coefficients, i.e.
B2,ij 6= B2,ji. Although this predicted asymmetry is fundamentally wrong, it is a
common artefact of theories of this type (it can be shown that TPT1 and TPT2
suffer from the same problem). As shown by the results for B̄2 in Table 3.4, the errors
in the individual cross-virial coefficients (due to the fact that B2,ij 6= B2,ji) cancel
to large extend when used in Eq. (3.17). For all systems considered in Table 3.4, the
EoS compares accurately (to within 1.4%) to the MC data and shows much better
results than those obtained from TPT1 and GFD. For second virial coefficients, the
results obtained from SPT are of similar quality. The reason is that for SPT we
could directly use the second virial coefficient obtained from the mixture version of
Eq. (3.13) as an input. As shown in the previous chapter of this thesis, the mixture
version of Eq. (3.13) is very accurate, therefore this result is not surprising.
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3.5 Conclusion
We developed an extension of the EoS of Liu and Hu [128] to linear- and partially
flexible tangent hard-sphere chain fluids. The partial flexibility is introduced by the
rod-coil model as defined in Sec. 2.2. The effect of flexibility on the phase behaviour
is described by the pure-component ’rigidity’ parameter from Eq. (2.1), which is
introduced in the theory at the level of the cavity correlation function. For both,
pure component systems and mixtures of chains of variable degree of flexibility,
theoretical predictions for the pressure and second virial coefficient were compared
to the results from MC simulations obtained by us and from literature. Compared
to other theories, i.e. TPT1, TPT2, generalized Flory-dimer theory (GFD), scaled
particle theory (SPT) and the original EoS of Liu and Hu, the theory developed in
this chapter results in a significantly improved description of the MC data.





4
The isotropic-nematic phase transition of tangent
hard-sphere chain fluids—Pure components

In this chapter, we extend Onsager’s second virial theory to partially flexible (rod-coil)
tangent hard-sphere chain fluids. The effect of chain-flexibility on the second virial
coefficient is described by the analytical approximation for the orientation-dependent
pair-excluded volume from Chapter 2. To approximate the effect of higher virial co-
efficients we evaluate the Vega-Lago rescaling and Scaled Particle Theory (SPT). The
resulting theory allows for an analytical description of the effects of intramolecular flex-
ibility on the isotropic-nematic transition. Based on the Onsager-Trial-Function (OTF)
approximation, the theory is reformulated to analytical form in terms of a single varia-
tional parameter to describe orientational ordering. By using appropriate expansions in
this parameter, the theory is simplified further, resulting in a closed algebraic descrip-
tion of the orientational state of the system. For linear chain fluids, the approximate
algebraic form of the Helmholtz energy is shown to lead to results of comparable ac-
curacy as the full numerical theory. We find that the the approximate theory loses its
validity for chains of increased flexibility. Theoretical results for the equation of state
and nematic order parameter are compared extensively to results from MC simulations.
For linear chains, accurate comparison is obtained down to a chain length m of ∼9. For
rod-coil fluids of reasonable rigidity, a quantitative comparison between theory and MC
simulations is obtained. For more flexible chains, however, both the Vega-Lago rescaling
and SPT lead to a small underestimation of the location of the phase transition.

Parts of this chapter have been published as:
T. van Westen, B. Oyarzún, T.J.H. Vlugt and J. Gross J. Chem. Phys. 139 (2013) 034505 [140].
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4.1 Introduction

As already pointed out by Onsager in the early 1940’s, a key attribute for the for-
mation of a liquid crystalline phase is anisotropy in the shape of the molecular
hard cores [9, 109]. For a system of hard rods, Onsager showed that the orienta-
tional ordering transition is completely entropically driven. While at low density
the orientational entropy dominates, forcing the molecules in an isotropic (ran-
domly orientated) state, at higher densities there is a compensating configurational
entropy/free volume that can be gained by aligning the molecules to minimize the
excluded volume. Onsager’s formalism can be generalized to many different types
of hard anisotropic molecules [18], and, as shown by Bolhuis and Frenkel [94], it be-
comes exact in the low density limit (i.e. for molecules of infinite shape anisotropy).
Typical model systems that have been studied in this respect, are hard discs [95, 96],
-rods [141], -cut spheres [142, 143], -spherocylinders [94, 144], -ellipsoids [97, 98], -
Gaussian overlap particles [145] and hard-sphere chains [92, 93, 103, 136, 146].

As discussed previously in this thesis, most real LC molecules are not completely
rigid but possess a certain degree of intramolecular flexibility. As this flexibility is
known to have a profound effect of the stability of nematic phases, it is desirable
to include its effects into a theoretical description of the isotropic-nematic phase
transition. In the present chapter, therefore, we extend Onsager’s theory to partially
flexible (rod-coil) molecules using the decoupling of the conformational distribution
function that was proposed in Chapter 2. The method renders a theory of similar
form as that of Fynewever and Yethiraj [103], with the important difference that we
obtain the required ensemble average of the pair-excluded volume from an analytical
approximation (from Chapter 2) instead of MC simulations of two chain molecules.
Consequently, the resulting theory is computationally much more efficient, without
compromising its accuracy. A key result of this approach is that the flexibility of a
molecule is treated analytically and can be described by the pure-component rigidity
parameter from Eq. (2.1). In the spirit of a molecular perturbation theory for liquid
crystalline fluids, this result is appealing since intramolecular flexibility can with
this approach be treated at the stage of the purely repulsive reference fluid.

Central to the EoS developed in this chapter is the use of the Onsager Trial
Function (OTF) to characterize the orientational distribution function (ODF). The
use of the OTF is convenient since it allows for an analytical description of the
orientational state of the system. Moreover, for the specific case of a system of hard
spherocylinders, it was recently shown that the use of the OTF leads to an almost
identical description of the nematic ordering compared to the use of a full numerical
solution of the ODF [18]. We show this observation also holds for our case.

This chapter is organized as follows. In Section 4.2, Onsager’s second virial
theory is extended to partially flexible chain molecules. In addition, the Vega-Lago
approach and SPT are discussed. Using the OTF approximation, the Helmholtz
energy functional is rewritten to analytical form, involving a closed description of
the orientational state of the system. In Section 4.3, theoretical predictions for the
equation of state and nematic order parameter are extensively compared to MC
simulations. We summarize our findings in Section 4.4.
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4.2 Theory
Let us define the configuration r̃rr of a molecule by the position vector rrr of its center
of mass together with the molecule’s conformation ω̃ωω. The latter is defined as the
set of all bond- and torsion angles ωωω′ of the molecule and the orientation ωωω of the
overall molecular axis with respect to some fixed reference frame. Analogous to the
definition from Chapter 2, the molecular axis is defined as the axis around which
the molecule has the smallest moment of inertia. The probability density, or single-
molecule density [54], to find any molecule in a configuration r̃rr is denoted by ρ(r̃rr),
which is normalized as ∫

ρ(r̃rr)dr̃rr = N (4.1)

Here, N is the number of molecules.

4.2.1. Ideal part of the Helmholtz energy
According to the general graphical and functional formalism developed by Chandler
and Pratt [147, 148], the ideal part of the Helmholtz energy of an inhomogeneous
canonical system of N nonrigid chain molecules can be written as a functional of
ρ(r̃rr):

βAid[ρ(r̃rr)] =

∫
V

ρ(r̃rr)
[
ln
(
ρ(r̃rr)Λ3

)
− 1 + βΦintra(r̃rr)

]
dr̃rr (4.2)

Here, β−1 = kT is the product of the Boltzmann constant k and the absolute
temperature T , Λ is the thermal De Broglie wavelength and Φintra(r̃rr) is the total
intramolecular potential energy, containing all bonding and flexibility constraints.
For the molecular model considered here, the bond length is fixed; therefore the
functional dependence of Φintra can be reduced to ωωω′. Furthermore, since we are
concerned with describing nematic phases, the single-molecule density can be fac-
torized into a uniform number density ρ = N/V and a conformational distribution
function f(ω̃ωω) as ρ(r̃rr) = ρf(ω̃ωω). Consequently, all positional dependence of Eq. (4.2)
can be averaged out and the ideal part of the Helmholtz energy becomes

βAid[f(ω̃ωω)]

N
= ln

(
ρΛ3

)
− 1 +

∫
f(ω̃ωω) [ln (f(ω̃ωω)) + βΦintra(ωωω′)] dω̃ωω (4.3)

Since a theory formulated in terms of the conformational distribution function of
a chain molecule in a condensed fluid is of considerable complexity, some approxi-
mations are required to transform this result into a practical functional for nematic
fluids. In this, we follow the same approach as in Chapter 2 and assume a molecule’s
internal conformational- (ωωω′) and orientational (ωωω) degrees of freedom can be de-
coupled

f(ω̃ωω) ≈ f(ωωω′)f(ωωω) (4.4)

We note that this assumption is not in accordance with the increase of the end-to-
end length of a molecule that is generally observed in molecular simulation studies
of the isotropic-nematic phase transition [92, 99, 136]. However, it is analogous
to that underlying many accurate theories for isotropic fluids (e.g. SAFT [63], PC-
SAFT [72]) where a similar increase in the end-to-end length for vapour-liquid phase
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transitions [112] is neglected. Substituting Eq. (4.4) in Eq. (4.3), all ωωω′-dependence
can be averaged out to two temperature dependent terms. By generalizing the def-
inition of the De Broglie wavelength (denoted by Λ′), these temperature dependent
terms can be considered in the isotropic part of the ideal Helmholtz energy. Accord-
ingly, the ideal Helmholtz energy contribution of a nematic fluid of nonrigid tangent
hard-sphere chain molecules can be put in a simple Onsager-like form, as

βAid[f(ωωω)]

N
= ln

(
ρΛ′3

Ω

)
− 1 +

∫
f(ωωω) ln (Ωf(ωωω)) dωωω (4.5)

where Ω =
∫
dωωω = 4π is the usual normalization constant. The isotropic- and

anisotropic contribution to the ideal Helmholtz energy are given by, respectively

βAid
iso

N
= ln

(
ρΛ′3

Ω

)
− 1 (4.6)

βAid
aniso[f(ωωω)]

N
=

∫
f(ωωω) ln (Ωf(ωωω)) dωωω (4.7)

For an isotropic distribution of molecular orientations, fiso(ωωω) = 1/Ω, and thus the
anisotropic part is zero. For partial orientational order, the anisotropic contribution
becomes larger than zero, corresponding to a decrease in orientational entropy.

4.2.2. Residual part of the Helmholtz energy
To describe the residual Helmholtz energy, let us write a virial expansion in the
homogeneous number density ρ

Ares[f(ω̃ωω)]

NkT
= B2[f(ω̃ωω)]ρ+

1

2
B3[f(ω̃ωω)]ρ2 + . . . (4.8)

Analogous to Chapter 2, we treat the second virial coefficient of a non-rigid chain
molecule based on the decoupling from Eq. (4.4). As a result, the second virial
coefficient can be calculated from Eq. (2.9), which is repeated here for clarity

B2[f(ωωω] =
1

2

∫∫
〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′1,ωωω′2 f(ωωω1)f(ωωω2)dωωω1dωωω2 (4.9)

In Chapter 2, we obtained the resulting ensemble average 〈. . .〉 of the pair-excluded
volume from MC simulations of two chain molecules. Due to the averaging, the
ensemble average maintains a dependence on the angle γ between the molecular
axes only

〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′1,ωωω′2 = Vex(γ) (4.10)

In Chapter 2, Vex(γ) was calculated for a wide range of different rod-coil molecules.
The following analytical approximation was developed by correlating the MC sim-
ulation results:

V ∗ex(γ) =
Vex(γ)

Vm
= C1(m,χR) + C2(m,χR) sin(γ) + C3(m,χR) sin2(γ) (4.11)
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Here, Vm = (π/6)mσ3 is the molecular volume of a chain of m tangent hard spheres
of diameter σ. For the functional form of the coefficients C1, C2 and C3, the reader
is referred to Chapter 2.

To describe the higher order terms in the virial expansion from Eq. (4.8), two
different approximate methods are evaluated; namely, the Vega-Lago rescaling [52],
and Scaled Particle Theory (SPT) [16, 53, 149–153]. The approach of Vega and
Lago is based on a clever rescaling of the higher virial coefficients to those of the
isotropic fluid of the system being described, with

Bn[f(ω̃ωω)] ≈ Bn,iso
B2[f(ω̃ωω)]

B2,iso
(4.12)

Although the rescaling of virial coefficients might seem ad hoc in nature, it has a
sound statistical mechanical basis in the form of the decoupling approximation [49–
51, 144], which is briefly discussed in Appendix C. Resumming the virial expansion
from Eq. (4.8), and using Eq. (4.9) to approximate the second virial coefficient, one
obtains the following results for the residual Helmholtz energy and compressibility
factor Z = PV/NkT , respectively

βAres[f(ωωω)]

N
=
βAres

iso

N

B2[f(ωωω)]

B2,iso
(4.13)

Z = 1 + Zres
iso

B2[f(ωωω)]

B2,iso
(4.14)

The second virial coefficient of the isotropic fluid is obtained by substituting fiso(ωωω) =
1/4π in Eqs. (4.9)-(4.11):

B2,iso = Vm

[
C1(m,χR)

2
+ π

C2(m,χR)

8
+
C3(m,χR)

3

]
(4.15)

Clearly, a major advantage of using the rescaling is that the conformation depen-
dence of the complete virial expansion is approximately considered in the second
virial coefficient. Since we describe the second virial coefficient using Eqs. (4.9)-
(4.11), the resulting expressions retain a functional dependence on the orientational
distribution function only. An Onsager-like theory for non-rigid chain molecules is
thereby obtained.

Furthermore, the rescaling allows for the use of an accurate EoS for the descrip-
tion of the isotropic fluid. For this purpose we evaluate both the LH EoS [128]
and the LHrc EoS. In Chapter 3 we have shown that, compared to the LH EoS,
the LHrc EoS leads to a more reliable description of the isotropic EoS of linear
and partially flexible (rod-coil) tangent hard-sphere chain fluids. It is interesting to
evaluate to what extend these improved results for the isotropic fluid are reflected in
the predicted isotropic-nematic phase equilibrium. In the remainder of this chapter,
Eqs. (4.5), (4.9)-(4.11) and (4.13)-(4.15) will be referred to as the Onsager Vega-Lago
(OVL) theory.

In contrast to the OVL theory, SPT cannot be derived directly from the virial
expansion. However, SPT shows the same features in that the higher virial terms
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are approximated by a non-linear dependence on density whereas the second virial
coefficient is treated explicitly. By combining the work of Cotter [16, 149, 150] and
Boublík [53, 151–153], Jaffer et al. [104] proposed a SPT that is directly applicable
to describe both the isotropic and nematic phase of tangent hard-sphere chain fluids.
The residual Helmholtz energy and compressibility factor obtained from this SPT
are given by, respectively

βAres

N
= (ψ − 1) ln(1− η) +

3aη

1− η
+

ψη

(1− η)2
(4.16)

Z =
1

1− η
+

3aη

(1− η)2
+

3ψη2

(1− η)3
− ψη3

(1− η)3
(4.17)

Here, η = ρVm is the packing fraction of the system. Using the definition of the
reduced second virial coefficient B∗2 = B2/Vm = ∂Z/∂η|η=0, the non-sphericity
parameter a can be written as

a =
B∗2 − 1

3
(4.18)

Since the non-sphericity parameter is expressed explicitly in the reduced second
virial coefficient, the SPT can be directly applied to nematic fluids through the use
of Eqs. (4.9)-(4.11). Please note that in related work, the non-sphericity parameter is
usually referred to as α. Since this symbol will be used as the variational parameter
for the Onsager Trial function (see next section) we have used the symbol a instead.
The reduced second virial coefficient in the isotropic phase can be calculated from
Eq. (4.15). The ψ-parameter in Eq. (4.16) is given by [104]

ψ =
σSm
9Vm

[
3a−

(
σSm
4Vm

)(
1− m− 1

4

)]
(4.19)

Here, Sm = πmσ2 is the surface area of a chain molecule. Eqs. (4.5), (4.9)-
(4.11), (4.15) and (4.16)-(4.19) will be referred to as SPT.

4.2.3. Solving the phase equilibrium
In principle, phase equilibrium is attained when two phases are in thermal, mechan-
ical and material equilibrium. The conditions for this are equality of temperature
(T ), pressure (P ) and chemical potential (µ), respectively. For the hard, purely re-
pulsive molecules considered here, however, temperature is an irrelevant parameter.
Consequently, for these systems the phase equilibrium can be solved by equating
the pressure P and chemical potential µ of both phases

P iso(ρiso) = P nem[feq(ωωω); ρnem] (4.20)

µiso(ρiso) = µnem[feq(ωωω); ρnem] (4.21)

The equilibrium orientational distribution function feq(ωωω) minimizes the total Helm-
holtz energy A = Aid +Ares and can be obtained by solving the following variational
equation (

δA[f(ωωω)]

δf(ωωω)

)
NV T,f(ωωω)=feq(ωωω)

= 0 (4.22)
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Subsequently, the pressure and chemical potential can be obtained from

P = −
(
∂A[feq(ωωω)]

∂V

)
NT

(4.23)

µ =

(
∂A[feq(ωωω)]

∂N

)
V T

(4.24)

Although, in principle, Eq. (4.22) can be solved numerically [154–159], a well chosen
trial function can make the solution more tractable without losing too much of the
numerical accuracy [18]. In this chapter, we use the hyperbolic trial function as
originally proposed by Onsager [9] (referred to as OTF) and consider the degree of
orientational order in a single parameter α:

f(ωωω) ≈ fOTF(θ) =
α cosh[α cos(θ)]

4π sinh(α)
(4.25)

Here, θ is the polar angle of a molecule’s axis with respect to the nematic director
(mean direction of all molecules). For an isotropic phase fOTF = 1/4π and thus
α = 0. For higher values of α, the OTF becomes sharply peaked at the parallel
orientations θ = 0 and θ = π, thereby modelling a nematic phase. As we will
show in detail in the following section, the use of the OTF allows the orientation-
dependent terms of the Helmholtz energy to be expressed as a function solely of α.
Accordingly, the variational problem from Eq. (4.22) can be transformed to a simpler
one-dimensional parameter optimization of the equilibrium degree of orientational
order αeq, as (

∂A(α)

∂α

)
NV T,α=αeq

= 0 (4.26)

A modified Newton method was used to solve this equation. The resulting α =
αeq determines the orientational distribution function f(ωωω) according to Eq. (4.25).
Once α = αeq is calculated, the nematic order parameter S2 can be obtained from

S2 =
1

2

〈
3 cos2(θ)− 1

〉
ωωω

(4.27)

= 1− 3 coth(α)

α
+

3

α2
(4.28)

The nematic order parameter varies between zero and unity for the isotropic and
perfect nematic phase, respectively. It is therefore a convenient measure of the
degree of orientational order in a system.

4.2.4. The Helmholtz energy functional in terms of the On-
sager Trial Function

In this section, the orientation-dependent parts of the Helmholtz energy functional
(Eqs. (4.7), (4.9)-(4.11), and (4.13)) are expressed in terms of the OTF (Eq. (4.25)).
Exact, analytical results in terms of the variational parameter α are presented. For
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a detailed derivation of the expressions, the reader is referred to the work of Franco-
Melgar et al. [18].

In the OTF approximation, the ideal contribution to the Helmholtz energy
(Eq. (4.7)) is obtained from the following expression

βAid
aniso

N
= ln[α coth(α)]− 1 +

arctan(sinh(α))

sinh(α)
(4.29)

The orientation-dependence of the residual contribution to the Helmholtz energy is
covered by the second virial coefficient (Eqs. (4.9)-(4.11)). For a nematic fluid, this
can be written as the following orientational average

B2[f(ωωω)] =
1

2
Vm

[
C1 + C2 〈sin(γ)〉ωωω1,ωωω2

+ C3

〈
sin2(γ)

〉
ωωω1,ωωω2

]
(4.30)

Note that for an isotropic distribution of molecular orientations, this reduces to
Eq. (4.15). If using the OTF to calculate the orientational averages, one obtains the
following results

〈sin(γ)〉ωωω1,ωωω2
=

πI2(2α)

2 sinh2(α)
(4.31)

〈
sin2(γ)

〉
ωωω1,ωωω2

=
1

sinh2(α)

{
sinh(2α)

[
2

α
+

6

α3

]
+

− cosh(2α)

[
5

α2
+

3

α4

]
− 1

α2
+

3

α4

}
(4.32)

Here, I2(2α) is a modified Bessel function of second order, which is defined by the
following general integral representation

I2j(2α) =
1

π

∫ π

u=0

exp(2α cosu) cos(2ju)du (4.33)

The Bessel function is solved by numerical integration. To obtain the equilibrium
degree of orientational ordering αeq from Eq. (4.26), the following derivatives are
required:(

∂
[
βAid

aniso/N
]

∂α

)
NV T

=
1

α
+

arctan[sinh(α)] cosh(α)

sinh2(α)
(4.34)

(
∂ 〈sin(γ)〉ωωω1,ωωω2

∂α

)
NV T

=
π

sinh2(α)

{
I2(2α)

[
α2 + 3

3α
− coth(α)

]
−α

3
I4(2α)

} (4.35)
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(
∂
〈
sin2(γ)

〉
ωωω1,ωωω2

∂α

)
NV T

=
2

sinh2(α)

{
cosh(2α)

(
2

α
+

11

α3
+

6

α5

)
− sinh(2α)

(
6

α2
+

12

α4

)
+

1

α3
− 6

α5

− coth(α)

[
sinh(2α)

(
2

α
+

6

α3

)
− cosh(2α)

(
5

α2
+

3

α4

)
− 1

α2
+

3

α4

]}
(4.36)

4.2.5. Approximate algebraic OVL theory for the nematic state
of rod-coil fluids

Inspired by the work of Franco-Melgar et al. [18], we now proceed by developing
an approximate, algebraic form of the OVL theory, involving a closed description
of the variational parameter α. The assumption underlying the approximate results
derived in this section is that for typical nematic phases α >> 1. Under this
assumption, the ideal contribution to the Helmholtz energy (Eq. (4.29)) can to a
very good approximation be written as [18]

βAid
aniso

N
≈ ln(α)− 1 (4.37)

To approximate the orientational average of the sin(γ)-kernel from Eq. (4.31), we can
write the modified Bessel function in terms of a truncated asymptotic expansion [18]

I2(2α) =
exp(2α)

2(πα)1/2

{
1− 15

16α
+

105

512α2
+

315

8192α3
+ . . .

}
≈ exp(2α)

2(πα)1/2

{
1− 15

16α
+O

(
α−2

)} (4.38)

Substitution of this result in Eq. (4.31), and using the fact that exp(2α)/ sinh(2α) ≈
2, gives the following approximate result

〈sin(γ)〉ωωω1,ωωω2
≈
(π
α

)1/2
{

1− 15

16α
+O(α−2)

}
(4.39)

To approximate the orientational average of the sin2(γ)-kernel, let us first use the
hyperbolic properties sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y) and cosh(x+
y) = cosh(x) cosh(y) + sinh(x) sinh(y) to rewrite the hyperbolic terms of Eq. (4.32)
as

sinh(2α)

sinh2(α)
= 2 coth(α)

cosh(2α)

sinh2(α)
= coth2(α) + 1

(4.40)
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For any reasonable value of α, the coth(. . . )-terms can be reduced to unity; therefore,
Eq. (4.32) can be simplified to the following approximate result〈

sin2(γ)
〉
ωωω1,ωωω2

≈ 4

α
− 10

α2
+

12

α3
− 6

α4

≈ 4

α
+O(α−2)

(4.41)

Substitution of these results in Eqs. (4.7), (4.13) and (4.30) leads to the following
approximate expression for the OVL Helmholtz energy of nematic rod-coil fluids

βA

N
≈ βAid

iso

N
+ ln(α)− 1 +G(η)

[
C1 + C2

(π
α

)1/2
{

1− 15

16α

}
+ C3

4

α

]
(4.42)

Here we have introduced the shorthand notation for the density-dependent scaling
factor G(η) = βAres

iso/2NB
∗
2,iso with B∗2,iso = B2,iso/Vm. To find the equilibrium

degree of orientational ordering based on this approximate expression for the Helm-
holtz energy, one has to solve the following equation(

∂βA/N

∂α

)
NV T

=
1

α
+G(η)

[
C2

√
π

(
45

32α5/2
− 1

2α3/2

)
− C3

4

α2

]
= 0 (4.43)

By making the substitution x = α1/2, this can be recast to the form of a cubic,
according to

1

x5

(
a0 + a1x+ a2x

2 + x3
)

= 0 (4.44)

where we have introduced the following orientation-independent terms

a0 =
45

32
G(η)C2

√
π

a1 = −4G(η)C3

a0 = −1

2
G(η)C2

√
π

(4.45)

Using the general solution of a cubic as derived by Nickalls [160], we find the following
result for the equilibrium degree of orientational ordering αeq

αeq =
1

9

{
a2 − 2

√
a2

2 − 3a1

cos

(
2jπ

3
+

1

3
arccos

−27[a0 − 1
3a1a2 + 2

27a
3
2]

2[a2
2 − 3a1]3/2

)}2 (4.46)

where j = 0, 1, 2 denotes each root. We found that αeq corresponds to the largest
root (j = 0) of this expression.

With this result an algebraic OVL theory for the nematic state of rod-coil fluids
is obtained. Due to the closed description of α, the resulting EoS is of similar
complexity as conventional equations of state for isotropic fluids.
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4.3 Results
In this section, theoretical results for the pressure, the nematic order parameter,
the density difference at the I-N transition, and the phase diagram are compared to
the results from isobaric-isothermal NPT MC simulations from Oyarzun et al. [136].
The effect of the chain length (m) and the rigidity parameter (χR) on the I-N phase
behaviour is systematically investigated.

4.3.1. Linear m-mers
First we assess the accuracy of the OVL theory in predicting the isotropic-nematic
phase equilibrium of linear chains. In Fig. 4.1, the equation of state of a system of
linear 7-, 11-, 15- and 20-mers as obtained from the OVL-LH theory and the OVL-
LHrc theory is compared to MC simulations. The results show a large sensitivity
of the OVL theory towards the EoS that is used for the isotropic phase. It is
rewarding to see that the relatively small improvement in the description of the
isotropic phase obtained from using the LHrc EoS results in a considerably more
accurate description of the isotropic-nematic phase equilibrium.

For the 7-mer system, some deviation between OVL-LHrc theory and simulations
is observed, pointing at limitations in the use of the rescaling of virial coefficients
from Eq. (4.12). For smaller chain lengths, the phase equilibrium is shifted to
higher packing fractions; therefore more error is introduced due to the approximate
treatment of the higher virial coefficients in Eq. (4.12). The observation that, for this
system, the OVL-LH theory results in a better prediction of the phase transition
pressure and nematic branch, is most likely caused by a fortuitous cancellation
of errors from the approximate rescaling of virial coefficients and the inaccurate
description of the isotropic EoS in Eq. (4.14). In fact, given that at equilibrium
the chemical potentials of both phases are equal, we can write the following for the
phase transition pressure

Ptrans = −anem − aiso

vnem − viso
(4.47)

Here, a and v are the molar Helmholtz energy and volume, respectively. Accordingly,
the observation that Ptrans is predicted correctly while the difference in coexistence
packing fractions (and thus molar volumes) is overestimated, can only be due to an
overestimation of the isotropic-nematic Helmholtz energy difference. Consistently,
the nematic order parameter obtained from the OVL-LH theory for this system (See
Fig. 4.2 (a)) is also overestimated.

In Fig. 4.2, we compare nematic order parameters for the same systems as in
Fig. 4.1. For the OVL-LHrc theory, the results show consistency with those obtained
for the equation of state in Fig. 4.1. For the linear 11-, 15- and 20-mer systems, the
theory is in excellent agreement with the MC data.

As indicated by the results from Fig. 4.3, where we compare predictions based
on the OTF and a full numerical solution of the orientational distribution function,
the small overestimation of the order parameter close to the phase equilibrium is
most probably an artefact of the use of the OTF. For the OVL-LH theory, the
seemingly accurate comparison with MC data for the order parameter of the linear
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Figure 4.1: The equation of state of a system of (a) linear 7-mers, (b) linear 11-mers, (c) linear 15-mers
and (d) linear 20-mers, as obtained from the OVL theory, using the LHrc (solid line) and LH (dotted
line) EoS as input. The dash-dotted line was calculated using the approximate, algebraic form of the
Helmholtz energy from Eqs. (4.42) and (4.46). Symbols correspond to MC simulations [136].
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Figure 4.2: The nematic order parameter S2 of a system of (a) linear 7-mers, (b) linear 11-mers, (c)
linear 15-mers and (d) linear 20-mers. Lines and symbols as in Fig. 4.1.
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Table 4.1: Comparison of theoretical results for the I-N transition of linear m-mers as obtained from the
full numerical solution of the OVL-LHrc theory from Sec. 4.2.4 (denoted as NUM) and the approximate
algebraic form of the OVL-LHrc theory from Sec. 4.2.5 (denoted as ALG). We show results for the
dimensionless pressure P ∗ = PVm/kT , the coexistence packing fractions ηI and ηN, the packing
fraction difference at the I-N transition ∆η, and the value of the variational parameter of the OTF α
and the nematic order parameter S2 at the phase transition.

m EoS P∗ = PVm/kT ηI ηN ∆η α S2

3 ALG - - - - - -
NUM 20.9669 0.5412 0.5509 0.0097 9.2045 0.7095

4 ALG - - - - - -
NUM 9.3619 0.4328 0.4484 0.0156 10.3390 0.7379

5 ALG 5.5727 0.3592 0.3771 0.0179 9.0227 0.7044
NUM 5.6151 0.3601 0.3795 0.0195 11.2167 0.7564

6 ALG 3.8748 0.3078 0.3269 0.0190 9.8102 0.7254
NUM 3.8973 0.3084 0.3303 0.0219 11.9224 0.7695

7 ALG 2.9306 0.2696 0.2909 0.0213 11.0463 0.7530
NUM 2.9443 0.2700 0.2933 0.0233 12.5054 0.7793

10 ALG 1.6513 0.1972 0.2205 0.0233 12.8023 0.7840
NUM 1.6567 0.1975 0.2220 0.0245 13.7806 0.7981

15 ALG 0.9372 0.1374 0.1596 0.0222 14.2726 0.8045
NUM 0.9395 0.1376 0.1605 0.0230 15.0515 0.8139

20 ALG 0.6504 0.1059 0.1260 0.0201 15.1050 0.8145
NUM 0.6517 0.1060 0.1268 0.0208 15.8092 0.8222

11-mer system (Fig. 4.2 (b)) is merely an effect of the overestimation of the nematic
coexistence packing fraction.

To evaluate the accuracy of the approximate algebraic form of the OVL theory
from Section 4.2.5, we compare results to those obtained from its full numerical
solution in Figs. 4.1 (a), 4.2 (a), and Table 4.1. Consistent with the findings of
Franco-Melgar et al. for hard spherocylinders [18], we find that for linear chain
fluids the algebraic form of the OVL theory is of comparable accuracy as the full
numerical theory. Differences start to arise for chain lengths 3 and 4, for which the
algebraic OVL theory shows no stable nematic phase.

It is important to note that in molecular simulation studies of linear tangent
hard-sphere chain fluids [138], no nematic phase is observed for chain lengths smaller
than 5. The reason is that for such short chains the isotropic-nematic phase equi-
librium is shifted to packing fractions beyond the isotropic-solid phase equilibrium.
The isotropic-nematic coexistence packing fractions obtained from the theory are
in accordance with these results. For example, for a linear 3- and 4-mer, the OVL-
LHrc theory predicts isotropic-nematic coexistence packing fractions of ηiso = 0.541
and ηnem = 0.551, and ηiso = 0.433 and ηnem = 0.448, respectively. These val-
ues are larger than the isotropic-solid coexistence packing fractions obtained from
molecular simulations [138], i.e. ηiso ≥ 0.430 and ηsolid ≤ 0.529 for a linear 3-mer,
and ηiso = 0.43 and ηsolid = 0.51 for a linear 4-mer. Since the theory presented in
this chapter does not include a description of the solid phase, no direct compari-
son between theory and molecular simulations can be made for the isotropic-solid
coexistence packing fractions.

In Figs. 4.4 and 4.5, we show the results obtained from SPT (dotted lines) for
the same systems as in Figs. 4.1 and 4.2. The results obtained from the OVL-LHrc
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theory (solid lines) are also included for comparison. The predicted equation of
state and nematic order parameter obtained from both theories are very similar.
As indicated by the results for the linear 7-mer system, SPT suffers from the same
shortcomings as the OVL theory and results in a less accurate description of the
phase transition for smaller chain lengths. A comparison of results obtained from
SPT and the OVL-LHrc theory to the MC simulations of Oyarzun et al. [136] (not
included for brevity) showed that both theories are accurate down to a chain length
of 9, resulting in an underestimation of the coexistence pressure, isotropic packing
fraction and nematic packing fraction of less than 7%, 5% and 1%, respectively.

In Figs. 4.6 (a) and (b), we show a plot of the relative density difference ∆η/ηiso

and the density difference ∆η at the I-N transition versus chain length m. We
include results obtained from the OVL-LHrc theory, SPT and MC simulations.
As is common with theories of this type, both OVL-LHrc and SPT result in an
overestimation of the density difference for small chain lengths. For larger chain
lengths, however, theoretical results are in excellent agreement with MC simulations.
For very large chain lengths, the coexistence densities obtained from SPT and OVL-
LHrc converge to the same constant values (corresponding to the Onsager limit) and
a constant relative density difference of approximately 34% is obtained.

As shown in Fig. 4.6 (b), both theory and simulations predict a maximum of
the isotropic-nematic density difference for a certain chain length m. For the po-
tential application of LCs as solvents in gas-absorption processes, this maximum
is interesting, since a larger density difference at the phase transition corresponds
to a larger solubility difference of small solutes. Since in absorption processes this
solubility difference is to be maximized, these results suggest the existence of a LC
solvent of optimal molecular length.

To finalize this part, we should stress that both, the density difference- and
nematic order parameter at the I-N transition (see Table 4.1) as obtained here
are significantly larger than those found experimentally for typical thermotropic
mesogens (∆η/ηiso ∼ 0.5%, S2,coex ∼ 0.5) [3, 161]. Certainly, the choice for a
purely repulsive molecular model does not put us in the position to make a true
comparison to such systems; however, even when coupled to a suitable framework
for describing the attractive interactions between mesogens, Onsager-type theories
based on a rigid molecular model generally result in an overestimation of these
properties [3, 15]. Clearly, a rigid molecular model is not a good representation
of real LCs, since chain-conformational changes are expected to have a large effect
on the phase behaviour. In the next section, we show that the incorporation of
molecular flexibility in the molecular model leads to more realistic values of phase
transition properties.
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Figure 4.3: The equation of state and nematic order parameter of a system of linear 7-mers as obtained
from OVL-TPT1 based on the OTF (solid line) and a full numerical solution of the orientational distri-
bution function [146] (dotted line) compared to MC simulations [136] (symbols). The MC simulations
were started either from an isotropic or a nematic initial configuration.
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Figure 4.4: The equation of state of a system of (a) linear 7-mers, (b) linear 11-mers, (c) linear 15-mers
and (d) linear 20-mers, as predicted from OVL-LHrc (solid line) and SPT (dotted line) compared to MC
simulations [136] (symbols). The MC simulations were started either from an isotropic or a nematic
initial configuration.
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Figure 4.5: The nematic order parameter S2 of a system of (a) linear 7-mers, (b) linear 11-mers, (c)
linear 15-mers and (d) linear 20-mers, as predicted from OVL-LHrc (solid line) and SPT (dotted line)
compared to MC simulations [136] (symbols). The MC simulations were started either from an isotropic
or a nematic initial configuration.
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Figure 4.6: The chain-length-dependence of the density difference ∆η at the isotropic-nematic phase
transition. Comparison between predictions obtained from OVL-LHrc (triangles), SPT (plus signs)
and MC simulations [136] (circles). The lines are a guide for the eye. The solid line corresponds to
OVL-LHrc; the dotted line corresponds to SPT.
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Figure 4.7: The equation of state of a system of (a) linear 15-mers, (b) 15-14 rod-coils, (c) 15-13
rod-coils and (d) 15-12 rod-coils, as predicted from the OVL-LHrc theory (solid line), the approximate
algebraic form of the OVL theory from Eqs. (4.42) and (4.46) (green dash-dotted line) and SPT (dotted
line), compared to MC simulations [136] (symbols). To check the effect of using the correlation from
Eq. (4.11) for the pair-excluded volume, the pair-excluded volume of the 15-12 rod-coil was calculated
from MC simulations (using the method from Chapter 2). A third order series in sin(γ) essentially gave
a perfect fit. The results obtained from OVL-LHrc based on this fit are included (blue dash-dotted line)
in (d). It is rewarding to see that both approaches practically yield the same results.

4.3.2. Rod-coil fluids
Given the results obtained in the previous section for linear m-mers, only SPT and
the OVL-LHrc theory are evaluated further for the description of rod-coil fluids.
The equation of state and nematic order parameter obtained from these theories are
compared to MC simulations in Figs. 4.7 and 4.8, respectively. The test systems
included are (a) a linear 15-mer, (b) a 15-14 rod-coil, (c) a 15-13 rod-coil, and (d) a
15-12 rod-coil. For all systems shown, the overall agreement of SPT and the OVL-
LHrc theory with MC simulations is satisfactory. Moreover, for the 15-13 rod-coil we
show that the approximate algebraic form of the OVL-LHrc theory is of comparable
accuracy as its full numerical solution. The general trends with molecular rigidity
are well captured. It can be clearly observed that for less rigid chains, the phase
transition is shifted to higher packing fractions. The reason is that the shape of
such molecules is less anisotropic. Accordingly, the difference of the orientational
average of the pair-excluded volume between an isotropic and nematic distribution
of molecular orientations (as obtained from Eq. (4.11)) is smaller, resulting in a
smaller driving force for the phase transition.
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Figure 4.8: The nematic order parameter S2 of a system of (a) linear 15-mers, (b) 15-14 rod-coils, (c)
15-13 rod-coils and (d) 15-12 rod-coils. Lines and symbols as in Fig. 4.7.

As can be observed in Figs. 4.7 and 4.8, both SPT and the OVL-LHrc theory
result in a small underestimation of the location (pressure and coexistence densities)
of the phase transition for more flexible chains. Part of the reason is that, due to the
increased flexibility of the molecules, the phase transition is shifted to higher packing
fraction and thus errors introduced by the approximate treatment of the higher virial
coefficients become apparent. As shown previously for linear m-mers, inaccuracies
of this kind result in an underestimation of the location of the phase transition.
Compared to linear chains, however, the underestimation seems to be more severe.
This could be due to several reasons. The first, and most probable reason is that the
approximate description of the higher virial coefficients becomes less accurate for
chains of increased flexibility. Second, it could be due to the introduction of small
inaccuracies through the use of the correlation for the pair-excluded volume from
Eq. (4.11). To test this hypothesis, we calculated the orientation-dependent pair-
excluded volume of a 15-12 rod-coil using the MC method from Chapter 2. A third
order series in sin(γ) (i.e. Vex(γ) =

∑4
i=1 Ci sini−1(γ), with C1 = 22.5871, C2 =

17.1903, C3 = 26.4334 and C4 = −16.3469) gave a nearly perfect fit. Calculations
of the OVL-LHrc theory based on this fit are included (dash-dotted line) in Fig. 4.7
(d). It is reassuring to see that the difference with the results obtained from using
Eq. (4.11) is very small. Moreover, the use of the fit leads to a slightly lower—not
higher—prediction of the location of phase transition. Finally, the reason could be
the decoupling of the conformational distribution function in Eq. (4.4). First of
all, the decoupling is in contradiction to the increase in end-to-end length at the
isotropic-nematic phase transition. Given the MC simulation results of Oyarzun et
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al. [136] (i.e. increase end-to-end-length < 2%), however, it is unlikely this effect
is significant here. Furthermore, the increase in end-to-end length has two opposite
effects on the driving force of the phase transition (a negative effect due to a decrease
in chain-conformational entropy and a positive effect due to an increase in shape
anisotropy of the molecules) which may just as well cancel each other out. The
second implication of the decoupling is of more fundamental nature. Essentially,
the decoupling comes down to modeling a (partially) flexible molecular model by a
cylindrically symmetric, rigid molecular model, the pair-excluded volume interaction
of which can be described by Eq. (4.10). It seems plausible that due to the averaging,
part of the destabilizing effect of molecular flexibility on the isotropic-nematic phase
transition is lost. Having that said, it seems reasonable to assume these effects
are minor for the relatively stiff chains shown in Figs. 4.7 and 4.8. In conclusion,
we expect the approximate treatment of the higher virial coefficients to cause the
deviations of theory to simulations in Figs. 4.7 and 4.8.

Let us now turn our attention to the effect of molecular flexibility on the phase
transition properties. In Fig. 4.9 we show the relative density difference ∆η/ηiso and
the total density difference ∆η at the I-N phase transition of a 15-mR rod-coil fluid
as function of the rigidity parameter χR. As for linear chain fluids, both SPT and the
OVL-LHrc theory result in an overestimation of the density difference as obtained
from MC simulations. Qualitative agreement is obtained, in that both theory and
simulation predict a decrease of the relative- and total density difference for chains
of increased flexibility. In contrary to the maximum of the total density difference
with chain length m (as was found for linear chains in Fig. 4.6 (b)), no maximum
with χR is obtained. Consistent with the results from Figs. 4.7-4.8, the approximate
algebraic form of the OVL-LHrc theory leads to comparable results as obtained from
its numerical solution, provided the chains are relatively stiff. For more flexible
chains (χR < 0.8), the algebraic theory starts to overestimate the numerical results.
As shown in Fig. 4.10, the nematic order parameter (and thus α) at I-N coexistence
decreases with increased flexibility of the chains. Since the approximate algebraic
theory was derived based on a truncated asymptotic expansion in α (Eq. (4.38)), it
loses its validity for these smaller values of α (and χR). As shown in Fig. 4.10, the
approximation quickly deteriorates for flexibilities of χR < 0.8.

It is interesting to see that, for χR < 0.3, the density difference as obtained
from the full numerical OVL theory and SPT approaches the values typically found
for real thermotropic nematogens (∼ 0.5%). We should stress that when using a
rigid molecular model, these results are simply unattainable (see Section 4.3.1).
Moreover, when describing a flexible molecular model with a Khoklov-Semenov-
type theory (where molecular flexibility is incorporated in the ideal contribution
instead of the residual contribution to the Helmholtz energy) [100–102, 162, 163],
larger density differences (∼ 2%) are obtained. These results suggest that in order
to arrive at a quantitative description of phase transition properties such as the
density difference at the I-N transition, the effect of molecular flexibility should
be incorporated in the (density-dependent) residual contribution to the Helmholtz
energy, as is done in the theory derived in this chapter.
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Figure 4.9: The variation of the density difference ∆η at the isotropic-nematic phase transition with
the rigidity parameter χR of a 15-mR rod-coil fluid. Comparison between predictions obtained from
the OVL-LHrc theory (solid line), the approximate algebraic form of the OVL-LHrc theory (dash-dotted
line) and SPT (dotted line) to MC simulations [136] (symbols).

Figure 4.10: The variation of the
isotropic-nematic coexistence value
of the nematic order parameter S2

with the rigidity parameter χR of a
15-mR rod-coil fluid. Comparison
between predictions obtained from
OVL-LHrc theory (solid line) and the
approximate algebraic form of the
OVL-LHrc theory (dash-dotted line).
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a 15-mR rod-coil fluid. Comparison
between predictions obtained from
OVL-LHrc (solid line), SPT (dotted
lines), and the SPT of Jiang and
Wu [108] to MC simulations (sym-
bols).
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In Fig. 4.11, we compare the phase diagram (in an η-χR representation) of a 15-
mR rod-coil fluid as obtained from SPT and OVL-LHrc theory to MC simulations.
Satisfactory agreement is obtained. Both SPT and the OVL-LHrc theory correctly
capture the general trends with respect to the rigidity parameter. An interesting
point is the fact that we find I-N coexistence for the full range of the rigidity pa-
rameter. In a comparable study of Jiang and Wu, who studied the same test system
using the SPT of Jaffer et al. [108] with a full numerical solution of the ODF, no
stable nematic phase was reported for χR ≤ 0.46. Their results are also included in
Fig. 4.11. We should stress that the only significant difference between the approach
of Jiang and Wu and the SPT employed in this work is the use of the OTF. One
might argue that if a solution is found based on the OTF, a numerical solution for
the ODF is bound to find a solution as well. Therefore the results of Jiang and
Wu raise some questions. The fact that Jiang and Wu relate their theoretical lower
limit of the rigidity parameter that supports a nematic phase to that of a certain
real rod-coil polymer system, does not support their case.

From a theoretical point of view, the fact that we find I-N coexistence over the
whole range of the rigidity parameter, raises some questions about the possibilities
for extending the theory developed as such to describe the global (isotropic, nematic,
smectic, solid) fluid phase behaviour of rod-coil chains of arbitrary flexibility. As we
have shown in a recent MC simulation study [136], rod-coil fluids of intermediate
flexibility (for example 14-10, 10-8 or 8-6 rod-coils) experience a direct transition
from the isotropic to a smectic phase. Although not reported in that paper, we
found this also holds true for a 15-10 rod-coil fluid. Given these results, it can
be expected that for intermediate values of the rigidity parameter, the theoretical
results found for the nematic phase of the 15-mR system are metastable with re-
spect to a smectic phase. Although it is possible to extent Onsager-like theories
to describe smectic phases [164], this is regarded beyond the scope of this work.
Also, no test for metastability is performed since the results from Ref. [136] are
inconclusive on the exact location of the isotropic-smectic transition. For a value
of the rigidity parameter equal (and probably close) to zero, no liquid crystalline
phase can be formed. Instead, the isotropic phase will experience a direct transition
to a solid phase [165]. Since the theory developed in this work does not include a
description of the solid phase, this behaviour is not covered. However, we can test
for metastability. Recently, Alavi and Feyzi [165] used Monte Carlo simulations to
calculate the isotropic-solid coexistence packing fractions of fully flexible m-mers.
For the 15-mer system, they found ηiso = 0.55 and ηsolid = 0.62. For the theories to
be consistent with these results, the predicted isotropic-nematic coexistence packing
fractions for χR = 0 shown in Fig. 4.9 should be larger. Unfortunately, this is not
the case. In fact, it can be shown (not included for brevity) that the isotropic-
nematic coexistence obtained from SPT and the OVL-LHrc theory is inconsistent
with the isotropic-solid coexistence from Ref. [165] for chain lengths down to 7 and
6, respectively.

From a practical point of view, it is important to note that even if the theory
developed here is extended to incorporate (anisotropic) attractive interactions be-
tween LC molecules (part B of this thesis), the upper limit for a nematic coexistence
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packing fraction as found for χR = 0 can only decrease in value. Depending on (1)
the nematic coexistence packing fraction of a real LC, and (2) the value of the chain
lengthm, this may lead to the prediction of IN coexistence, where a phase transition
does in fact not appear.

4.4 Conclusion
An extension of Onsager’s second virial theory is developed that analytically ac-
counts for the effect of intramolecular flexibility on the isotropic-nematic phase
behaviour. The effect of chain flexibility on the second virial coefficient is described
using the analytical approximation for the orientation-dependent pair-excluded vol-
ume from Chapter 2. To approximate higher order virial coefficients, both the
Vega-Lago rescaling and Scaled Particle Theory (SPT) were evaluated.

Theoretical results for the equation of state and nematic order parameter were
extensively tested against the results from MC simulations. For all systems con-
sidered, the results from the Vega-Lago rescaling and SPT are of similar accuracy.
For linear chains, we found that both theories compare accurately to the MC data
for chain lengths down to 9. For shorter chains, the isotropic-nematic transition
is shifted to such high density that errors introduced by the approximation of the
higher virial coefficients become apparent and, consequently, the pressure and den-
sity difference at the phase transition are under- and overestimated, respectively.
It is important to note that the results for the Vega-Lago approach were obtained
using an improved description of the isotropic EoS that was developed in Chapter 3.
This new EoS explicitly treats the effect of intramolecular flexibility. When using an
isotropic EoS for fully flexible chain fluids instead, the Vega-Lago approach was less
successful. Although for many purposes the isotropic phase behaviour of linear and
fully flexible chains can be assumed to be identical [53, 166], the results obtained in
this chapter show that there are differences that need to be captured to arrive at a
satisfactory description of the isotropic-nematic phase equilibrium.

For rod-coil fluids, a near-quantitative agreement between theory and simulation
data is obtained. The theoretical results correctly capture the general trends of
the phase behaviour with respect to the rigidity of the molecules. With increased
rigidity, the shape anisotropy of the molecules is increased, resulting in a shift of
the isotropic-nematic phase equilibrium to lower density. In addition, the (relative)
density difference at the phase transition grows for increasingly rigid chains. Our
results suggest that the approximate description of the higher virial coefficients that
results from the Vega-Lago rescaling and SPT becomes less accurate for chains of
increased flexibility.

Based on the Onsager Trial Function approximation, an approximate fully alge-
braic OVL theory for the description of the isotropic-nematic transition of rod-coil
fluids was derived. In this algebraic theory, a closed description of the variational
parameter of the OTF (and thus the nematic order parameter) as a function of
density and molecular architecture (chain length m and rigidity parameter χR) is
obtained. Although for linear m-mers, the results of the approximate theory are
almost indistinguishable form the full numerical solution of the OVL theory, for
partially flexible chain fluids we found the accuracy of the approximate theory to
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decrease fast with increased flexibility of the chains.
One important conclusion we can draw from the results shown in this chapter

is that the incorporation of flexibility into a molecular model for LCs is essential
if one requires a quantitative description of certain phase transition properties of
real thermotropic nematogens. While for this class of LCs the choice for a rigid
molecular model is known to lead to a significant overestimation of for example the
density difference and nematic order parameter at the isotropic-nematic transition,
our results show that by making the molecules partially flexible much more realistic
values for these properties can be obtained.

With regard to the application of LCs as solvents in gas-absorption processes,
the results in this chapter suggest that in order to maximize the density differ-
ence—and thus the solubility difference of small solutes—across the I-N transition,
the molecules of the LC solvent should preferably be linear and rigid. Moreover,
our results suggest the existence of an optimal chain length for linear LC solvents
of somewhere between 10 and 15 segments.





5
The isotropic-nematic and nematic-nematic phase tran-
sition of tangent hard-sphere chain fluids—Mixtures

In this chapter we develop an analytical EoS to describe the isotropic- (I) and nematic
(N) phase behaviour of linear- and partially flexible tangent hard-sphere chain fluids
and their mixtures. The EoS is an extension of the EoS for pure-component systems
that was presented in Chapter 4. Higher virial coefficients are calculated using a Vega-
Lago rescaling procedure, which is hereby generalized to mixtures. The EoS is used to
study (1) the effect of length bidispersity on the I-N and N-N phase behaviour of binary
mixtures of linear tangent hard-sphere chain fluids, (2) the effect of partial molecular
flexibility on the binary phase diagram and (3) the solubility of hard-sphere solutes in
I- and N tangent hard-sphere chain fluids. By changing the length bidispersity, two
types of phase diagrams were found. The first type is characterized by an I-N region
at low pressure and a N-N demixed region at higher pressure that starts from an I-
N-N triphase equilibrium. For the second type, the N-N region starts from a lower
critical point at a pressure above the I-N region. The results for the I-N region are in
excellent agreement with the results from molecular simulations. It is shown that the N-
N demixing is driven both by orientational and configurational/excluded volume entropy.
By making the chains partially flexible, it is shown that the driving force resulting from
the configurational entropy is reduced (due to a less anisotropic pair-excluded volume),
resulting in a shift of the N-N demixed region to higher pressure. Compared to linear
chains, no topological differences in the phase diagram were found. We show that the
solubility of hard-sphere solutes (as measured by the Henry’s law constant) decreases
across the I-N phase transition. Furthermore, it is shown that by using a LC mixture as
the solvent, the solubility difference can be maximized by tuning the composition.

Parts of this chapter have been published as:
T. van Westen, T.J.H. Vlugt and J. Gross J. Chem. Phys. 140 (2014) 034504 [33].
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5.1 Introduction
Mixtures of liquid crystals (LCs) with other LCs, polymers or non-LC additives
are commonly employed to tailor the properties of liquid crystalline materials for
specific tasks [3, 167]. Some examples are the addition of chiral dopants to achiral
LCs to induce supra-molecular chirality for LC displays [3, 168, 169], the mixing
of LCs to enhance the range of stability of a nematic phase [167], the mixing of
LCs and polymers for improved polymer processing [170] and the addition of LCs
to membranes for improved transport properties [170]. From a more fundamental
point of view, mixtures of LCs are interesting since mixing LCs of different molecular
architecture is known to produce very different phase behaviour compared to the
pure components [3, 171, 172].

The theoretical description of LCs dates back to the work of Onsager [9, 109].
In this seminal work, the isotropic-nematic (I-N) phase transition was explained as
a consequence of a competition between an orientational entropy, favouring the I
(isotropic, disordered) state, and a configurational entropy, favouring the N (ne-
matic, orientationally ordered) state. Although Onsager performed calculations for
pure components only, he argued that for mixtures of LCs of different length, the
longer molecules would preferentially partition in the N phase, leading to a frac-
tionation of components between the coexisting phases (fractionation effect). Since
then, different experimental studies have confirmed this hypothesis [173–175]. The
first theoretical confirmation is due to Flory and Abe [176], who studied a binary
mixture of rod-like polymers in the lattice approximation. Later, Lekkerkerker et
al. extended Onsager’s formalism to mixtures and confirmed his predictions from
a continuum fluid approach [157]. From that point, numerous theoretical [177–
185] and some molecular simulation [180, 186–188] studies have been performed
on the subject, showing interesting phase behaviour such as the fractionation ef-
fect [177, 179–186], demixing (N-N [178, 182, 183, 185, 187–189], I-I [179, 182, 190]
and smectic-smectic [181, 183]), re-entrant phenomena [177–179, 182, 185] and den-
sity inversion [189] (isotropic phase denser than LC phase). Many of these phenom-
ena have also been observed experimentally [175, 191–193].

In the present chapter, we study the I-N phase behaviour and N-N demixing be-
haviour of binary mixtures of tangent hard-sphere chain fluids within a Vega-Lago
rescaled Onsager theory [52]. We herewith extend our analysis on pure component
systems from Chapter 4. Due to the combined use of the analytical approximation
for the pair-excluded volume from Chapter 2 and the Onsager Trial Function (OTF)
for the orientational distribution function, an analytical EoS is obtained (Sec 5.2).
An algebraic form of the EoS (as presented in the previous chapter), however, could
not be derived. In particular, the analytical EoS is used to study the effect of chang-
ing the length ratio of two linear chains in a binary mixture (length bidispersity)
on the I-N and N-N phase behaviour (Sec 5.3.1). Furthermore, we investigate the
effect of making one component of the binary mixture partially flexible (Sec 5.3.2).
Finally, the solubility of hard spheres in linear and partially flexible tangent hard-
sphere chain solvents is studied (Sec 5.3.3). For a thorough assessment of the EoS,
we provide an extensive comparison to recent MC data for the binary phase diagram
and Henry coefficient of hard-sphere solutes in various (binary) systems of linear and
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partially flexible tangent hard-sphere chain fluids.

5.2 Theory
In the previous chapter, an Onsager-like Helmholtz energy functional was derived to
describe the isotropic-nematic ordering transition in pure component systems of tan-
gent hard-sphere chain molecules. The resulting Helmholtz energy functional could
be expressed in terms of an orientational distribution function only, leading to a uni-
fied description of linear and partially flexible (rod-coil) tangent hard-sphere chain
fluids. In this chapter, the developed formalism is extended to mixtures (Sec 5.2.1).
To avoid repetition, only the main points needed for the extension are discussed.
In Sec 5.2.2, details on the solution of the phase equilibrium are provided. Further-
more, in Sec 5.2.3 we use the Onsager Trial Function (OTF) approximation [9, 18]
to derive analytical results for the Helmholtz energy of the nematic fluid mixture in
terms of the variational parameters of the OTF.

5.2.1. Helmholtz energy functional
For a canonical, multicomponent mixture (of NC components) of tangent hard-
sphere chain molecules, the total reduced Helmholtz energy density can be written
as the sum of an ideal and residual contribution, according to

a[f(ωωω)] =
βA[f(ωωω)]

V
= aid[f(ωωω)] + ares[f(ωωω)] (5.1)

Here, β−1 = kT is the product of Boltzmann’s constant k with the absolute tem-
perature T , V is the volume of the system, and the vector ωωω is the orientation of
a molecule’s axis with respect to the director (average direction of all molecules in
a phase). The probability density to find any molecule of a component i in an ori-
entation ωωω is defined by the orientational distribution function (ODF) fi(ωωω), which
is normalized as

∫
fi(ωωω)dωωω = 1. We use the shorthand notation f(ωωω) to denote the

ODFs f1(ωωω), f2(ωωω), . . . , fNC (ωωω) of all NC components in the mixture.
The ideal contribution can be written as the sum of an isotropic part and an

anisotropic part (related to the orientational entropy) as

aid [f(ωωω)] = aid
iso + aid

aniso [f(ωωω)] (5.2)

where

aid
iso =

NC∑
i

ρi

[
ln

(
ρiΛ
′3
i

Ω

)
− 1

]
(5.3)

aid
aniso [f(ωωω)] =

NC∑
i

ρi

∫
fi(ωωω) ln [Ωfi(ωωω)] dωωω (5.4)

Here, ρi = Ni/V is the number density of molecules of component i, Λ′3i is a
generalized De Broglie volume (which for partially flexible molecules incorporates
a contribution due to the internal conformational degrees of freedom of a molecule
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cf. Chapter 4) and the factor Ω =
∫

dωωω = 4π is a normalization constant which
ensures that the anisotropic part vanishes for an isotropic distribution of molecular
orientations (since fi,iso(ωωω) = 1/Ω = 1/4π).

Analogous to our treatment of pure-component systems(Chapter 4), the Vega-
Lago rescaling [52] is used to describe the residual contribution to the Helmholtz
energy. In this approach, the higher virial coefficients of the nematic fluid are
approximated by a mapping onto those of an isotropic fluid using a scaling of second
virial coefficients. Upon introducing a second virial coefficient of the mixture B̄2,
the Vega-Lago approach can be generalized to mixtures as

ares[f(ωωω)] = ares
iso

B̄2[f(ωωω)]

B̄2,iso
(5.5)

Differentiation with respect to density results in the compressibility factor Z =
βP/ρ, according to

Z = 1 + Zres
iso

B̄2[f(ωωω)]

B̄2,iso
(5.6)

For a more rigorous derivation of the above equations, the reader is referred to Ap-
pendix D. The residual Helmholtz energy and compressibility factor of the isotropic
fluid are obtained from the LHrc EoS (Chapter 4). The second virial coefficient of
the mixture is calculated from a mole-fraction-weighted sum over the second virial
coefficients of all possible pair interactions ij [45, 48]

B̄2[f(ωωω)] =

NC∑
i

NC∑
j

xixjB2,ij [fi(ωωω), fj(ωωω] (5.7)

The second virial coefficient of the pair interaction ij is calculated from the following
ensemble average

B2,ij [fi(ωωω), fj(ωωω)] =
1

2
〈Vex,ij(γ)〉ωωω1,ωωω2

(5.8)

For both linear and partially flexible chain molecules, the orientation-dependent
pair-excluded volume Vex,ij(γ) is obtained from the analytical approximation that
was developed in Chapter 2

V ∗ex,ij(γ) =
Vex,ij(γ)

Vm̄ij
= C1,ij(m̄ij , χ̄R,ij) + C2,ij(m̄ij , χ̄R,ij) sin(γ)

+ C3,ij(m̄ij , χ̄R,ij) sin2(γ)

(5.9)

where

m̄ij =
mi +mj

2
(5.10)

χ̄R,ij =
χR,i + χR,j

2
(5.11)

The isotropic second virial coefficient of the pair interaction ij follows from

B2,iso,ij = Vm̄ij

[
C1,ij(m̄ij , χ̄Rij)

2
+
πC2,ij(m̄ij , χ̄Rij)

8
+
C3,ij(m̄ij , χ̄R,ij)

3

]
(5.12)
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Eqs. (5.1)-(5.12) completely define our extension of the Onsager-Vega-Lago theory
to mixtures of linear and/or (partially) flexible tangent hard-sphere chain fluids.

5.2.2. Solving the phase equilibrium
For the hard, purely repulsive molecules considered in this chapter, the determina-
tion of phase equilibrium between two phases A and B follows from the equality
of pressure (P ) and chemical potential of each component i (µi) in the coexisting
phases

PA = PB (5.13)

µA
i = µB

i for i = 1, 2, . . . , NC (5.14)

In terms of the Helmholtz-energy density a = βA/V , these can be obtained as

βP = −a+

NC∑
i

ρi

(
∂a[feq(ωωω)]

∂ρi

)
Tρj 6=i

(5.15)

βµi =

(
∂a[feq(ωωω)]

∂ρi

)
Tρj 6=i

(5.16)

To calculate these quantities for a nematic phase, one first has to solve for the equi-
librium ODFs which minimize the total Helmholtz energy. Analogous to Chapter 4,
we choose the Onsager Trial Function (OTF) approach and assume the ODF of a
component i can be approximated as [9]

fi(ωωω) ≈ fOTF,i(θ) =
αi cosh[αi cos(θ)]

4π sinh(αi)
(5.17)

Here, αi is a variational parameter defining the degree of orientational order of a
component i. θ is the polar angle of a molecule’s axis with respect to the nematic
director. Due to the use of the OTF, the functional minimization can be reduced
to a simpler parameter minimization, and the equilibrium orientational state of
the system is obtained by simultaneously solving the following set of non-linear
equations for i = 1, 2, . . . , NC (

∂a(ααα)

∂αi

)
Tρ,ααα=αααeq

= 0 (5.18)

Here, ααα is a vector containing the αi of all NC components in the mixture. A
modified Newton-Raphson method [194] was used to solve this problem. The re-
sulting αααeq determine the equilibrium ODFs according to Eq. (5.17). Accordingly,
the (partial) nematic order parameter of a component i can be calculated from [9]

S2,i = 1− 3 coth(αi)

αi
+

3

α2
i

(5.19)
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We choose to calculate the total nematic order parameter of the mixture as a simple
mole-fraction-weighted sum of the partial nematic order parameters, according to

S2 =

NC∑
i

xiS2,i (5.20)

Both the partial- and total nematic order parameters vary conveniently between
zero and unity for an isotropic and perfectly ordered nematic phase, respectively.

5.2.3. Approximate analytical form of the Helmholtz energy
in terms of the Onsager Trial Function

In this section, the Onsager-Vega-Lago Helmholtz energy functional as derived in
Section 5.2.1 (Eqs. (5.1)-(5.5)) is evaluated in terms of the OTF (Eq. (5.17)). We
show that for an excluded volume interaction given by Eq. (5.9), analytical results
in terms of the variational parameters of the OTF can be obtained. By using
appropriate expansions in these parameters, the theoretical approach is very much
simplified. An algebraic theory with a closed description of the orientational ordering
(cf. Chapter 4), however, is not obtained.

Let us first be concerned with the ideal contribution to the Helmholtz energy.
Substituting the OTF in Eq. (5.4), followed by the substitution u = cos(θ) and
integration by parts leads to the following analytical result

aid
aniso =

NC∑
i

ρi

{
ln[αi coth(αi)]− 1 +

arctan(sinh(αi))

sinh(αi)

}
(5.21)

For large values of αi (say αi > 800), the hyperbolic terms in this equation become
too large to be naively computed on a regular computer; therefore, for αi > 125,
we approximate the above result to within the machine epsilon of a 64-bit double
precision (error< 2−53) as

aid
aniso =

NC∑
i

ρi {ln[αi]− 1} (5.22)

Clearly, the introduced error can be neglected. The derivative of the ideal Helmholtz
energy contribution with respect to αi, which is needed for solving Eq. (5.18), can
now be obtained as(

∂aid

∂αi

)
Tρ,αj 6=i

= ρi

{
1

αi
+

arctan[sinh(αi)] cosh(αi)

sinh2(αi)

}
(5.23)

For αi > 125, this is approximated as (error< 2−53)(
∂aid

∂αi

)
Tρ,αj 6=i

=
ρi
αi

(5.24)

Let us now focus on the residual Helmholtz energy contribution (Eq. (5.5)). To
evaluate this term, we need to solve the second virial coefficient (Eqs. (5.7)-(5.8))
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in terms of the variational parameters of the OTF. Using the excluded volume
expression from Eq. (5.9), the second virial coefficient of any two molecules 1 and 2
of type i and j, respectively, can be written as

B2,ij [fi(ωωω1), fj(ωωω2)] =
1

2
Vm̄ij

[
C1,ij + C2,ij 〈sin(γ)〉ij,ωωω1,ωωω2

+ C3,ij

〈
sin2(γ)

〉
ij,ωωω1,ωωω2

] (5.25)

Clearly, the evaluation of the orientational averages of the sin(γ)- and sin2(γ)-kernels
of the pair-excluded volume is of central importance for the calculation of the second
virial coefficient—and thus the residual Helmholtz energy—of the nematic fluid. In
terms of the OTF, these averages can be derived as

〈sin(γ)〉ij,ωωω1,ωωω2
=

1

2 sinh(αi) sinh(αj)

∫ π

γ=0

cosh
(√

α2
i + α2

j + 2αiαj cos(γ)
)

cos(γ)dγ

(5.26)〈
sin2(γ)

〉
ij,ωωω1,ωωω2

=
1

sinh(αi) sinh(αj)

∫ π

γ=0

cosh
(√

α2
i + α2

j + 2αiαj cos(γ)
)

cos(γ) sin(γ)dγ

(5.27)

For a detailed analysis on the derivation of these two integrals, the reader is re-
ferred to the comprehensive work of Franco-Melgar et al. [18, 195]. For brevity, this
derivation is here omitted. Although, in principle, both of the above integrals can
be evaluated numerically, it is much more attractive to use an analytical—albeit
approximate—solution instead. The reason for this is twofold. First, both integrals
are calculated inside a double iteration-loop for solving for the equilibrium orienta-
tional state of the system (Eq. (5.18)) and phase equilibrium (Eqs. (5.13)-(5.14)),
respectively. As a consequence, their computation (and that of the required numer-
ical derivatives) is intensive. Second, for systems with very high orientational order,
say αi > 800 (which can happen in the dense nematic phase), these terms become
too large to be naively computed on a regular computer. We devote the remainder
of this section to obtaining approximate solutions of Eqs. (5.26)-(5.27).

The first integral (Eq. (5.26)) was approximated by Onsager in the Appendix of
his paper from 1949 [9]. Since from Onsager’s analysis it is difficult to extract for
which cases his approximation is justified, we will here go through his derivation
in a bit more detail and put some emphasis on the assumptions made. Let us first
make the following substitution

α2
i + α2

j + 2αiαj cos(γ) = (αi + αj − t)2 (5.28)

Using this, we obtain two solutions for the lower and upper boundary of integration,
i.e. tl = 0 or tl = 2(αi + αj) and tu = 2αi or tu = 2αj , respectively. Although
the choice for a specific solution is arbitrary, it is convenient to choose tl = 0
and tu = 2αk where k is the index of the component with the lowest degree of
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orientational order of the pair ij. For the purely repulsive molecules considered
here, this component will always be the less elongated one (see Section 5.3.1). It
can be verified that by choosing these boundaries, the range of integration is such
that the factor t−αi −αj is always smaller than—or equal to—zero; therefore, the
hyperbolic terms can be approximated by an exponential as

cosh(αi + αj − t)
2 sinh(αi) sinh(αj)

=
exp(αi + αj − t) + exp(t− αi − αj)

4 sinh(αi) sinh(αj)

≈ exp(αi + αj)

4 sinh(αi) sinh(αj)
exp(−t)

≈ exp(−t)

(5.29)

To complete the transformation of variables, we write

cos(γ)dγ = cos(γ)
dγ

dt
dt =

d sin(γ)

dt
dt (5.30)

which, combined with Eqs. (5.26) and (5.29), leads to

〈sin(γ)〉ij,ωωω1,ωωω2
=

∫ 2αk

0

exp(−t)d sin(γ)

dt
dt (5.31)

To proceed, we obtain sin(γ) from the trigonometric identity sin(γ) =
√

1− cos2(γ),
with cos(γ) evaluated from Eq. (5.28) as cos(γ) = 1−t/αi−t/αj+t2/(2αiαj). After
some rearrangements, we obtain

sin(γ) =

√
2t

(
αi + αj
αiαj

)√
1− x (5.32)

where

x =
3t

2(αi + αj)
+

t

2(αi + α2
i /αj)

+
t

2(αj + α2
j/αi)

− t2

2(αiαj + α2
i )
− t2

2(αiαj + α2
j )

+
t3

8(αiα2
j + α2

iαj)

(5.33)

Onsager proceeded by expanding the square root
√

1− x around x = 0 (as 1−x/2−
x2/8− x3/16− . . .) and truncating after second order in x. Before we do this, it is
instructive to look at the behaviour of x as a function of the relevant parameters,
and gain some insight into the accuracy of this expansion. As imposed by the limits
of integration of Eq. (5.31), t = ε ·αk, where 0 ≤ ε ≤ 2. Accordingly, one can rewrite
the above equation for x in terms of ε and a newly introduced variable Q = αi/αj ,
where i = k is chosen as the component with the lowest orientational order (i.e.
0 ≤ Q ≤ 1 ). Different diagrams of x versus Q for ε = 0, 0.25, 0.5, . . . , 2.0 (Fig. 5.1)
show that the expansion is justified as long as ε is small. For ε close to 2, on the
other hand, the value of x tends to unity, leading to a decreased accuracy of the
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Figure 5.1: The x-parameter from Eq. (5.33)
versus the ratio of orientational order Q =
α1/α2 (where α2 ≥ α1) for various values
of t = ε·α1, with ε = 0.0, 0.25, 0.5, . . . , 2.0.
The expansion

√
1− x = 1− x/2− x2/8−

x3/16− . . . converges only when x < 1.

expansion. For x = 1, the expansion is not justified. Consequently, only close to
the upper integration boundary of Eq. (5.31) the use of the expansion constitutes
a non-negligible degree of approximation to the integrand. Whether this decrease
in accuracy will affect the calculated result from Eq. (5.31) depends on the value
of αk. For any reasonable value of αk (say, 5 or larger) the exponential will be
the dominant factor in the integrand; thereby scaling any errors introduced by the
expansion of the square root to approximately zero. For smaller values of αk, which
occur for very bidisperse mixtures (see Section 5.3.1), some error in the computed
results can be expected. Performing the expansion, taking the derivative to t and
truncating after third order in α, leads to the following result

d sin(γ)

dt
=

√
αi + αj
2αiαj

{
1√
t
−

[
9
√
t

4(αi + αj)
+

3
√
t

4(αi + α2
i /αj)

+
3
√
t

4(αj + α2
j/αi)

− 5t3/2

4(αiαj + α2
i )
− 5t3/2

4(αiαj + α2
j )

+ . . .

]
− 1

32

[
45t3/2

(αi + αj)2

+
5t3/2

(αi + α2
i /αj)

2
+

5t3/2

(αj + α2
j/αi)

2
+

10t3/2

(αi + α2
i /αj)(αj + α2

j/αi)

+
30t3/2

(αi + αj)(αi + α2
i /αj)

+
30t3/2

(αi + αj)(αj + α2
j/αi)

+ . . .

]}
(5.34)

Substitution in Eq. (5.31) leads to a series of integrals of the form Kn(αi, αj)∫ 2αk
0

exp(−t)tn/2dt where n = −1, 1 or 3, respectively, and Kn(αi, αj) is a t-
independent factor to be determined from Eq. (5.34). As discussed, for a sufficiently
large value of the variational parameter αk, the exponential forces the value of the in-
tegrand to zero close to the upper boundary of integration, allowing for an extension
of the range of integration to t = [0 ∞]. This extension is particularly useful since
now a transformation t = y2 can be used to reduce these integrals to the following
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Figure 5.2: The percentage deviation of
the analytical approximation for the orien-
tational average of the sin(γ)-kernel of the
pair-excluded volume from Eq. (5.35) com-
pared to the full numerical solution from
Eq. (5.26).
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standard Gaussian types:
∫∞

0
exp(−y2)dy =

√
π/4,

∫∞
0

exp(−y2)y2dy =
√
π/16

and
∫∞

0
exp(−y2)y4dy = (3/8)

√
π. Now, we obtain Onsager’s approximation for

the orientational average of the sin(γ)-kernel of the pair-excluded volume after re-
arranging

〈sin(γ)〉ij,ωωω1,ωωω2
=

√
π

2

(
αi + αj
αiαj

){
1− 3

8

[
1

αi + αj
+

1

αi
+

1

αj
+ . . .

]

+
15

128

[
8

αiαj
−
(

1

αi + αj
+

1

αi
+

1

αj

)2

+ . . .

]} (5.35)

For completeness, the percentage difference of the above analytical result compared
to its exact numerical counterpart (Eq. (5.26)) is shown for a grid in αi and αj in
Fig. 5.2. For the larger part of parameter space, the approximation is remarkably ac-
curate; showing a negligible relative difference (< 10−3) for both α-parameters larger
than 5. As expected, the approximation breaks down if one of the α-parameters ap-
proaches unity; limiting its application to systems of not too extreme bidispersity.
For all systems considered in this chapter, however, we will find that the bidispersity
is moderate enough to use Eq. (5.35) as an accurate approximation of Eq. (5.26).

To the best of our knowledge, no analytical solution of the second integral
(Eq. (5.27)) has thus far been presented in literature. Most probably, the reason
is that for typical rigid, hard-core nematogens studied, the orientation dependence
of the pair-excluded volume can be captured by a first order term in sin(γ). For
the partially flexible molecules studied here, however, the incorporation of a second
order term in sin(γ) is required [88]. In many respects, the method followed to
evaluate Eq. (5.27) is the same as that layed out by Franco-Melgar et al. [18, 195]
for the pure-component fluid. We show that, as for the pure-component case, exact
analytical results can be obtained.

To proceed, let us start with the transformation of variables a = α2
i + α2

j , b =
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2αiαj and u =
√
a+ b cos(γ), which leads to

dγ = − 2udu

b sin(γ)
(5.36)

cos(γ) =
u2 − a
b

(5.37)

Substitution in Eq. (5.27) results in

〈
sin2(γ)

〉
ij,ωωω1,ωωω2

=
2

sinh(αi) sinh(αj)

{
a

b2

∫ αi−αj

αi+αj

cosh(u)udu +

− 1

b2

∫ αi−αj

αi+αj

cosh(u)u3du

} (5.38)

which can be solved straightforwardly by successive integration by parts. After
rearranging, we obtain the following exact analytical result〈
sin2(γ)

〉
ij,ωωω1,ωωω2

=
1

2 sinh(αi) sinh(αj)

{
sinh(αi − αj)

(
−2

αi
+

2

αj
− 6

αiα2
j

+
6

α2
iαj

)

− cosh(αi − αj)

(
6

αiαj
− 6

α2
iα

2
j

− 2

α2
i

− 2

α2
j

)

+ sinh(αi + αj)

(
2

αi
+

2

αj
+

6

αiα2
j

+
6

α2
iαj

)

− cosh(αi + αj)

(
2

α2
i

+
2

α2
j

+
6

αiαj
+

6

α2
iα

2
j

)}
(5.39)

For αi = αj this reduces to the pure-component result obtained by Franco-Melgar
et al. [18, 195]. Also, using the hyperbolic properties cosh(−x) = cosh(x) and
sinh(−x) = − sinh(x), it can be verified that the above result is symmetric in i
and j. As mentioned earlier, the computation of the hyperbolic terms can become
problematic for systems of very high orientational order. Is is therefore useful to sim-
plify the above result a little further. Using the hyperbolic properties sinh(x+ y) =
sinh(x) cosh(y)+cosh(x) sinh(y) and cosh(x+y) = cosh(x) cosh(y)+sinh(x) sinh(y),
we can write

sinh(αi − αj)
sinh(αi) sinh(αj)

= coth(αj)− coth(αi)

cosh(αi − αj)
sinh(αi) sinh(αj)

= coth(αi) coth(αj)− 1

sinh(αi + αj)

sinh(αi) sinh(αj)
= coth(αj) + coth(αi)

cosh(αi + αj)

sinh(αi) sinh(αj)
= coth(αi) coth(αj) + 1

(5.40)
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Figure 5.3: The percentage deviation of
the analytical approximation for the orien-
tational average of the sin2(γ)-kernel of the
pair-excluded volume from Eq. (5.39) com-
pared to the full numerical solution from
Eq. (5.27).
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For typical nematic mixtures, the values of the α-parameters are larger than 3;
therefore, to a very good approximation (error ∼ 10−3) the coth(. . .)-terms can be
reduced to unity, and Eq. (5.39) can be simplified further to the following algebraic
equation〈

sin2(γ)
〉
ij,ωωω1,ωωω2

=
2

αi
+

2

αj
− 2

α2
i

− 2

α2
j

− 6

αiαj
+

6

αiα2
j

+
6

α2
iαj
− 6

α2
iα

2
j

(5.41)

For all systems considered in the present chapter, Eq. (5.41) is used to approximate
the orientational average of the sin2(γ)-kernel from Eq. (5.27). As shown in Fig. 5.3,
the approximation is excellent, showing negligible error for a large and relevant part
of parameter space. Similar to the approximation of the sin(γ)-kernel (Fig. 5.2),
the approximation of the sin2(γ)-kernel breaks down if the α-parameter of one (or
both) of the components approaches unity.

To solve Eq. (5.18) for the equilibrium orientational state of the system, we also
need the derivatives of Eqs. (5.35) and (5.41) to αi. For configurations between
molecules of different type, i.e. i 6= j, these can be derived as, respectively(

∂ 〈sin(γ)〉ij,ωωω1,ωωω2

∂αi

)
αj

= −
√

παj
8α4

i + 8αjα3
i

{
1− 3

8

[
1

αi + αj
+

1

αi
+

1

αj

]

+
15

128

[
8

αiαj
−
(

1

αi + αj
+

1

αi
+

1

αj

)2
]}

+

√
π

2

(
αi + αj
αiαj

){
3

8

[
1

(αi + αj)2
+

1

α2
i

]
+

15

128

[
−8

α2
iαj

+ 2

(
1

αi + αj
+

1

αi
+

1

αj

)
(

1

(αi + αj)2
+

1

α2
i

)]}

(5.42)

(
∂
〈
sin2(γ)

〉
ij,ωωω1,ωωω2

∂αi

)
αj

= − 2

α2
i

− 4

α3
i

+
6

α2
iαj
− 6

α2
iα

2
j

− 12

α3
iαj

+
12

α3
iα

2
j

(5.43)
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For configurations between molecules of the same type, i.e. i = j, we obtain

d 〈sin(γ)〉ii,ωωω1,ωωω2

dαi
=
√
π

{
45

32α
5/2
i

− 1

2α
3/2
i

− 525

1024α
7/2
i

}
(5.44)

d
〈
sin2(γ)

〉
ii,ωωω1,ωωω2

dαi
= − 4

α2
i

+
20

α3
i

− 36

α4
i

+
24

α5
i

(5.45)

In summary, we have derived analytical results for the orientation-dependent
parts of the ideal- (Eqs. (5.21)-(5.22)) and residual (Eqs. (5.35) and (5.41)) Helm-
holtz energy contribution in terms of the variational parameters of the OTF. Also
the derivatives of these contributions to the variational parameters have been ob-
tained (Eqs. (5.23)-(5.24) and (5.42)-(5.45)). In the following section, these approx-
imate results are used in the Onsager-Vega-Lago (OVL) theory that was laid out
in Section 5.2.1. An analytical EoS for the isotropic and nematic phase of tangent
hard-sphere chain fluid mixtures is thereby obtained. This EoS will be referred to
as truncated OVL theory. When the exact (numerical) solutions of the orientational
parts of the residual Helmholtz energy are used instead (Eqs. (5.26) and (5.39)), it
will simply be referred to as OVL theory. It is shown later that both theories result
in essentially identical results for the phase diagram of binary tangent hard-sphere
chain fluid mixtures.

5.3 Results and Discussion
5.3.1. The effect of length bidispersity on the I-N and N-N

phase behaviour
In this section, we analyse the effect of length bidispersity on the isotropic-nematic
and nematic-nematic phase behaviour of binary mixtures of linear tangent hard-
sphere chain fluids. The effect of length bidispersity on the degree of orientational
ordering of the system is also studied. Since the analysis is purely theoretical, it is
of value to test the theory to results from molecular simulations first. Until recently,
the only available simulation data on I-N equilibria of binary hard-sphere chain sys-
tems was that Escobedo and De Pablo [186], who used an expanded Gibbs-ensemble
MC method to simulate the I-N pressure-composition envelope of a mixture of linear
8-mers and linear 16-mers. In a recent work of Oyarzun et al. [34], the simulated
database on these systems was much expanded. In Fig. 5.4, we compare simulation
results for a binary mixture of linear 8-mers and 16-mers to those obtained from
the truncated OVL theory developed in the previous section. Results from the OVL
theory are also included for comparison. The theoretical results are in excellent
agreement to simulation data. The results obtained from both theories are virtually
indistinguishable, showing the accuracy of the truncated form of the OVL theory.
Both theory and simulations show (equally) strong fractionation of the two compo-
nents between the two phases, with the more anisotropic 16-mer fluid preferentially
partitioned in the nematic phase.
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Figure 5.4: A comparison between the di-
mensionless pressure P ∗ = βPVm=8 of a
binary mixture of linear 8-mers and linear 16-
mers as obtained from the truncated OVL
theory (solid line), the full numerical solu-
tion of the OVL theory (dotted line), and MC
simulations of Escobedo and de Pablo [186]
(closed symbols) and Oyarzun et al. [34].
Here, x2 is the mole fraction of 16-mers,
Vm=8 = (π/6)mσ3 is the molecular vol-
ume of the linear 8-mer molecules. The re-
sults obtained from the full numerical so-
lution of the OVL theory are almost indis-
tinguishable from those obtained from the
truncated variant. For comparison to the
MC simulations, the focus of this figure is
on the isotropic-nematic (I-N) coexistence;
therefore, the nematic-nematic coexistence
exhibited at higher pressure is not shown.
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We view the favourable comparison between theory and simulation as a strong
indicator that the developed theory accurately captures the phase behaviour of
bidisperse mixtures, which encourages a further analysis of phase equilibria. We
define a bidispersity ratio q = m1/m2, and vary q systematically by changing the
length of component 2 (where m2 > m1). The length of component 1 is fixed at
m1 = 8. Using this procedure we were able to locate two types of phase diagrams,
shown in Fig. 5.5 for four different systems of decreasing bidispersity ratio. For
a bidispersity ratio close to unity, we find I-N coexistence at low pressure and a
N-N demixed region with a lower critical point at higher pressure (Fig. 5.5 (a)-(b)).
With decreasing bidispersity ratio, the N-N critical point is shifted to lower pressure
until, for m2 = 19, the N-N region starts to overlap with the I-N region, resulting
in a triphase I-N-N equilibrium at P ∗ = PVm=8/kT = 2.234, x2,I = 0.000631,
x2,N− = 0.111 and x2,N+ = 0.428 (Fig. 5.5 (c)). Here, we have introduced the
notation N− and N+ for the coexisting nematic phases lean and rich in the longer
component, respectively. If the bidispersity ratio is decreased further, an I→ N→
I→ N re-entrant phenomenon [177–179, 182, 185] is observed upon increasing the
pressure in some parts of the phase diagram (Fig. 5.5 (d)). For completeness, the
phase diagrams from Fig. 5.5 are shown in a η − x representation in Fig. 5.6.

It is important to note that we have tried to probe parameter space more rigor-
ously by using different molecule types for the reference component 1, using more
extreme bidispersity ratio’s (down to 0.0001) and considering non-integer values of
the chain length. Nonetheless, we did not find any other types of phase diagrams
than those shown in Fig. 5.5, suggesting that (considering only I and N phases) this
is the complete picture for binary mixtures of linear tangent hard-sphere chain fluids
of equally-sized segments. In a study of Varga et al. [182], it was found that systems
of hard rods of equal length but different diameter can also exhibit regions of N-N
coexistence bounded by an upper critical point and regions of I-I coexistence. Given
the similarity to the molecular model studied here, it seems reasonable to suggest
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Figure 5.5: The dimensionless pressure P ∗ = βPVm=8 of a binary mixture of linear 8-mers and (a) linear
16-mers, (b) linear 18-mers, (c) linear 19-mers, and (d) linear 24-mers, as obtained from the truncated
OVL theory. Here, x2 is the mole fraction of the long component in the mixture, Vm=8 = (π/6)mσ3

is the molecular volume of the linear 8-mer molecules. With increasing pressure, coexistence between
an isotropic (I) and nematic (N) phase- and two nematic phases lean (N−) and rich (N+) in the long
component is observed, respectively. The I-N−-N+ threephase equilibrium is denoted by the dotted
line.

these types of phase behaviour will also be observed for binary mixtures of tangent
hard-sphere chain fluids of non-equally-sized segments.

Since the results for the N-N region have not been tested by comparing to MC
simulations, let us elaborate on the accuracy of the theoretical results. As discussed
in Section 5.2.3, the approximations related to truncating the OVL theory become
more reliable for large values of the variational parameters (see Figs. 5.2 and 5.3).
Therefore, any errors introduced by using these approximations within the frame-
work of the OVL theory can be neglected in the highly ordered N-N region. The
OVL framework itself (see Section 5.2.1), however, is expected to become less accu-
rate at this part of the phase diagram. The OVL description of nematic phases relies
on approximating higher virial coefficients; therefore, provided an accurate descrip-
tion of the isotropic phase, the N-N equilibrium will be inevitably less accurately
described than the I-N equilibrium. Also, compared to the I-N region, the N-N re-
gion is located at relatively higher pressure/density; therefore, any errors introduced
by the approximation of higher virial coefficients will become more pronounced. To
what extent these errors influence the theoretical results is unclear at this point.
For an assessment on this, a systematic MC study on the N-N behaviour would be
desirable. The high densities of the coexisting nematic phases, however, makes such
a study non-trivial.
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Figure 5.6: The packing fraction η = ρ(π/6)
∑

i ximiσ
3 in the coexisting isotropic and nematic phase

of a binary mixture of linear 8-mers and (a) linear 16-mers, (b) linear 18-mers, (c) linear 19-mers, and
(d) linear 24-mers, as obtained from the truncated OVL theory. Here, x2 is the mole fraction of the long
component in the mixture, Vm=8 = (π/6)mσ3 is the molecular volume of the linear 8-mer molecules.
The I-N−-N+ threephase equilibrium is denoted by the black shaded region.
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Figure 5.7: The total modified Gibbs energy (dotted line) from Eq. (5.46) for a nematic phase of linear
8-mers and linear 18-mers at a pressure P ∗ = βPVm=8 = 10.3494. Here, x2 is the mole fraction of
linear 18-mers, Vm=8 = (π/6)mσ3 is the molecular volume of the linear 8-mer molecules. Results are
obtained from the truncated OVL theory. The solid lines correspond to the individual contributions
to the Gibbs energy, arising from, translational- (g̃′trans), orientational- (g̃

′
orient), mixing- (g̃′mix), and

configurational/excluded volume entropy (g̃′conf), respectively.
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In contrast to the I-N transition, which was explained by Onsager as the result of
a competition between orientational and configurational/excluded volume entropy,
the nature of the N-N demixing transition has been a point of debate for some
time. What can be extracted from the available literature on this point is that,
depending on the molecular architecture of the components in the mixture, both
orientational- and configurational/excluded volume entropy can give rise to a N-N
demixing transition [178, 182, 189]. To obtain insight into the driving force behind
the N-N demixing transition of the tangent hard-sphere chain fluids studied here, we
analyse the behaviour of the total Gibbs energy and its individual (entropic) con-
tributions with varying composition of the system. The total dimensionless Gibbs
energy g̃ = βG/N is obtained from the Helmholtz energy using the thermodynamic
relation

g̃ =
βA

N
+ Z (5.46)

Here, Z = βP/ρ is the compressibility factor of the system. One should note that in
calculating the total Helmholtz energy, the density-independent factor Λ3

i /Ω from
Eq. (5.3) has not been considered since it is of no importance for the location of the
phase equilibrium. Accordingly, the individual contributions to g̃ arising from, re-
spectively, translational-, mixing-, orientational- and configurational/excluded vol-
ume entropy, are obtained from Eqs. (5.3)-(5.4) as

g̃trans = ln ρ (5.47)

g̃mix =
∑
i

xi lnxi (5.48)

g̃orient =
∑
i

xi (lnαi − 1) (5.49)

g̃conf =
βAres

N
+ Zres (5.50)

The total Gibbs energy from Eq. (5.46) is then retained from the sum g̃ = g̃trans +
g̃mix+g̃orient+g̃conf . Since for purely repulsive molecules the N-N demixing transition
does not occur in pure component systems, it is sufficient for our analysis to consider
a modified Gibbs energy, according to

g̃
′

= g̃ −
∑
i

xig̃
0
i (5.51)

g̃
′

trans = g̃trans −
∑
i

xig̃
0
i,trans (5.52)

. . . etc.

This procedure allows for a meaningful graphical representation of the demixing
transition in a g̃-x diagram, because the dominant linear contributions from Eqs.
(5.47)-(5.50) are subtracted. Subtracting the linear contributions does not alter
the location of the phase transition as obtained from a common tangent-line con-
struction [196]. In Fig. 5.7, we show a plot of the modified Gibbs energy and its
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individual contributions versus the composition of a binary mixture of linear 8-mers
and 18-mers at a pressure P ∗ = βPVm=8 = 10.3494. The results clearly show that
both the translational and mixing entropy favour the (single phase) mixed state.
The contributions arising from orientational- and configurational/excluded volume
entropy favour a demixing transition to two nematic phases. In this respect, these
results are comparable to those obtained by Varga et al. [182], who found that, for
systems of thin and thick hard rods, both orientational- and configurational entropy
favour N-N demixing. The results are different than those obtained by Wensink
et al. [189], who found that, for systems of thin and thick hard platelets, the N-N
demixing transition is driven by configurational entropy only.

Let us now shift focus to the orientational order parameters. As shown in some
previous studies [157, 177, 185], the degree of orientational order of the components
in a nematic binary mixture is very sensitive to composition. In Fig. 5.8 we show this
behaviour is also observed for the tangent hard-sphere chain model. Three binary
mixtures are considered. For all three mixtures, the first component is a linear 8-
mer. The second component is varied between a linear 10-mer (Fig. 5.8 (a)), 14-mer
(Fig. 5.8 (b)) or 16-mer (Fig. 5.8 (c)), respectively. It can be observed that over the
whole composition range, the degree of orientational ordering of the long component
is significantly larger than that of the short component. The reason is that at a
certain density of the system, the shorter molecules have more freedom to rotate
their axes away from the nematic director than the longer molecules. For systems
of purely repulsive molecules, this behaviour is general. It can also be observed
that the orientational order parameter has a maximum with composition. With
decreasing bidispersity ratio q = m1/m2, the maximum becomes more pronounced
and takes place at larger values of the mole fraction of the long component. These
observations can be explained from a competition between two effects: (1) a decrease
of the I-N coexistence pressure with increasing mole fraction of the long component
(resulting in a decrease in density—and thus orientational order—of the nematic
phase), and (2) induction of orientational order by adding a long component to a
short component. In principle, when a long component is added to a nematic phase
rich in a short component, the I-N coexistence pressure is much higher than it would
be for the pure long component. Consequently, the degree of orientational order of
the long component in the mixture is much higher than the typical coexistence value
(i.e. S2 ∼ 0.8) found for the pure component system. As a result, the degree of
orientational order of the short component is also increased (which we hereby refer
to as ’induction’). Note that this second effect is enhanced by the fractionation of
the longer and shorter molecules between the phases.

The maximum in the nematic order parameter has an interesting implication.
As shown in Fig. 5.9, it results in a maximum difference in density between the
coexisting isotropic and nematic phase. As shown in a previous MC simulation
study [136], this density difference is a key factor determining a step-wise decrease
in solubility of small gases across the I-N phase transition. In the light of applying
LC solvents for gas absorption processes [23, 24], this observation is interesting, since
it means that, as for many applications of LCs, the properties of a LC solvent can
be optimized by using a LC mixture of specific composition. Below, in Section 5.3.3
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Figure 5.8: The I-N coexistence values of the total- and partial nematic order parameters S2 (Eq. (5.20))
and S2,i (Eq. (5.19)), respectively, of a binary mixture of linear 8-mers and (a) linear 10-mers, (b) linear
14-mers, and (c) linear 16-mers, as obtained from the truncated OVL theory. Here, x2 is the mole
fraction of the long component in the nematic mixture.
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Figure 5.9: The difference
of the packing fraction
η = ρ(π/6)

∑
i ximiσ

3 in the
coexisting isotropic and nematic
phase for the same binary mixtures
as those shown in Fig. 5.8. Compar-
ison between theoretical results as
obtained from the truncated OVL
theory (lines) and MC simulations of
Oyarzun et al. [34]. x2 is the mole
fraction of the long component in
the nematic phase mixture.
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we further elaborate on this point, but for now, we investigate the effect of partial
molecular flexibility on the phase diagram.

5.3.2. The effect of partial molecular flexibility on the I-N and
N-N phase behaviour

Let us define the binary mixture of linear 8-mers and linear 19-mers (Fig. 5.5 (c)) as
a reference. To study the effect of partial molecular flexibility, we gradually make
the 19-mer more flexible by means of the rod-coil model; considering a number of 1
or 2 segments in the flexible tail, respectively. The rod-coils considered are thus the
19-18 and 19-17. Theoretical results for the phase diagrams are compared to MC
simulation results of Oyarzun et al. [34] in Fig. 5.10. As for linear chain fluids, the
comparison between theory and simulations is excellent. In addition, the truncated
form of the OVL theory proves to be very accurate, leading to essentially identical
results as obtained from the full numerical solution of the theory. It can be observed
that, when compared to linear systems (Fig. 5.5), an increase in flexibility leads to
the same topological changes in the phase diagram as a decrease in chain length
of the more elongated component, namely a reduced fractionation of components
between the I and N phase, a shift of the N-N critical point to higher pressure,
and disappearance of the triphase I-N-N equilibrium. The reason for this similarity
is that an increase in flexibility of the second (rod-coil) component reduces the
length of its rigid block, and thereby ’effectively’ increases the bidispersity ratio
q = m1/m2.

In spite of the topological similarity of the phase diagrams of linear- and rod-coil
fluids, there is a pronounced difference in the location of the N-N critical points. For
example, the lower N-N critical point of a binary fluid of linear 18-mers and linear
8-mers (Fig. 5.5 (b)) is located at much lower pressure than that of a binary fluid of
19-18 rod-coils and linear 8-mers (Fig. 5.10 (a)), despite the fact that the number
of beads in the rigid block is equal for the 18-mer and 19-18 rod-coil. Due to the
presence of the flexible tail, the pair-excluded volume of the 19-18 rod-coil fluid is
less anisotropic than that of the linear 18-mer fluid [88]. Hence, for the binary fluid
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Figure 5.10: The dimensionless pressure P ∗ = βPVm=8 of a binary mixture of linear 8-mers and (a)
19-18 rod-coils, and (b) 19-17 rod-coils, as obtained from the truncated OVL theory (solid lines) and
MC simulations of Oyarzun et al. (symbols) [34]. x2 is the mole fraction of the rod-coils in the nematic
phase, Vm=8 = (π/6)mσ3 is the molecular volume of the linear 8-mer molecules. For (b), the results
from the numerical solution of the OVL theory are included as well (dotted lines); the results of both
theories are essentially indistinguishable. With increasing pressure, coexistence between an isotropic (I)
and nematic (N) phase- and two nematic phases lean (N−) and rich (N+) in the long component is
observed, respectively. The insets show the N−-N+ demixed region which, due to the partial flexibility
of the second component in the mixture, is shifted to very high pressure.

of linear 8-mers and 19-18 rod-coils, there is less configurational entropy that can
be gained by demixing into two different nematic phases. This is clearly illustrated
by comparing the g̃-x diagram from Fig. 5.11 (linear 8-mer/19-18 rod-coil mixture)
to that from Fig. 5.7 (linear 8-mer/linear 18-mer mixture). In conclusion, when
adding a flexible tail to one of the linear chain molecules of a binary mixture, the
driving force for N-N demixing is decreased, leading to a shift of the N-N transition
to higher density/pressure.

5.3.3. Solubility of hard-sphere solutes in linear and partially
flexible tangent hard-sphere chain solvents

As a measure for the solubility of hard-sphere (hs) solutes in tangent hard-sphere
chain solvents, we introduce the Henry’s law constant Hk, formally defined by [197]

Hk = lim
xk→0

(
fLk
xk

)
(5.53)

where k is the hard-sphere component, and xk and fLk (V, T, x) are the mole fraction
and fugacity of this component in the liquid (i.e. isotropic or nematic) phase,
respectively. In terms of the fugacity coefficient φLk = fLk /(xkP ) = exp[βµres

k ], where
P is the pressure exerted by the system and µres

k (V, T, x) is the residual chemical
potential of component k, the above definition can be rewritten as

Hk = lim
xk→0

(
φLkP

)
= lim
xk→0

(exp[βµres
k ]P ) (5.54)
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Figure 5.11: The total modified Gibbs energy (dotted line) from Eq. 5.46 versus composition of a
nematic phase of linear 8-mers and 19-18 rod-coils at a pressure P ∗ = βPVm=8 = 10.3494. Here, x2
is the mole fraction of the 19-18 rod-coils, Vm=8 = (π/6)mσ3 is the molecular volume of the linear
8-mer molecules. Results are obtained from the truncated OVL theory. The solid lines correspond
to the individual contributions to the Gibbs energy, arising from, translational- (g̃′trans), orientational-
(g̃′orient), mixing- (g̃′mix), and configurational/excluded volume entropy (g̃′conf), respectively. Compared
to Fig. 5.7, where a similar diagram is shown for a binary fluid of linear 8-mers and linear 18-mers, the
configurational contribution to the Gibbs energy is lower, resulting in a smaller driving force for N-N
demixing. As a result, the N-N demixing transition is shifted to higher pressure than considered in this
Figure.

where the residual chemical potential is obtained from

βµres
k =

(
∂ares[feq(ωωω)]

∂ρk

)
ρj 6=kT

(5.55)

For convenience, we define a modified Henry’s law constant H ′k, according to

H ′k =
Hk

P
= lim
xk→0

(exp[βµres
k ]) (5.56)

The motivation for using this modified Henry’s law constant is merely to allow for
a better graphical comparison between the Henry’s law constants of hard-sphere
solutes in different tangent hard-sphere chain solvents.

In Fig. 5.12, we compare the calculated modified Henry’s law constant of a
hard-sphere solute in a linear 15-mer-, a 15-14 rod-coil-, a 15-13 rod-coil- and a
15-12 rod-coil fluid to MC simulations [136]. For the linear 15-mer solvent, excellent
agreement between simulation and theory is obtained. For the partially flexible LC
solvents, agreement is satisfactory; deteriorating somewhat with flexibility. For all
systems shown, a step-wise increase of the modified Henry’s law constant is observed
across the I-N transition; corresponding to a step-wise decrease in solubility of the
hard-sphere solute.

As shown in a previous MC simulation study [136], this solubility difference is
caused primarily by the density difference between the coexisting I and N phase. The
orientational ordering was shown to have no—or at most a negligible—effect. In the
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Figure 5.12: Modified Henry’s law
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a function of the dimensionless pres-
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Figure 5.13: Modified Henry’s law
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Figure 5.14: The difference of the isotropic- and nematic coexistence value of the dimensionless Henry’s
law constant H∗ = βHVm=8 of a hard sphere solute in a binary LC solvent of linear 8-mers and linear
16-mers. Vm=8 = (π/6)mσ3 is the molecular volume of the linear 8-mer molecules, x2 is the mole
fraction of linear 16-mers in the nematic phase. Theoretical results (filled circles, lines as a guide for
the eye) are compared to results from MC simulations as obtained by Oyarzun et al. [34] (open circles).

simulations, a bias function was used to prescribe orientational order independent of
density. The advantage of such a method is, that the effect of ordering on the Henry’s
law constant can be singled out for a defined density of the system. The theory can
equally be applied with a prescribed value of orientational order. In Fig. 5.13 we
emphasize this, by considering the modified Henry’s law constant of a hard-sphere
solute in a linear 15-mer solvent with a varying orientational order parameter S2

at constant density of the system. Agreement between theory and simulations is
excellent. As can be observed, when singled out from density, the orientational
ordering has no significant effect on the modified Henry’s law constant—and thus
the solubility—of the hard-sphere solute.

Given this result, and the observation that for binary LC mixtures the density
difference between the coexisting I and N phase shows a maximum with composition
(Fig. 5.9), we conclude that the solubility difference of small solutes across the I-
N phase transition can be maximized by choosing a binary LC mixture of specific
composition as the solvent. To illustrate this, we calculated how the Henry’s law
constant of a hard-sphere solute changes when a binary LC solvent of linear 8-mers
and linear 16-mers changes from the isotropic- to the nematic phase. The results are
displayed for varying composition of the LC solvent in Fig. 5.14. A comparison to our
recent results obtained from molecular simulations [34] are included as well. Like the
density difference, the solubility difference displays a maximum with composition.
The composition dependence is remarkably strong, resulting in approximately a
factor 2 increase of the solubility difference (compared to the pure solvents) at a
mole fraction of the linear 16-mer of x ≈ 0.4. We performed similar calculations for
a mixture of linear 8-mers and 18-mers; for this mixture the increase of the solubility
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difference is increased even further to a factor 3 (not shown for brevity).
Whether these results can be extrapolated to mixtures of real LCs depends on

several aspects. First, there is the issue of anisotropic attractive intermolecular in-
teractions, such as those arising from dipolar forces. In some studies (see for example
Refs. [198]-[199]), it was proposed that such interactions can result in the formation
of dimer complexes, wherein the rigid cores of two LCs are aligned. Such a model
was used, for example, to explain the occurrence of induced smectic- and re-entrant
nematic phase behaviour. Moreover, in two recent experimental studies [200, 201],
this proposed dimerization mechanism was used to explain an observed minimum in
the nematic order parameter for a certain composition of a binary mixture of dipolar
LCs. Clearly, the formation of these complexes should be avoided if one wants to
maximize the difference in solubility of small gases across the I-N transition. For
such purposes, a maximum in the order parameter is required. For further study, it
would be interesting to use molecular simulations to investigate (1) the formation
of these dimer complexes, and (2) to what extent they influence the orientational
order and solubility of small gases in the mixture. To best of our knowledge, no
such study is available in literature.

Second, an important aspect to be considered is the stability of the nematic phase
compared to other mesophases. Experiments have shown that in binary mixtures
of LCs with a chemically similar core but different length of the (semi-)flexible tail,
the smectic phase can become stabilized at the cost of the nematic phase if the
length ratio of the tails is increased [171, 172, 202]. Since these results could well
be an artefact of increased flexibility of the molecules, it would be interesting to
test by experiments/molecular simulations if this stabilization of the smectic phase
also occurs when only the length ratio of the rigid cores is increased. The LCs
used in such a study should be of nematic type. To best of our knowledge, no such
study is available in literature. With regard to applying LC solvents as absorption
liquids, the formation of smectic phases at the cost of a nematic phase is probably
undesirable, since it could limit the possibility of maximizing the solubility difference
across the I-N phase transition.

5.4 Conclusion
In summary, we have developed an analytical EoS to describe the isotropic- and
nematic phase behaviour of linear- and partially flexible tangent hard-sphere chain
fluids and their mixtures. The EoS is based on a Vega-Lago rescaled Onsager theory
in the Onsager Trial Function approximation, and can be considered as an exten-
sion of our work on pure component systems from Chapter 4. Due to the use of the
approximation for the pair-excluded volume from Chapter 2, analytical results for
both the Helmholtz energy and compressibility factor were obtained. The orienta-
tional averages of the sin(γ)- and sin2(γ)-kernel of the pair-excluded volume were
approximated analytically using Onsager’s truncated asymptotic expansion [9] and
a novel approximation derived by the authors, respectively. The resulting analytical
theory can be considered as an important step towards an engineering-oriented EoS
for nematic fluid mixtures.

The EoS was extensively tested by comparison to molecular simulation data for
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the I-N coexistence of various binary mixtures. The EoS was also compared to
simulation data for the Henry’s law constants of a hard-sphere solute in different
linear and partially flexible tangent hard-sphere chain solvents. Overall agreement
of the theory to simulation data is excellent. In particular, the fractionation of the
long and short component between the I and N phase is predicted very accurately.
For the Henry’s law constants, we found that the accuracy of the theoretical results
deteriorates somewhat with the flexibility of the hard-chain solvent—a result not
that surprising given the results obtained in the previous chapter for pure component
systems.

From a theoretical point of view, the EoS developed in this chapter was used
to study several phenomena. First, we studied the effect of length bidispersity
on the I-N and N-N phase behaviour of binary mixtures of linear m-mers. For a
bidispersity ratio q = m1/m2 (where m2 ≥ m1) close to unity, we found an I-N
coexistence region at lower pressure and a N-N demixed region bounded by a lower
critical point at higher pressure. With decreasing bidispersity ratio (i.e. less-like
molecules), the N-N critical point is shifted to lower pressure until the N-N and I-N
region start to overlap, resulting in a triphase I-N-N equilibrium. If the bidispersity
ratio is decreased even further, a re-entrant I→ N→ I→ N phenomenon can be
observed at some parts of the phase diagram. It was shown that the coexistence
value of the nematic order parameter of a binary mixture displays a maximum with
composition. As a result, the density difference between the coexisting I- and N
phase also shows a maximum with composition. With decreasing bidispersity ratio,
the maximum becomes more pronounced.

Second, the effect of partial molecular flexibility on the I-N and N-N phase
behaviour was studied. Compared to linear chains, no topological difference in the
phase diagram was found. However, it was shown that due to a less anisotropic
pair-excluded volume, the gain in configurational entropy upon N-N demixing was
lower than for comparable linear chain fluids, resulting in a smaller driving force for
the N-N transition. As a result the N-N demixing transition was shifted to higher
density/pressure.

Finally, the solubility of hard-sphere solutes in the isotropic and nematic phase
of linear and partially flexible tangent hard-sphere chain solvents was studied. In
accordance with the results of a recent MC simulation study [136], it was shown that
the transition from an isotropic to a nematic phase leads to a step-wise decrease in
the solubility of the hard-sphere solute. The primary reason for this is a step-
wise increase in the density of the system at the phase transition; the orientational
ordering alone was shown to have negligible effect. The maximum of the I-N density
difference with composition that was found for bidisperse mixtures of linear chain
fluids, was utilized to maximize the solubility difference of hard-sphere solutes across
the I-N phase transition. These results show that the solubility difference of small
gases between a coexisting I- and N phase can be maximized by using a LC mixture
of specific composition as the solvent. In the light of applying LCs as solvents for
absorption processes [23, 24], these results suggest that the direction of research
should be directed towards mixtures of LCs.
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6
An equation of state for describing the isotropic phase
behaviour of attractive chain fluids

In this chapter, we aim at a theoretical description of the isotropic (vapour and liquid)
phase behavior of attractive chain fluids. Special emphasis is placed on the role of
molecular flexibility, which is studied by means of a rod-coil model. For this purpose,
two new perturbed-chain equations of state are developed for square-well- (SW) and
Lennard-Jones (LJ) chain fluids. The equations of state are developed in the framework
of a second order Barker Henderson (BH) perturbation theory. The novelty of the
approach is based on (1) the use of the hard-chain reference EoS from Chapter 3,
(2) the use of recent molecular simulation data for the radial distribution function of
hard-chain fluids, and (3) a newly developed effective segment size, which effectively
accounts for the soft repulsion between segments of LJ chains. It is shown that the
effective segment size needs to be temperature-, density-, and chain-length dependent.
To obtain a simplified analytical EoS, the perturbation terms are replaced by polynomials
in density (SW and LJ), chain length (SW and LJ) and temperature (only for LJ). It
is shown that the equations of state result in a satisfactory comparison to molecular
simulation data for vapour-liquid equilibria (VLE) and -isotherms of fully flexible SW-
and LJ chain fluids and their mixtures. To evaluate the performance of the equations
of state in describing the effects of molecular flexibility on VLE, we present new MC
simulation results for the VLE of rigid linear SW- and -LJ chain fluids. For SW chains,
the developed EoS results in a good agreement with simulation results. For increased
rigidity of the chains, both theory and simulations predict an increase of the VL density
difference and a slight increase of the VL critical temperature. For LJ chains, the EoS
proves incapable of reproducing part of these trends.

Parts of this chapter have been submitted to:
T. van Westen, T.J.H. Vlugt and J. Gross J. Chem. Phys. (2015).
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6.1 Introduction
Molecular-based equations of state, where molecules are considered as chains of
spherical segments have proven powerful for many practical applications [65, 66].
An important step in the development of such equations of state is obtaining an
accurate statistical-mechanical description of certain model fluids. Model fluids that
were extensively studied, in this respect, are for example hard-sphere chains [59,
60, 121–125, 203, 204], square-well (SW) chains [68, 71, 205–211], Lennard-Jones
(LJ) chains [67, 70, 75, 208, 212–215], and more recently, chains interacting with
Mie potentials [69, 70]. The theoretical description of these fluids is largely based
on Wertheim’s Thermodynamic Perturbation Theory (TPT) [59, 60]. Based on
properties of a reference system of unbonded monomers (i.e. the EoS and cavity
correlation function), TPT provides the means to calculate the Helmholtz energy
for a fluid in which these monomers are connected to form chains [122, 137]. As an
example, applying TPT to a reference fluid of SW monomers leads to an EoS for
SW-chain fluids.

A well-known artefact of TPT is that, up to first level of approximation (TPT1),
it does not distinguish between chains of different flexibility constraints. While
early molecular simulation studies on the subject indeed showed large similarities
in the isotropic fluid phase behavior of fully flexible and rigid chains [53], it was
shown later these conclusion are valid only for a small range in density and if the
chains are sufficiently short (<5 segments) [93]. Among others, it has been shown
that there are large differences in the virial coefficients of rigid- and flexible chain
fluids [88, 93, 118]. Although, to some extent, these large differences seem to cancel
each other in the equation of state of the fluids [53, 93], it has recently been shown
that the subtle differences that remain [121] need to be captured to arrive at a
reliable description of phase equilibria [140, 216]. In the present work, our focus is
on the development of an equation of state that can describe the effects of molecular
flexibility on vapor-liquid phase equilibria.

Although TPT can be extended to higher order (such as TPT2), where, in
principle, the effect of molecular flexibility can be included to some extent, the
extension is cumbersome since it requires the specification of higher order correlation
functions of the monomeric reference fluid. For attractive chain fluids, which we aim
at in this chapter, these correlation functions are largely unavailable. In addition, if
the higher correlation functions of the monomeric reference fluid would be available,
such as for the case of hard repulsive chain fluids, the application of TPT2 to describe
the effects of molecular flexibility would not likely be very successful (Chapter 3 of
this thesis).

A different route to the EoS of attractive chain fluids is to treat the bonding of
segments at the stage of the repulsive reference fluid. Attractive interactions between
the segments of the chains are then treated as a perturbation to this reference fluid.
In the present work, we use such a method to develop a perturbed-chain EoS for the
isotropic fluid (vapor and liquid) phase of SW- and LJ chains. The effect of attractive
interactions between the segments of the chains is treated within the framework of
a second order Barker Henderson (BH) perturbation theory [55, 126]. The merit of
using a perturbed-chain approach lies in the fact that we are not limited to TPT for
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describing the bonding of segments into chains. Instead, we use the LHrc EoS for
this (see Chapter 3). Not only is this EoS considerably more accurate than TPT, it
also explicitly accounts for the effects of (partial) intramolecular flexibility, and can
thus be used to study the effect of chain flexibility on the vapor-liquid equilibrium
(VLE).

Although the concept of applying the BH theory to a hard-chain reference fluid
is not strictly new (see for example Refs. [71, 72, 217, 218]), a rigorous evaluation
of the method by comparison to molecular simulation data of attractive chain fluids
with soft repulsion has not yet been provided in literature. In the present work,
we show that naively applying the method to the fluid phase of LJ chains leads
to unexpected deviations between simulated and calculated VLE and isotherms.
In particular, we show that the conventional Barker-Henderson diameter, which
serves to model the soft repulsion between LJ segments, is inadequate when applied
to a fluid phase of chain molecules. A new effective diameter, which depends on
both temperature, chain length, and density is developed. When applied in the
perturbation theory, a major improvement in the prediction of VLE and isotherms
is observed. Furthermore, we show that the calculation of VLE is very sensitive
to any approximations made for describing the radial distribution function (rdf)
of the hard-chain reference fluid. As an example, it is demonstrated that Chiew’s
PY2 approximation [219] for the hard-chain rdf results in an overestimation of the
attractive contribution to the EoS, leading to a significant overestimation of vapor-
liquid critical points. We show that inaccuracies of this kind can be overcome by
the use of molecular simulation data for the rdf [218, 220, 221] .

This chapter is organized as follows. In the following section, we discuss the
molecular model underlying the equations of state. After that we present the details
of the MC simulations performed. In Section 6.4, we lay out the perturbation theory
and develop the new effective segment size for LJ chain fluids. After that, the
equations of state are simplified by developing analytical functions for the first and
second order perturbation terms. Finally, the equations of state are extended to
mixtures. In Section 6.5, computed VLE, vapor pressure curves and isotherms are
compared to molecular simulation results obtained in this work and from literature.
Our findings are summarized in Section 6.6.

6.2 Molecular model and intermolecular potentials
As in previous chapters, a molecule is assumed as a homo-segmented chain of m
segments. Molecular flexibility is introduced by the rod-coil model laid out in Sec-
tion 2.2 of this thesis. Both a SW- and LJ 12-6 potential are evaluated to model
dispersive intermolecular interactions between the segments of chains. The interac-
tion energy between two segments, both separated by a radial distance r, is thus
calculated as

uSW(r) =

 ∞ for r < σ
−ε for σ ≤ r ≤ λσ
0 for r > λσ

(6.1)
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or

uLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(6.2)

Here, ε and σ are the depth of the potential well and the segment size parameter,
respectively. For interactions between chains of different type, these are calculated
from the usual Lorentz-Berthelot combining rules, according to [222, 223]

σij =
σii + σjj

2
(6.3)

εij =
√
εiiεjj (6.4)

where σii and εii are the potential parameters of a chain of type i. For pure com-
ponent systems, these subscripts will be dropped. For the SW potential, the range
of the attractive interactions is set to λ = 1.5.

6.3 Simulation details
Molecular simulations were conducted as Monte Carlo simulations in the grand-
canonical ensemble (GCMC), i.e. for a defined chemical potential µ, temperature
and volume. We performed simulations for the VLE as well as for pure-component
isotherms. The molecule number N is a fluctuating quantity in GCMC simulations.
For both types of simulations we divided the N -space into windows of ∆N = 10
and performed an individual GCMC simulation for each window [224, 225]. Any
trial move for inserting or deleting molecules beyond the dedicated interval ∆N , is
trivially rejected. For an efficient and even sampling of the histogram p(N) within
each window, we applied a transition matrix (TM) sampling scheme and applied a
TM bias function [226]. For windows of higher molecule numbers, corresponding to
liquid-like densities, we applied a configurational-bias scheme [129, 130] for improved
statistics of molecule insertions, deletions, and reconfigurations. The volume of the
system was set to V = 2000σ3. The LJ interactions were calculated for segments
belonging to different chains and for segments within the same chain separated by
two or more bonds. All interactions were truncated at 4σ. Standard long-ranged
tail corrections were applied [116].

GCMC simulations require the definition of chemical potentials. For isotherms
we obtained the chemical potentials for each window in N -space from the EoS pro-
posed in this work. The isotherms were then calculated similar to the procedure
described by Shen and Errington [225]. Properties along an isotherm, such as pres-
sure and chemical potential, are determined from histogram reweighting techniques
in a post-processing step. We determined the equilibrium chemical potential for
any defined molecule number N(µ, V, T ) = 〈N〉, by summing over the probability
distribution 〈N〉 =

∑Nmax

i=1 p(i) · i. In doing so, our results much improved for the
low density range compared to the procedure in Ref. [225].

Phase equilibria were calculated using a similar approach as for the calculation
of isotherms, except that both, the chemical potential µ and the temperature of
the windows in N -space were estimated from the EoS described here. The values
of µ and T are determined to approximately trace the vapor-liquid phase envelope.
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Histogram reweighting then allows the calculation of the actual phase equilibrium
properties in a post processing step. The critical point is determined by applying
a mixed field scaling approach [227, 228], without performing a finite size scaling
extrapolation [229]. Insofar we here report apparent critical points, that carry some
system size dependence. For a more detailed description of the simulation procedure
we refer to Ref. [230].

6.4 Equation of state
To develop the EoS, we apply a perturbation theory [54]. In doing this, it is assumed
that the radial distribution function (rdf) [54] of a fluid is primarily determined by
interactions between repulsive molecular cores. Following from this argument, one
can write the Helmholtz energy of a system of N molecules at absolute temperature
T as a sum of a repulsive reference contribution (A0) and an attractive perturbation
contribution (Apert), according to

A

V kT
= a = a0 + apert (6.5)

Here, k is Boltzmann’s constant and a = A/V kT is a reduced Helmholtz energy
density.

Different methods have been proposed to split the intermolecular potential into
a repulsive and an attractive part [54, 55, 126, 127, 231]. In the present work, we
use the method as originally proposed by Barker and Henderson (BH) [55, 126]. We
thus obtain

u0(r) =

{
u(r) for r < σ
0 for r ≥ σ (6.6)

upert(r) =

{
0 for r < σ
u(r) for r ≥ σ (6.7)

For LJ fluids, it is common to map the properties of the soft-repulsive reference
fluid as defined by Eq. (6.6) to those of a hard-repulsive reference fluid by using
an ’effective’ temperature-dependent segment diameter d(T ). The use of such an
effective hard-sphere segment diameter is convenient since the properties of hard
repulsive fluids are generally more readily obtained from theoretical methods than
those of soft repulsive fluids. In the original BH theory, which was developed for
spherical molecules, the effective segment diameter dBH was calculated from the
following integral [54, 55]

dBH(T ) =

∫ σ

0

(
1− exp

(
−u(r)

kT

))
dr (6.8)

In the present work we show that, when applied to chain fluids, the segment size
resulting from this equation is too small. As a result, when used in the perturbation
theory, computed VLE and isotherms are of poor quality. In Section 6.4.3, we
develop a simple expression for the effective segment diameter of chain fluids.
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6.4.1. Reference fluid
The EoS of the hard-chain reference fluid is calculated from the sum of an ideal (id),
a hard-sphere (hs) and a hard-chain (hc) contribution, according to

a0 = aid + ahs + ahc (6.9)

For a canonical, NC-component mixture, the ideal contribution to the reduced Helm-
holtz energy density is obtained from

aid =

NC∑
i

ρi
[
ln
(
ρiΛ

3
i

)
− 1
]

(6.10)

where ρi = Ni/V is the number density of molecules of component i and Λi is a
thermal de Broglie wavelength.

Since we will consider both, mixtures of chains with equally- and non-equally
sized segments, the hard-sphere contribution is obtained from the expression of
Boublík [232] and Mansoori et al. [233], according to

ahs = ρs
1

ζ0

[(
ζ3
2

ζ2
3

− ζ0
)

ln(1− ζ3) +
3ζ1ζ2
1− ζ3

+
ζ3
2

ζ3(1− ζ3)2

]
(6.11)

where ρs =
∑
imiρi is the total segment density of the system and the quantity

ζn = (π/6)
∑
i ρimid

n
ii. Please note that ζ3 = η, where η is the packing fraction of

the system.
To calculate the hard-chain contribution, the LHrc EoS (Chapter 3) is used. The

hard-chain contribution is thus calculated as

ahc = −
NC∑
i

ρi(mi − 1) ln y(i),j,j+1 −
NC∑
i

ρi(mi − 2) ln y(i),j,j+2 (6.12)

where the cavity correlation function of the nearest- (j, j + 1) and next-to-nearest
(j, j + 2) neighbouring segments in a chain of type i are calculated as, respectively

ln y(i),j,j+1 =
(3− a2 + b2 − 3c2)η − (1− a2 − b2 + c2)

2(1− η)

+
1− a2 − b2 + c2

2(1− η)2
− (c2 + 1) ln(1− η)

(6.13)

ln y(i),j,j+2 =
mi − 1

mi

[
(−a3,i + b3,i − 3c3,i)η − (−a3,i − b3,i + c3,i)

2(1− η)

+
−a3,i − b3,i + c3,i

2(1− η)2
− c3,i ln(1− η)

] (6.14)

with a2 = 0.45696; b2 = 2.10386; c2 = 1.75503 and

a3,i = p(1) + p(2)χR,i + p(3)χ2
R,i + p(4)χ3

R,i (6.15)

b3,i = 3.49695− 3.81467χR,i (6.16)
c3,i = 4.83207− 1.35191χR,i (6.17)
ppp = (−0.74745, 0.29915, 1.08727, −0.70898) (6.18)

The rigidity parameter χR,i of a component i was defined in Eq. (2.1).
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6.4.2. Contribution due to attractive perturbation
To start, let us assume a pure component system of N chain molecules at a tem-
perature T . In the framework of a second order BH theory, the contribution to the
Helmholtz energy due to dispersive intermolecular attractions can then be written
as a sum of a first and second order term, according to

apert = a1 + a2 (6.19)

Following Barker and Henderson, we treat the first order term exactly, while the sec-
ond order term is calculated based on the local compressibility approximation [126]
(LCA). For simplicity, the density derivatives associated with the LCA are calcu-
lated for a constant segment size d. Although this introduces some approximation
(since d as developed later in this chapter includes a density dependence), we ver-
ified the effect is negligible compared to a ’correct’ application of the LCA. For
pure-component systems, we obtain

a1 =
2πρ2

kT

m∑
α=1

m∑
β=1

∫ ∞
σ

u(r)ghc
αβ(r)r2dr (6.20)

a2 = − πρ2

(kT )2
mK0

∂

∂ρ

ρ m∑
α=1

m∑
β=1

∫ ∞
σ

u2(r)ghc
αβ(r)r2dr


d

(6.21)

Here we have introduced the segment-segment radial distribution function (rdf) of
the hard-chain reference fluid, ghc

αβ(r,m, χR, η), which is a measure for the proba-
bility to find a segment α of chain 1 at a radial distance r from a segment β of
chain 2, averaged over the positions of all other segments in the system. In the re-
mainder, only the r-dependence of the rdf will be written explicitly. The isothermal
compressibility of the hard-chain reference system K0 = kT (∂ρ/∂P0)T enters the
equation for a2 due to the use of the LCA. K0 is obtained from the compressibility
factor of the hard-chain reference system Z0 = P0/ρkT , as

K0 =

(
Z0 + ρ

(
∂Z0

∂ρ

)
d

)−1

(6.22)

where Z0 is calculated using the simplified version of the LHrc EoS from Eq. (3.8).
For mixtures of chains with unequally-sized segments, the use of the simplified LHrc
EoS to calculate K0 introduces some approximation since Eq. (3.8) implicitly as-
sumes the Carnahan-Starling equation for the hard-sphere contribution. We verified
that the effect of this approximation is negligible.

To proceed, it is convenient to introduce an averaged rdf, according to [219]

ghc(r) =
1

m2

m∑
α=1

m∑
β=1

ghc
αβ(r) (6.23)

Due to the averaging, all segments in a chain are now indistinguishable. The use of
an averaged rdf introduces no approximation. Upon introducing a reduced radial
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distance x = r/σ and potential energy ũ(x) = u(xσ)/ε, the perturbation contribu-
tions can be recast in the following dimensionless form

a1 = 2πρ2m2 ε

kT
σ3I1 (6.24)

a2 = −πρ2mK0m
2
( ε

kT

)2

σ3 ∂

∂ρ
(ρI2)d (6.25)

Here we have introduced the abbreviations I1 and I2 for the correlation integrals.
For SW chain fluids, these are obtained from the following equations

ISW
1 (m,χR, η) = −

∫ λ

1

ghc (xσ)x2dx (6.26)

ISW
2 (m,χR, η) = −ISW

1 (m,χR, η) (6.27)

For LJ chain fluids, the rdf is calculated for an effective hard-chain reference fluid of
segment size d. As a result, the correlation integrals become temperature dependent:

I1(m,χR, η, T ) =

∫ ∞
1

ũ(x)ghc
d (xσ)x2dx (6.28)

I2(m,χR, η, T ) =

∫ ∞
1

ũ2(x)ghc
d (xσ)x2dx (6.29)

We should note that in the application of the above two equations, a subtle point
arises. In a correct application of the concept of an effective segment size to at-
tractive chain fluids, the bond distance between neighbouring segments in a chain
molecule should be σ. Therefore, a suitable rdf of the reference fluid would be for a
fluid of hard segment diameter d and bond distance σ. Applying a rdf for chains of
tangent hard spheres of diameter d and bond distance d, constitutes an approxima-
tion. Although this is a commonly employed approximation [68, 69, 73], its effect
on calculated thermodynamic properties is difficult to assess a priori.

Let us now consider the calculation of the rdf of the hard-chain reference fluid.
Although the rdf will clearly have some dependence on the degree of flexibility (χR)
of the chains, we will neglect this dependence and assume the rdf of a fully flexible
chain fluid can be used. This approximation seems reasonable, since the effect of
intramolecular flexibility is already considered explicitly in the reference contribution
to the EoS. Moreover, the approximation is convenient since the rdf of fully flexible
tangent hard-sphere chain fluids can be obtained accurately from recently published
MC data [218]. In a previous study [71], the rdf was obtained from an integral
equation theory of Chiew, which was based on a Percus-Yevick closure (PY2) [219].
We found that (for m > 2) this approximate rdf leads to systematically too high
values when compared to MC simulations. To illustrate the approximation that
comes with the PY2 approach, we calculated the VLE of fully flexible SW- and
LJ 8-mers from the 2nd order perturbation theory detailed above, using both the
rdf obtained from MC simulations and the PY2 theory. The calculations for the
LJ chain fluid are based on the original BH diameter from Eq. (6.8). In Fig. 6.1,
the results are compared to MC simulation results of Escobedo and de Pablo [208].
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Figure 6.1: The VLE of (a) a fully flexible SW 8-mer fluid, and (b) a fully flexible LJ 8-mer fluid,
as obtained from MC simulations [208] (symbols) and a second order Barker-Henderson perturbation
theory. Theoretical results are obtained using (1) the Barker-Henderson diameter (dBH(T ), Eq. (6.8))
and rdf from the PY2 theory [219] (gPY2) as input (dashed line), and (2) the Barker-Henderson
diameter and rdf from MC simulations [218] (gMC) as input (solid line). The results in this figure show
that the incorporation of MC data for the rdf in the calculation of the correlation integrals improves
the description of VLE. Furthermore, the results suggest that the original Barker-Henderson diameter
calculated from Eq. (6.8) underestimates the effective segment size of the segments in LJ chain fluids.

Due to the overestimation of the rdf, the perturbation terms a1 and a2 calculated
from the PY2 theory are too negative, leading to a large overestimation of the VL
critical temperature and a poor prediction of vapour-liquid coexistence densities.
The VLE calculated using MC data for the rdf is clearly in better agreement with
the simulated phase envelope. For the SW 8-mer, good agreement with simulation
data is obtained. For the LJ 8-mer, however, a significant discrepancy with the
VLE as obtained from MC simulations remains. Although a perturbation theory
truncated at second order will always result in an overestimation of the VL critical
temperature (because density fluctuations characterizing the critical point are only
partly described), the overestimation of saturated liquid densities is too pronounced
to be attributed to the truncation of the perturbation expansion. Given the high
accuracy of the hard-chain reference EoS [128], the reason for the discrepancy must
be sought in the perturbation terms or in the link between the hard- and soft
repulsive reference system. As the possible sources of error, we therefore identity
(1) the LCA approximation used for the 2nd order perturbation term, or (2) the
use of the original BH diameter to describe the soft repulsion of LJ chain fluids. As
the LCA approximation is known to lead to an underestimation of liquid densities
at the low-temperature part of the VLE [234], the overestimation of liquid densities
that is observed in Fig. 6.1 (b) must be caused by the use of the BH diameter. In
fact, given the large overestimation of the critical temperature, the effective segment
size must be underestimated.
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6.4.3. New effective segment diameter for LJ chain fluids
The effective segment size should allow a mapping of the properties of a soft repul-
sive fluid onto those of a hard repulsive fluid. For the original BH diameter from
Eq. (6.8), such a mapping was obtained from a scheme in which the Helmholtz
energy of a system of soft repulsive spheres (with intermolecular potential defined
by Eq. (6.6)) is expanded about the Mayer-f function of a hard-sphere reference
system [54]. In this scheme, the BH diameter follows from forcing the first order
term in the expansion to zero. Although, in principle, the resulting effective segment
size should depend on both temperature and density [54], the density dependence
is minor for typical fluid densities of spherical fluids and was therefore not included
in the original BH diameter [55].

Evidently, to develop an effective segment size for LJ chain fluids, one should
find a way to relate a fluid of soft chains to that of hard chains. In principle, one
could opt to establish such a relation by extending the above discussed expansion
method to chain fluids. In the present work, however, we take a different approach
by directly including simulation data in the development. To start, we consider the
low-density limit, for which the effective segment size can be obtained from equating
second virial coefficients:

Bsc
2 (T ∗,m, σ) = Bhc

2 (m, d(T ∗,m, ρ∗s = 0)) (6.30)

Here, we have introduced the dimensionless temperature T ∗ = kT/ε and the short-
hand notation ’sc’ for ’soft chain’. It is important to note that, unlike the Helmholtz
energy contributions in Eq. (6.9), the superscripts ’sc’ and ’hc’ are here meant as
total contributions. For example, Bhc

2 is the total second virial coefficient of a fluid
of hard chains, which includes a hard-sphere contribution and a contribution due to
chain formation.

Using a MC integration method (see Chapter 2 for details), we calculated second
virial coefficients of hard chains of length m ={1 2 3 5 8 16} and σ = {0.8 0.85 0.9
0.95 0.98 1.0}. For each chain length, a power law in σ was fitted to the results.
Next, we calculated second virial coefficients of soft chain fluids of the same chain
lengths m at dimensionless temperatures T ∗ ={0.7 1.0 1.5 2.0 3.0 5.0 7.0 10.0 15.0
20.0}. For each temperature we solved Eq. (6.30) for d(T ∗,m, ρ∗s = 0), the results
of which are compared to the original BH diameter in Fig. 6.2. As expected, the
results suggest that the effective diameter of the segments in a LJ chain are larger
than those of unbonded LJ spheres. For long chains the diameter seems to approach
an asymptotic value.

Given that, for ρ∗s < 1, the original BH diameter dBH(T ∗) is known to give
an accurate representation of the soft repulsion of LJ spheres [54, 235], the close
agreement to our computed d(T ∗,m = 1, ρ∗s = 0) could suggest d(T ∗,m, ρ∗s = 0) is
also a good representation of the effective segment size of LJ chains. Unfortunately,
this is not the case. Using the GCMC method from Section 6.3, we calculated
isothermal pressures of soft chain fluids of length m={1 2 3 4} in the range ρ∗s =0-
1.0 and T ∗ = 2-20. For tabulated simulation results, the reader is referred to the
Supporting Material of Ref. [236]. We compared simulation results to those obtained
from the LHrc EoS for the hard-chain reference fluid, calculated using either the
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Figure 6.2: The chain-
length- and temperature
dependence of the low-
density limit of the reduced
effective segment diameter
d∗(T ∗,m, ρ∗s = 0) =
d(T ∗,m, ρ∗s = 0)/σ of LJ
chain fluids. The symbols
are obtained from equating
second virial coefficients
of hard- and soft-chain
fluids (see Section 6.4.3
for details); the lines are
correlation results from
Eq. (6.31). Results for the
original Barker-Henderson
diameter (Eq. (6.8)) are
also included for comparison
(dashed line).

original BH diameter dBH(T ∗) or d(T ∗,m, ρ∗s = 0) for the effective segment size,
respectively. For all analysed systems, the results show indeed that the use of
d(T ∗,m, ρ∗s = 0) leads to a better description of the low-density regime. For larger
densities, however, a significant overestimation of simulated pressures is observed.
We verified that, for the chain lengths considered here, the hard-chain reference
EoS is accurate to within statistical uncertainty of molecular simulations [132, 237];
therefore, we conclude that the observed deviations are due to inaccuracies in the
effective segment size. The effective segment size of LJ chain fluids thus needs to be
density dependent.

To obtain a closed analytical function for d(T ∗,m, ρ∗s), we adapt a functional
form with a temperature dependence as proposed by Cotterman, Schwartz and
Prausnitz [238], as

d(T ∗,m, ρ∗s)
σ

=
1 +A(m, ρ∗s)T

∗

1 +B(m, ρ∗s)T ∗ + C(m, ρ∗s)T ∗2
(6.31)

For the chain-length dependence of the coefficients A, B and C, a functional form
as proposed by Hu, Liu and Prausnitz [125] is used:

A(m, ρ∗s) = A0(ρ∗s) +A1(ρ∗s)
m− 1

m
+A2(ρ∗s)

m− 1

m

m− 2

m
(6.32)

B(m, ρ∗s) = B0(ρ∗s) +B1(ρ∗s)
m− 1

m
+B2(ρ∗s)

m− 1

m

m− 2

m
(6.33)

C(m, ρ∗s) = C0(ρ∗s) + C1(ρ∗s)
m− 1

m
+ C2(ρ∗s)

m− 1

m

m− 2

m
(6.34)

This chain length dependence distinguishes between nearest- and next-nearest neigh-
bor effects in chain molecules. Moreover, it is capable of reproducing the asymptotic
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Table 6.1: The model constants needed
to calculate the effective segment size
from Eqs. (6.31)-(6.35).

i 0 1 2
α0i 0.30798 0.0051388 0.011117
α1i 0.012390 0.011109 −0.039209
α2i −0.089339 −0.030677 0.016732
β0i 0.34222 0.033920 −0.016202
β1i −0.0024993 −0.044614 0.022757
β2i −0.093741 0.017545 −0.033500
γ0i 0.00096376 0.00037270 0.000083571
γ1i −0.00043261 −0.00044912 −0.00031474
γ2i −0.00033133 −0.000041420 0.00044615

behaviour as observed in Fig. 6.2. Regarding the density dependence of the coeffi-
cients, a simple quadratic proved to be sufficient:

A0(ρ∗s) = α00 + α01ρ
∗
s + α02ρ

∗2
s

A1(ρ∗s) = α10 + α11ρ
∗
s + α22ρ

∗2
s

. . .

B0(ρ∗s) = β00 + β01ρ
∗
s + β02ρ

∗2
s

. . .

C2(ρ∗s) = γ20 + γ21ρ
∗
s + γ22ρ

∗2
s

(6.35)

The model constant αi0, βi0, and γi0 with i ={0 1 2} govern the low-density limit;
accordingly, these were correlated to the data for d(T ∗,m, ρ∗s = 0) as obtained
from Eq. (6.30). As can be observed in Fig. 6.2, the correlation is excellent. To
obtain the remaining model constants, we assumed the LHrc EoS for the reference
fluid, and correlated our MC simulation results for the isothermal pressure of soft-
chain fluids of length m ={1 2 3 4} at various temperatures T ∗ (see Supporting
Material of Ref. [236] for MC data). A very good regression result is obtained,
with an average percentage relative deviation per data-point of 0.32% (compared
to a deviation of 4.06% if no ρ∗s-dependence is included). To validate the use of
Eq. (6.31) for chain lengths larger than included in the parameter regression, we
calculated the isothermal pressure and chemical potential of soft 8-mer fluids for
various T ∗ from GCMC simulations. In Fig. 6.3, we compare simulations to theory.
Excellent agreement is obtained, suggesting the chain-length dependence is well
correlated. Furthermore, Fig. 6.4 shows that the use of the LHrc EoS for the hard-
chain reference fluid in combination with the effective segment size from Eq. (6.31)
results in a very good prediction of second virial coefficients. The model constants
needed to calculate d(T ∗,m, ρ∗s) from Eq. (6.31) are listed in Table 6.1.

It is important to note that the use of the LHrc EoS in obtaining part of the model
constants of Eq. (6.35) does not limit the application of Eqs. (6.31)-(6.35) to this
hard-chain reference EoS only. For the chain lengths (m = {1 2 3 4}) and densities
involved in the fitting, the LHrc EoS is as accurate as molecular simulations results;
therefore the effective segment size calculated from Eq. (6.31) can be considered
general, and can be used in combination with any hard-chain reference EoS.
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Figure 6.3: Isothermal pressure and density-dependent part of the chemical potential of a soft BH
repulsive 8-mer at (a) T ∗ = 3, and (b) T ∗ = 20, as obtained from MC simulations and theory.
Theoretical results are obtained from the LHrc EoS, using the newly developed effective segment from
Eq. (6.31) (red, dashed-dotted lines), its low density limit (dotted lines), and the Barker-Henderson
diameter (dashed lines), respectively. The figure in the inset shows the percentage relative deviation
(RD) of the theoretical results to simulation data. Simulation data is provided in tabular form in the
Supplementary Material of Ref. [236].
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Figure 6.5: The effect of
intramolecular flexibility on
the low-density limit of the
reduced effective segment
diameter d∗(T ∗,m, ρ∗s =
0) = d(T ∗,m, ρ∗s = 0)/σ.
Results are shown for linear
(χR = 1), partially flexible
(χR = 0.5), fully flexible
(χR = 0) and semi-flexible
(Ub = εb(θ − π)2, εb =
10) chain fluids of length
8. The results are ob-
tained from equating second
virial coefficients of hard-
and soft-chain fluids (see
Section 6.4.3 for details).
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Table 6.2: Model constants needed to cal-
culate the coefficients aSWi (Eq. (6.40))
for calculating the first correlation integral
ISW1 (η,m) (Eq. (6.36)) of SW chain flu-
ids. The coefficients bSWi (Eq. (6.41)) needed
to calculate the second correlation integral
ISW2 (η,m) (Eq. (6.37)) are obtained from the
exact relation bSWi = (i+ 1)aSWi .

i aSWi0 aSWi1 aSWi2

0 0.79049 -0.59512 -0.15824
1 1.1232 0.49131 -0.10393
2 0.076584 0.88750 0.53747
3 -1.4019 -0.035067 -0.020518
4 -1.9080 -0.72597 -0.51281

To quantify the effect of chain flexibility on the effective segment size, we used the
second virial method from Eq. (6.30) to calculate the low-density limit d(T ∗,m, ρ∗s =
0) for linear (χR = 1.0), partially flexible (χR = 0.5) and semi-flexible (with har-
monic bond-bending potential ub = εb(θ − π)2 and εb = 10) chains of length 8.
In Fig. 6.5, we compare the results to those previously calculated for fully flexible
(χR = 0) 8-mers. The differences are small. While, in principle, the correlation for
d(T ∗,m, ρ∗s) from Eq. (6.31) is strictly developed for fully flexible chain fluids, these
results suggest it could also provide a reasonable approximation for the effective
segment size of chains of different flexibility constraints.

In summary, we propose an accurate EoS for BH-repulsive chain fluids (Eqs. (6.9)-
(6.17) and (6.31)), that serves as a reference for the development of an EoS for LJ
chains with variable degree of molecular flexibility.

6.4.4. Simplified perturbation terms
It is now our target to obtain simple analytical functions for the correlation integrals
from Eqs. (6.28)-(6.29). Since the description of SW chain fluids does not involve
the use of any effective segment size, the correlation integrals of SW-chains depend
on chain length m and packing fraction η only. For LJ chain fluids, an additional
temperature dependence exists.

Using tabulated MC data for the average segment-segment rdf of the hard-chain
reference system, taken from Refs. [221] (m = 1), [220] (m ={2 8}), and [218]
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(m ={3 4 5 6 7 8}), respectively, we calculated the correlation integrals over a range
in packing fraction η={0-0.5} (the exact range depending on the MC data for rdf),
and dimensionless temperature T ∗={0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.8 3.4
3.8 4.2 5 6 8 10 15 20} (only for LJ). In the calculations for LJ chain fluids, the
effective segment size was obtained from Eq. (6.31). Moreover, for LJ chain fluids
we included additional data for I2 of a chain molecule of m = 100000 at a packing
fraction η = 10−7 in the fitting. The values of I2 for this case were set to 40% of
the PY2 result. The reason for doing this is to avoid non-physical negative values
of I2 for very long (m > 100) chain fluids. For both SW and LJ chain fluids, the
results were correlated by the following power law in packing fraction

ISW
1 (m, η) =

4∑
i=0

aSW
i (m)ηi (6.36)

ISW
2 (m, η) =

4∑
i=0

bSW
i (m)ηi (6.37)

ILJ
1 (m, η, T ∗) =

4∑
i=0

aLJ
i (m,T ∗)ηi (6.38)

ILJ
2 (m, η, T ∗) =

4∑
i=0

bLJ
i (m,T ∗)ηi (6.39)

where the chain-length dependence of the coefficients ai and bi is again obtained
from the functional form of Hu, Liu and Prausnitz [125, 128]

aSW
i (m) = aSW

io + aSW
i1

m− 1

m
+ aSW

i2

m− 1

m

m− 2

m
(6.40)

bSW
i (m) = bSW

io + bSW
i1

m− 1

m
+ bSW

i2

m− 1

m

m− 2

m
(6.41)

aLJ
i (m,T ∗) = aLJ

io (T ∗) + aLJ
i1 (T ∗)

m− 1

m
+ aLJ

i2 (T ∗)
m− 1

m

m− 2

m
(6.42)

bLJ
i (m,T ∗) = bLJ

io (T ∗) + bLJ
i1 (T ∗)

m− 1

m
+ bLJ

i2 (T ∗)
m− 1

m

m− 2

m
(6.43)

For SW chains, a total of 15 adjustable model constants was used for the fitting (see
Table 6.2). For LJ chain fluids, the additional temperature dependence resulted in
a total of 31 adjustable model constants. Both the temperature dependence and
the model constants are displayed in Table 6.3. As can be observed in Fig. 6.6,
the regression result is excellent, with an average relative deviation per data point
of 0.3% for ILJ

1 and 0.5% for ILJ
2 . For SW chain fluids, the results are of similar

accuracy. For brevity, the results for I2 are not included in the Figures. An in-
teresting observation is the decreased temperature dependence of the correlation
integrals for longer chain lengths. Intuitively, this result seems correct as for longer
chains the shielding of a segment by the other segments in a chain becomes more
pronounced, leading to a smaller contribution of the soft intermolecular repulsion
to the interactions between molecules.
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Table 6.3: Temperature dependence and model constants needed to calculate the coefficients
aLJ
i

--- (Eq. (6.42)) and bLJ
i

------ (Eq. (6.43)) for calculating the first correlation integral ILJ
1 (η,m, T ∗)

(Eq. (6.38)) and second correlation integral ILJ
2 (η,m, T ∗) (Eq. (6.39)) of LJ chain fluids, respectively.

i aLJ
i0 /bLJ

i0 aLJ
i1 /bLJ

i1 aLJ
i2 /bLJ

i2

0 p(1) p(11) p(22)

1 p(2) + p(3)
√
T∗ p(12) + p(13)

√
T∗ p(23)

2 p(4) + p(5)
√
T∗ p(14) + p(15)

√
T∗ p(24) + p(25)

√
T∗ + p(26)T∗

3 p(6) + p(7)
√
T∗ + p(8)T∗ p(16) + p(17)

√
T∗ + p(18)T∗ p(27) + p(28)

√
T∗ + p(29)T∗

4 p(9) + p(10)
√
T∗ p(19) + p(20)

√
T∗ + p(21)T∗ p(30) + p(31)

√
T∗

--- ppp = [-0.8891, -0.7272, 0.02675, -0.6859, 0.8927, 3.432, -1.364, -0.1390, -1.702, 1.269, 0.4016, -0.3407, -0.2923,
-0.6860, -0.3161, -3.007, 3.256, 0.01125, 6.271, -3.800, 0.1086, 0.4057, -2.145, 9.963, 0.5556, 0.09979, -20.30, -3.779,
-0.1887, 13.53, 5.007]
------ ppp = [0.4065, 0.6205, -0.02278, -0.02908, -0.4997, 1.008, -0.03263, 0.1068, -3.432, 0.2455, -0.2902, 0.1989, 0.1308,
-0.1802, 0.4156, 2.426, -0.6577, -0.1061, -1.999, -0.9246, 0.1546, -0.09634, -0.1705, 0.6318, -0.2604, -0.02258, -0.4699,
0.9034, 0.01521, -0.2431, -0.1696]

Figure 6.6: The first correlation
integral ILJ

1 (m, η, T ∗) for vari-
ous chain lengths m, tempera-
tures T ∗ and packing fractions
η. The results in (a) are for
η = 0.3, except for m = 1
and m = 2 which correspond
to η = 0.2618. The results in
(b) are for T ∗ = 3.4. The sym-
bols are obtained from solving
the integral from Eq. (6.28) us-
ing MC data [218, 220, 221] for
the rdf of hard-chain fluids (see
Section 6.4.4 for details). The
results for m = 1 and m = 2
correspond to η = 0.2618. The
lines are correlation results from
Eq. (6.38). The results for the
second correlation integral ILJ

2
and the correlation integrals for
SW chain fluids are of similar ac-
curacy (not shown for brevity).
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6.4.5. Effective segment size and perturbation contribution for
mixtures

Let us now extend our results to mixtures. The effective segment size is treated
as a pure-component property. Hence, we calculate dii(T ∗,m, ρ∗s) from Eq. (6.31),
using T ∗ = kT/εii, m = mi and ρ∗s =

∑
i ρimiσ

3
ii. For the calculation of the per-

turbation contributions, we assume Van der Waals one-fluid mixing rules [239, 240].
Accordingly, the perturbative part of the Helmholtz energy is mapped onto a pseudo
one-component fluid, which is described by the following molecular parameters

ε̄ =

∑
i

∑
j ρiρjmimjεijσ

3
ij∑

i

∑
j ρiρjmimjσ3

ij

(6.44)

σ̄3 =

∑
i

∑
j ρiρjmimjσ

3
ij∑

i

∑
j ρiρjmimj

(6.45)

m̄ =

∑
i

∑
j ρiρjmimj∑
i

∑
j ρiρj

(6.46)

Using this approach, the two perturbation contributions from Eqs. (6.24)-(6.25) can
be written as

a1 = 2πρ2
(
m̄2 ε̄

kT
σ̄3
)
Ī1 (6.47)

a2 = −πρ2m̄K0

(
m̄2
( ε̄

kT

)2

σ̄3

)
∂

∂ρ

(
ρĪ2
)
d

(6.48)

where the correlation integrals of the mixture Ī1 and Ī2 are calculated by substituting
m̄ for m and T ∗ = kT/ε̄ for T ∗ in Eqs. (6.36)-(6.39).

In the following section we proceed by comparing VLE and isotherms of both
SW- and LJ chain fluids as obtained from our simplified perturbation theory to
those obtained from molecular simulations. Additionally, the effect of molecular
flexibility on the phase behavior is investigated.

6.5 Results and Discussion
6.5.1. Fully flexible SW chains
We start our analysis by comparing theoretical results as obtained from the EoS
developed in this chapter to molecular simulation data for the VLE and isotherms
of SW chain fluids and their mixtures. SW fluids represent the most basic test of
perturbation theory, because the reference fluid is temperature independent.

In Fig. 6.7, we compare the VLE of several fully flexible SW chain fluids as
obtained from the perturbation theory to results obtained from molecular simula-
tions [205, 208, 241]. For the regarded chain lengths, very good agreement between
theory and simulations is observed. For comparison, we included theoretical results
as obtained from the SAFT-VR EoS of Gil-Villegas et al. [68]. As for the EoS devel-
oped in this work, the SAFT-VR EoS is based on a second order BH perturbation
theory with the local compressibility approximation (LCA) for the second order
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Figure 6.7: The VLE of fully flexible SW
chain fluids. The solid lines are results
from the perturbation theory developed in
this work. The dotted lines are calculations
based on the SAFT-VR EoS of Gil-Villegas
et al. [68]. The symbols are MC simulation
results of Vega et al. [241] (m = 1), Yethiraj
and Hall [242] (m = 2), and Escobedo and
de Pablo. [208] (m = 4, m = 16).
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Figure 6.8: Isotherms of (a) a fully flexible SW 8-mer, and (b) a fully flexible SW 16-mer. Lines are
results obtained from the perturbation theory developed in this work using the LHrc EoS (solid lines)
and the TPT1 EoS (dotted lines) for the hard-chain reference fluid. Symbols are MC data of Escobedo
and de Pablo. [208] (m = 8) and Tavares et al. [207] (m = 8, m = 16).
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Figure 6.9: Dimensionless pressure (P ∗ = Pσ3
11/ε11) vs. mole fraction (x2) representation of the VLE

of a binary mixture of SW monomers (component 1) and SW dimers (component 2) at a reduced
temperature of (a) T ∗r = T ∗/T ∗c,1 = 0.967 and (b) T ∗r = 1.049, where T ∗ = kT/ε11 and Tc,1 is the
critical temperature of the pure monomeric fluid. Solid lines are results obtained from the perturbation
theory developed in this work (T ∗c,1 = 1.3219, P ∗c,1 = 0.14270). Dashed lines are calculations based on
the SAFT-VR EoS [74]. Symbols are MC data of Davies et al. [74] (T ∗c,1 = 1.22, P ∗c,1 = 0.108).

perturbation contribution. The difference is that the SAFT-VR approach is based
on a spherical reference fluid (perturbed-sphere method).

In Fig. 6.8, we proceed by comparing isotherms of SW chain fluids as obtained
from the perturbation theory to molecular simulation results [207, 208]. For all
temperatures included, good agreement is obtained. For comparison, we included
some results obtained from using the TPT1 EoS [59, 122] for the hard-chain reference
fluid. As can be observed, the use of this EoS leads to a weaker description of
simulation data.

In Figs. 6.9 and 6.10, we analyse the performance of the EoS in describing molec-
ular simulation results [74, 243] for VLE and isotherms of SW-chain fluid mixtures.
The VLE are presented in terms of reduced quantities (i.e. relative to critical prop-
erties). A representation in reduced variables eliminates any inaccuracies introduced
by the small overestimation of the pure-component critical properties (see Fig. 6.7).
Agreement between simulations and theory is satisfactory and is comparable to that
obtained from the SAFT-VR EoS [74].
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Figure 6.10: Compressibility factor Z = P/ρkT vs. packing fraction η of several asymmetric binary
mixtures of SW monomers (component 1) and SW dimers (component 2) at a dimensionless tempera-
ture of (a) T ∗ = kT/ε11 = 2.0, and (b) T ∗ = 3.0. Solid lines are results obtained from the perturbation
theory developed in this work. Symbols are MD data of Gulati and Hall [243].

6.5.2. Fully flexible LJ chains
In Fig. 6.11, the VLE of fully flexible LJ chain fluids as obtained from the pertur-
bation theory developed in this work is compared to the results from MC simula-
tions [208, 244–248]. For both the vapour-liquid coexistence densities and vapour
pressure, we find satisfactory agreement between theory and simulations. Especially
the description of vapour pressures is noteworthy. We should stress that, compared
to Fig. 6.1, the improved results shown here are a result of the effective segment size
from Eq. (6.31). The overall satisfactory agreement between theory and simulation,
however, is a result of all three ingredients of the perturbation theory; namely, the
accurate EoS for the reference fluid, the effective segment size from Eq. (6.31), and
the MC data for the averaged segment-segment rdf of the hard-chain reference fluid.
To demonstrate the effect of using a reference EoS different than the LHrc EoS, we
included results for the VLE of a LJ 50-mer based on the TPT1 EoS [59] and TPT2
EoS [60] for the hard-chain reference fluid. Especially in the intermediate density
region TPT loses some of its accuracy for chains longer than 8 segments. As shown
in Fig. 6.11, these inaccuracies result in a rather poor description of the VLE of LJ
50-mers.

As could be expected from a perturbation theory up to second order, the critical
temperature is overestimated for all systems considered. For chain lengths m = 1
and m = 2 we find a small underestimation of coexistence densities in the dense
liquid phase. As pointed out by Paricaud [234], discrepancies of this kind are caused
by the use of the LCA for the second order perturbation term. The reason these
underestimations are not observed for larger chain lengths could be due to the larger
overestimation of the critical temperature of these fluids, which leads to a shift
of liquid coexistence densities to somewhat larger values. Another reason could
be small inaccuracies in the correlation integrals ILJ

1 and ILJ
2 (Eqs. (6.38)-(6.39))

for chain lengths longer than those used in their development. We observed that,
compared to the first correlation integral, the second correlation integral converges
more slowly to its asymptotic value at large chain lengths. Therefore it might be that
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Figure 6.11: The VLE of fully flexible LJ chain fluids of segment number m. Figure (a) shows the
coexistence densities, and (b) presents the saturated vapour pressure P ∗vap = Pvapσ3/ε. The solid
lines are results from the perturbation theory developed in this work, based on the LHrc EoS for the
reference fluid. For comparison we included some results based on the TPT1 EoS (dash-dotted lines)
and TPT2 EoS (dotted lines) for the reference fluid. Symbols are MC simulation results of Lotfi et
al. [244] (m = 1), Vega et al. [245] (m = 2), Dubey et al. [246] (m = 2), MacDowell et al. [247]
(m = 4, m = 8, m = 16), Escobedo and de Pablo [208] (m = 4, m = 8, m = 16), and Sheng et
al. [248] (m = 50, m = 100). Results for 50-mers are displayed in blue.
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Figure 6.12: The VLE of fully flexible LJ chain fluids of segment number m, as obtained from the
perturbation theory developed in this work (solid lines), the SAFT-VR LJ EoS [73] (dashed lines), the
SAFT-VR Mie 2006 EoS [69] (dash-dotted lines), the SAFT-VR Mie 2013 EoS [70] (dotted lines),
and MC simulations (symbols). Diagram (a) shows the coexistence densities, and (b) presents the
saturated vapour pressure P ∗vap = Pvapσ3/ε. For visual clarity, the coexistence temperature in (a) is
shifted upwards by 0.1 for m = 8, and by 0.4 for m = 50. MC simulation results included are those of
Vega et al. [245] (m = 2), Dubey et al. [246] (m = 2), MacDowell et al. [247] (m = 8), Escobedo
and de Pablo [208] (m = 8), and Sheng et al. [248] (m = 50).
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in the development of ILJ
2 (Eq. (6.39)), we did not include sufficient MC data for the

hard-chain rdf of long chain fluids. Although there is MC data for the rdf of longer
(m = 20, m = 50, m = 100) hard-sphere chain fluids available in literature [251], we
found that inclusion of this data in the calculation of the correlation integrals leads
to irregular scaling behaviour with chain lengthm. For this reason, we choose not to
include additional MC data for the rdf of longer hard-chain fluids in the calculation
of the correlation integrals.

It is instructive to compare the results obtained from our perturbed-chain method
to those obtained from a perturbation theory based on a spherical reference fluid
(perturbed-sphere method). Perturbed-sphere equations of state that were devel-
oped on equal grounds as the perturbed-chain EoS presented in this work (i.e. 2nd
order Barker Henderson theory, LCA for a2, no correlation to simulation data of
attractive chain fluids) are the SAFT-VR LJ EoS of Davies et al. [73] and the 2006
version of the SAFT-VR Mie EoS of Lafitte et al. [69]. It is noteworthy that other
perturbed-sphere methods are available that perform better than SAFT-VR LJ and
SAFT-VR Mie 2006. State-of-the-art models, in this respect, are the soft-SAFT EoS
of Blas and Vega [67] (which was developed based on the EoS of Johnson and Gub-
bins [212, 249]) and the 2013 version of the SAFT-VR-Mie EoS of Lafitte et al. [70].
For soft-SAFT, the description of the LJ-sphere reference fluid is obtained from an
accurate empirical EoS [249]. The SAFT-VR Mie approach describes the LJ-sphere
reference fluid based on a third order BH perturbation theory. The second and
third order perturbation terms of this approach were parametrized to macroscopic
properties, namely to MC results for the VLE of Mie chain fluids. In Fig. 6.12, we
compare VLE and vapor pressures as obtained from the SAFT-VR LJ EoS, SAFT-
VR Mie 2006 EoS, and SAFT-VR Mie 2013 EoS to those obtained from the EoS
developed in this work. As expected, the SAFT-VR Mie 2013 EoS results in the
most accurate description of saturated liquid densities and the critical region. For
vapor phase properties, however, the perturbation theory developed in this work
results in the most faithful description of simulation data.

In Fig. 6.13, we compare isothermal pressures as obtained from the perturbation
theory to results from MC simulations [212, 249]. For all temperatures and chain
lengths considered, agreement between theory and simulations is excellent. As can
be observed in Fig. 6.13 (c), the use of a density-dependent segment size d(T ∗,m, ρ∗s)
is essential to come to a reliable description of simulation data. When the original
BH diameter dBH(T ∗), or the low-density limit d(T ∗,m, ρ∗s = 0), is used instead,
isothermal pressures are under- and overestimated, respectively.

In Figs. 6.14 and 6.15, theoretical predictions for VLE and isothermal pressures
of LJ chain fluid mixtures are compared to results obtained from molecular sim-
ulations [67, 250]. Given that some of the mixtures involve triple (m, σ and ε)
asymmetries, agreement between simulations and theory is very satisfactory.
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Figure 6.13: Isothermal pressure of fully flexible LJ chain fluids of (a) m = 2, (b) m = 8, (c) m = 16,
and (d) m = 100. Solid lines are results obtained from the perturbation theory developed in this work.
Dotted lines are results obtained from using the original Barker-Henderson diameter dBH(T ∗) instead of
Eq. (6.31) to calculate the effective segment size; dash-dotted lines are results obtained from using the
low-density limit of Eq. (6.31) d(T ∗,m, ρ∗s = 0) to calculate the effective segment size. For comparison,
some results obtained from the SAFT-VR LJ EoS [73] (dashed lines) were included. Symbols are MC
data of Johnson and Gubbins. [212, 249]
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Figure 6.14: Dimensionless pressure (P ∗ =
Pσ3

11/ε11) vs. mole fraction (x1) repre-
sentation of the VLE of an asymmetric bi-
nary mixture of LJ dimers (σ11/σ22 = 1.0,
ε11/ε22 = 1.33) at a reduced temperature
of T ∗r = T ∗/T ∗c,1 = 0.7848, where T ∗ =

kT/ε11 and Tc,1 is the critical temperature
of a pure fluid of component 1. Solid lines are
results obtained from the perturbation the-
ory developed in this work (T ∗c,1 = 1.9421,
P ∗c,1 = 0.10439). Symbols are MC data
of Blas and Vega [67]. For simulation re-
sults, the critical properties of the pure fluid
of component 1 were obtained from the MC
data of Vega et al. [245] using conventional
scaling laws. We obtain T ∗c,1 = 1.784,
P ∗c,1 = 0.07784. Please note that our criti-
cal pressure is different than that obtained in
the original paper of Vega et al. [245] due to
an error in their application of the Clausius-
Clapeyron equation.
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Figure 6.15: Compressibility factor Z = P/ρkT vs. dimensionless segment density ρ∗s of two different
asymmetric binary mixtures of LJ 4-mers (component 1) and LJ 8-mers (component 2) at several
dimensionless temperatures T ∗ = kT/ε11. Solid lines are results obtained from the perturbation theory
developed in this work. Symbols are MD data of Reis et al. [250].
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6.5.3. Effect of molecular flexibility on VLE

We now turn to the effect of molecular flexibility on the VLE. In order to study
this, we performed MC simulations to calculate the VLE of fully flexible and rigid
linear SW- (m = 4) and LJ chain fluids (m = {3, 4, 5}). For tabulated simulation
data, the reader is referred to the Supporting Material of Ref. [236]. In Fig. 6.16 we
compare simulation results to those from literature, as obtained by Escobedo and de
Pablo [208] (fully flexible SW 4-mers), Galindo et al. [216] (rigid linear LJ 5-mers),
MacDowell and Blas [247] (fully flexible LJ 4-mers), and Blas et al. [252, 253] (fully
flexible- and rigid linear LJ 3- 4- and 5-mers). Please note that to allow for a clear
distinction of simulation results, the results for LJ 4- and 5-mers are shifted upwards
by 0.2 and 0.4 in T ∗, respectively. Good agreement between different simulation
results is obtained. Upon increasing the rigidity of the chains, our simulations show
(1) a widening of the VLE (i.e. smaller saturated vapour density, larger saturated
liquid density), (2) an increase of the critical temperature Tc, and (3) a decrease of
the critical density ρc.

In Fig. 6.17, we compare simulation results for fully flexible- and rigid linear
SW 4-mers to those obtained from the perturbation theory developed in this work.
Both simulations and theory predict an increase of the VL critical temperature and
a widening of the VL region with increasing rigidity of the chains. For rigid linear
chains, the liquid side of the diagram is more accurately predicted than the vapour
side. The reason for this is most probably that our use of the rdf of fully flexible
hard-sphere chains in the calculation of the perturbation terms of rigid linear chain
fluids is more harsh an approximation at low densities. Altogether, given that the
theory only includes the effect of molecular flexibility through the reference fluid,
we view the agreement between theory and simulations as very promising. Please
note that for other chain lengths than those shown in Fig. 6.17, the theory predicts
the same trends with molecular rigidity.

As we show in Fig. 6.18, the effect of flexibility on the VLE of LJ chain fluids is
less well described as that of SW chain fluids. As for SW chains, the perturbation
theory gives the wrong trend of the critical density with flexibility. For LJ chains,
however, the trends of the critical temperature and vapour density with flexibility
of the chains are also incorrectly predicted. The theory does capture the effect of
molecular flexibility on the liquid densities. The weaker results for the effect of flexi-
bility on the VLE of LJ chain fluids (compared to SW chains) is caused by the use of
the effective segment size. One might suspect that a lacking of any χR-dependence
in d(T ∗,m, ρ∗s) could be the underlying reason. However, the results from Fig. 6.5
suggest the effective segment size of rigid linear chain fluids is somewhat larger than
that of fully flexible chains, corresponding to a lower—not higher—critical tempera-
ture. A more probable cause of errors is the use of a hard-chain rdf of segment size d
and bond-length d in the calculation of the correlation integrals, Eqs. (6.28)-(6.29).
Considering a hard-chain fluid with segment diameter d and bond-length d is not
strictly correct, because the segment distance should be σ. In future work, we plan
to evaluate the effect of this approximation by comparing our perturbation terms
to those obtained from MC simulations.
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Figure 6.16: The VLE of fully flexible (diamonds) and rigid linear (circles, crosses) SW- (a) and LJ
chain fluids (b) as obtained from MC simulations performed in this work (open symbols) and literature
(closed symbols, crosses). For visual clarity, the results for LJ chains of m = 4 and m = 5 are shifted
upwards by 0.2 and 0.4, respectively. Literature data included in this figure are those of Escobedo and
de Pablo [208] (fully flexible SW 4-mers), MacDowell and Blas [247] (fully flexible LJ 4-mers), Blas et
al. [252, 253] (fully flexible LJ 3- and 5-mers, rigid linear LJ 3-, 4- and 5-mers) and Galindo et al. [216]
(rigid linear LJ 5-mers). The data of Galindo et al. [216] is shown by the crosses. For tabulated results
of the simulations performed in this work, the reader is referred to the Supporting Material of Ref. [236].
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Figure 6.17: The VLE of fully flexible- (diamonds, dash-dotted line) and rigid linear (circles, solid
line) SW 4-mers as obtained from the perturbation theory developed in this work (lines) and molecular
simulations of this work (symbols).
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Figure 6.18: The VLE of fully flexible- (diamonds, dash-dotted line) and rigid linear (circles, solid
line) LJ 5-mers as obtained from the perturbation theory developed in this work (lines) and molecular
simulations of this work (symbols).

6.6 Conclusion
We have developed two new perturbed-chain equations of state for attractive chain
fluids with varying degree of flexibility. The two models are for tangent SW- and
-LJ chain fluids and their mixtures in isotropic (vapour and liquid) phases. The EoS
was derived in the framework of a 2nd order Barker-Henderson perturbation theory.
To arrive at a satisfactory comparison between calculated VLE of flexible SW- and
LJ chain fluids to those obtained from molecular simulations, some modifications
to the original recipe of Barker and Henderson were required. Firstly, it was shown
that the original BH diameter is insufficient for approximating the soft repulsion
between the segments of LJ chain fluids. A new effective segment size was developed
that explicitly incorporates the chain-connectivity of segments. Moreover, the new
segment size was shown to be density dependent. Second, it was demonstrated that
small inaccuracies in the rdf of the hard-chain reference fluid can lead to significant
errors in calculated VLE. We showed that these errors are small if a rdf obtained
directly from MC simulations is used. Finally, we showed the importance of using
an accurate EoS for the hard-chain reference fluid. In particular, it was shown
that commonly used EoS such as TPT1 lead to poor predictions of VLE of long LJ
chains. When using the more accurate LH EoS instead, a much better comparison
to MC data is obtained.

In Chapter 3, we developed an extension of the LH EoS to partially flexible and
rigid linear chain fluids. Using this extended EoS to calculate the reference contri-
bution, it is possible to model the effects of intramolecular flexibility on the VLE
of SW- and LJ chain fluids. MC simulations were performed to validate theoretical
results. For both SW- and LJ chain fluids, our simulations show the following trends



6

130 6 Equation of state for isotropic fluids

of the VLE with increased rigidity of the chains: (1) a widening of the VLE (larger
saturated liquid density, smaller saturated vapour density), (2) a shift of the critical
temperature to higher values, and (3) a shift of the critical density to lower values.
For SW chain fluids, theoretical results are in good agreement with results from
MC simulations; all trends but that of the critical density were correctly predicted.
For LJ chain fluids, the theoretical description captured the widening of the vapour
liquid envelope with increasing chain rigidity, but did not capture the shift of critical
properties. We suspect that this is due to our application of an effective segment
size in the calculation of the perturbation contributions to the EoS. In future work,
we plan to test this by comparing the perturbation terms to those obtained from
molecular simulations.

In agreement with previous studies on the subject [216, 252–255], the results
obtained in this chapter show that the effect of molecular flexibility on the isotro-
pic (vapour-liquid) phase behavior of attractive chain fluids is quite small. If the
equation of state is coupled to a suitable description of anisotropic phases (such
as solids or liquid crystals), however, it is expected these subtle effects can make
the difference for an accurate prediction of phase equilibria (cf. Chapter 3). An
extension of the EoS to anisotropic phases will be the subject of the next chapter.
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An equation of state for describing the isotropic phase,
nematic phase and isotropic-nematic phase transition
of Lennard-Jones chain fluids

An equation of state (EoS) is developed for describing isotropic-nematic (IN) phase
equilibria of LJ chain fluids. The EoS is developed by applying a second order Barker-
Henderson perturbation theory to a reference fluid of hard chain molecules. The chain
molecules consist of tangentially bonded spherical segments that are allowed to be fully
flexible, partially flexible (rod-coil) or rigid linear. The hard-chain reference contribution
to the EoS is obtained from the EoS that was developed in part A of this thesis. For
the description of the (attractive) dispersive interactions between molecules, we adopt a
segment-segment approach. We show that the perturbation contribution for describing
these interactions can be divided into an ’isotropic’ part, which depends only implicitly
on orientational ordering of molecules (through density), and an ’anisotropic’ part, for
which an explicit dependence on orientational ordering is included (through the nematic
order parameter). The isotropic contribution is calculated using the perturbation contri-
bution that was developed in Chapter 6. For the anisotropic contribution we propose an
orientation-dependent term, that is simplified to a mean-field form. The perturbation
theory is used to study the effect of chain length, molecular flexibility, and attractive
interactions on IN phase equilibria of pure LJ chain fluids. Theoretical results for the IN
phase equilibrium of rigid linear LJ 10-mers are compared to results obtained from MC
simulations in the isobaric-isothermal (NPT ) ensemble, and an expanded formulation
of the Gibbs-ensemble. Our results show that the anisotropic contribution to the disper-
sion attraction is irrelevant for LJ chain fluids. Using the isotropic (density-dependent)
contribution only (i.e. using a zero’th order expansion of the attractive Helmholtz en-
ergy contribution in the nematic order parameter), excellent agreement between theory
and simulations is observed. These results suggest that an EoS contribution for describ-
ing dispersion interactions in real LCs can be obtained from conventional theoretical
approaches designed for isotropic fluids, such as a (PC-)SAFT approach.

Parts of this chapter have been submitted to:
T. van Westen, B. Oyarzún, T.J.H. Vlugt and J. Gross J. Chem. Phys. (2015).
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7.1 Introduction
As discussed in the introduction chapter of this thesis, the development of nematic-
state theories originally evolved along two different paths. The first path, as pi-
oneered by Onsager [109], is based on the premise that intermolecular repulsions
are the dominant molecular attribute to mesophase formation; while the second
path, as pioneered by Born [256, 257], and later Maier and Saupe [10–12], is based
on the view that intermolecular attractions are dominant. While the view that
intermolecular repulsions are primarily responsible for nematic ordering seems well-
accepted now [19], it should be clear that the rich phase behaviour of thermotropic
LCs [32, 43] cannot be interpreted without a detailed account of the different types of
attractive interactions in a system (e.g. dispersion interactions, dipolar/multipolar
interactions, π − π interactions between aromatic cores, etc.).

Previous studies on attractive mesogens have shown that it is instructive to anal-
yse the effect of certain specific intermolecular interactions separately by studying
a suitably chosen model system [19, 258, 259, 259–261]. In the present chapter we
focus on dispersion interactions. Therefore, the hard-chain EoS that was developed
in part A of this thesis is extended to fluids where the segments of the chains interact
with Lennard-Jones potentials. Moreover, the isotropic-nematic phase behaviour of
this specific molecular model is studied by means of Monte Carlo (MC) simulations
in the isobaric-isothermal (NPT ) ensemble, and an expanded formulation [34] of
the Gibbs Ensemble (GE) [116, 262].

Our choice for a segment-based approach is somewhat unconventional. In com-
mon theoretical approaches for the description of attractive mesogens (see for exam-
ple the excellent review on generalized Van der Waals theory by Franco-Melgar et
al. [19]), the attractive interactions are modelled by a molecular-based pair potential
that involves an isotropic- (position-dependent) and several anisotropic (orientation-
dependent) contributions. Such an approach may at first be more intuitive than a
segment-based approach, since any orientation dependence of the attractive Helm-
holtz energy contribution follows naturally from the theoretical treatment of the
pair-potential model. In a segment-based approach, limited knowledge on higher
order correlation functions of the segments of the chains forces one to treat such
orientation dependencies—if any—from the outset. Here, we show that for LJ chain
fluids a reliable description of isotropic-nematic equilibria can be obtained using a
dispersive Helmholtz energy contribution that involves no explicit orientation de-
pendence. In principle, this suggests that an accurate theoretical description of the
dispersion interactions in real LCs can be obtained from conventional methods that
were developed for isotropic fluids (e.g. SAFT-like approaches [65, 66]). Since these
type of theories are relatively well-developed, this could imply a considerable sim-
plification of the description of anisotropic fluids. We consider this insight as the
main finding of this work.
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7.2 Molecular model and intermolecular potential
As in previous chapters, a molecule is assumed as a homo-segmented chain of m
segments. Molecular flexibility is introduced by the rod-coil model. To model the
dispersive pair-interaction between the segments of chains we assume a LJ 12-6
potential (Eq. (6.2)).

7.3 Simulation details
Molecular simulations were conducted for calculating isothermal pressures and isotro-
pic-nematic equilibria of rigid linear Lennard-Jones 10-mers. Isotropic-nematic equi-
libria were calculated from MC simulations in an expanded formulation of the iso-
metric (NV T ) Gibbs-ensemble [34, 116, 262]. For a detailed description of the
simulation method, the reader is referred to the recent work of Oyarzun et al. [34].
Although the focus of the work of Oyarzun et al. was on systems of hard chain
molecules, the simulation method was explained for any form of intermolecular pair
potential and thus also applies for the LJ chain molecules considered in this work.
Here, we provide a brief overview of the method, and list simulation details specific
to this work.

As in the usual NV T Gibbs-ensemble [116, 262], two simulation boxes a and b
are employed, which are kept in thermodynamic contact by exchanging molecules
and volume. In the expanded method as employed in this work, the exchange of
molecules is performed gradually by a coordinated coupling/decoupling of a frac-
tional molecule in each simulation box [34]. Similar as in the Continuous Fractional
Monte Carlo method of Maginn and co-workers [263–265], the gradual exchange
facilitates the transferring of molecules between boxes. The fractional state is char-
acterized by a coupling parameter λ, which simultaneously defines the number of
interacting (by Eq. (6.2)) segments of the fractional molecules in both boxes, i.e. λ
interacting segments in simulation box a and m − λ interacting segments in simu-
lation box b. A Monte Carlo cycle is defined by N trial moves, selected from dis-
placement, rotation, reptation, volume change and coupling parameter changes [34],
with a relative probability of 100:100:10:1:1000. The number of molecules (N) was
typically around 103. Maximum displacements, rotations, volume changes and cou-
pling parameter changes were adjusted for a maximum acceptance ratio of 20%.
Typically, we used 3× 106 MC cycles for equilibration, and 1× 106 for production.

Isotherms were calculated using Monte Carlo (MC) simulations in the isobaric-
isothermal (NPT ) ensemble [116]. MC moves were the same as for the GEMC
simulations, without the use of the coupling parameter move. A number of N =
500 molecules was used in each simulation. 3 × 106 MC cycles were required for
equilibration and 1× 106 cycles were used for production.

For all simulations, the LJ interactions were evaluated for segments of different
chains and segments within the same chain that are separated by two or more
bonds. Interactions were truncated at 2.5σ and standard long-ranged tail corrections
were applied [116]. Isotropic initial configurations were generated in a cubic box,
whereas nematic initial configurations were started from a rectangular box with a
typical ratio of edge lengths equal to 1:1.1:1.2. The phase type was monitored by
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calculation of the nematic order parameter S2, which was defined in Eq. (1.2).

7.4 Theory
7.4.1. Equation of state
As in Chapter 6, we apply a perturbation approach to develop the EoS of nematic
LJ chain fluids. Accordingly, the Helmholtz energy A of a system of N molecules at
a temperature T is calculated from a reference contribution (A0), caused by repul-
sive interactions between molecular cores, and a perturbative contribution (Apert),
caused by attractive interactions, as

βA

V
= a = a0 + apert (7.1)

Here, β−1 is the product of Boltzmann’s constant k with absolute temperature T ,
and a = βA/V is a reduced Helmholtz energy density.

To calculate the reference contribution to the EoS (a0) we employ the truncated
form of the Vega-Lago rescaled Onsager theory that was developed in Chapter 5 of
this thesis. The residual Helmholtz energy of the isotropic fluid that is required in
this approach is obtained from the LHrc EoS from Chapter 3. Since, in contrary
to our analysis from Chapters 3 and 5, we are here concerned with softly repulsive
fluids, the reference EoS is calculated using the effective segment size that was
developed in Chapter 6.

To account for attractive dispersion interactions between the segments of LJ
chain molecules, the perturbation contribution from Eq. (7.1) is divided into an
isotropic- and anisotropic part, according to

apert = apert
iso + apert

aniso (7.2)

By definition it follows that

apert
aniso = ∆I→N|ρ,T a

pert = apert − apert
iso (7.3)

It is important to note that the anisotropic term defined as such should not be
confused with a contribution due to an anisotropic intermolecular potential (as for
example in Ref. 19). Instead, it reflects the difference between a nematic and (hy-
pothetical) isotropic fluid of the same density and temperature, as the operator
∆I→N|ρ,T indicates. The anisotropic contribution therefore solely encompasses the
effect of orientational ordering on the attractive Helmholtz energy of a system at
fixed density. The density change that accompanies a phase transition from an iso-
tropic to an orientationally ordered (nematic) phase is captured by the isotropic
contribution.

The isotropic contribution apert
iso is calculated using the 2nd order BH perturba-

tion theory from Chapter 6. Since the BH approach involves no particular assump-
tions regarding the nature of the phase [55, 126], the same procedure as in Chapter 6
can in principle be applied to nematic fluids. To first order, the anisotropic disper-
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sion contribution of a pure fluid is thus calculated as

ãpert
aniso = ∆I→N|ρ,T ã

pert =
2πρ

kT

m∑
α=1

m∑
β=1

∫ ∞
σ

u(r)∆I→N|ρ,T g
hc
d,αβ(r)r2dr (7.4)

As for the isotropic perturbation contribution, we can now introduce an averaged
segment-segment rdf (Eq. (6.23)), and by introducing dimensionless quantities x =
r/σ and ũ(x) = u(xσ)/ε, we obtain

ãpert
aniso = 2πρ

(
m2 ε

kT
σ3
)

∆I→N|ρ,T I1 (7.5)

∆I→N|ρ,T I1 =

∫ ∞
1

ũ(xσ)∆I→N|ρ,T g
hc
d (xσ)x2dx (7.6)

The integral ∆I→N|ρ,T I1 over the difference of the correlation function of an isotropic
and nematic fluid of the same temperature and density depends on the molecular
architecture (m,χR), density (ρ), temperature (T ), and the degree of orientational
order of the nematic phase. To proceed, some approximations are required. We take
a Van der Waals approach, i.e. the dependence of ∆I→N|ρ,T I1 on temperature is
neglected, and the dependence on density is treated at the mean-field level. These
approximations are reasonable because the relevant density range is limited and
because temperature acts on the rdf of the isotropic and nematic fluid in a similar
manner (i.e. through the effective segment size). Furthermore, we assume the
dependence of ∆I→N|ρ,T I1 on the degree of orientational order can be decoupled
from all other dependencies. Specifically, we assume ∆I→N|ρ,T I1 scales with the
orientational order parameter (S2) squared. Given that S2 varies between zero
(isotropic phase) and unity (perfect nematic phase), we can expand ∆I→N|ρ,T I1 in
S2

2 , according to

ãpert
aniso = −2πρ

(
m2 ε

kT
σ3
)
amf

{
ξ1S

2
2 + ξ2S

4
2 + ξ3S

6
2 + . . .

}
(7.7)

Here, amf is an mean-field integration constant, and ξi are expansion parameters of
order i. We analyze the expansion up to first order, leading to the following result
for the anisotropic dispersion contribution

ãpert
aniso = −2πρ

(
m2 ε

kT
σ3
)
ξLCS2

2 (7.8)

ξLC = amfξ1 is a (positive) parameter which can be interpreted as a measure for the
effect of orientational ordering on the dispersive Helmholtz energy contribution of a
system at a specified density and temperature. In the present work, ξLC is considered
as a constant. In the Onsager Trial Function approximation, the order parameter
becomes an explicit function of the variational parameter α, and is calculated as [18]

S2 = 1− 3 coth(α)

α
+

3

α2
(7.9)
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Table 7.1: GEMC results for the isotropic-
nematic equilibrium of rigid linear LJ 10-mers.
We show dimensionless temperature T ∗ =
kT/ε, pressure P ∗ = Pσ3/ε, isotropic and ne-
matic coexistence densities ρ∗s,I and ρ

∗
s,N (where

ρ∗s = ρmσ3), and the nematic order parameter
S2.

T ∗ P ∗ ρ∗s,I ρ∗s,N S2

6 0.83 0.420 0.582 0.899
7 1.17 0.423 0.544 0.851
8 1.57 0.439 0.537 0.830
9 1.92 0.438 0.527 0.805

10 2.30 0.444 0.523 0.788

7.4.2. Solving the phase equilibrium
Phase equilibrium between two phases A and B follows from equality of temperature
T , pressure P , and chemical potential µ in both phases, according to TA = TB,
PA = PB, µA = µB. The pressure and chemical potential are obtained from the
reduced Helmholtz energy ã as βP/N = − (∂ã/∂V )NT and βµ = ã + Z, where
Z = βP/ρ is the compressibility factor.

To calculate the pressure and chemical potential of a nematic fluid, one first
has to find the equilibrium degree of orientational order, as characterized by α.
For a specified temperature and density, αeq follows from a minimization of the
total Helmholtz energy, as calculated from Eq. (7.1). It can therefore be obtained
self-consistently from the EoS by solving the following non-linear equations(

∂a

∂α

)
Tρ,α=αeq

= 0 (7.10)(
∂2a

∂α2

)
Tρ,α=αeq

> 0 (7.11)

A modified Newton-Raphson method [194] was used to solve this problem.

7.5 Results and Discussion
7.5.1. Comparison to molecular simulations
For a proper evaluation of the perturbation theory developed in this chapter, GEMC
simulations were performed for a system of rigid linear LJ 10-mers at several dimen-
sionless temperatures T ∗. The simulation results are presented in Table 7.1. For the
temperatures included, the simulations indicate the existence of isotropic-nematic
phase equilibrium only. We performed two additional simulations for a lower tem-
perature, T ∗ = 4 and T ∗ = 5. For these temperatures, no stable nematic phase was
found. Although the results suggests the formation of a solid or smectic phase; no
definite conclusions could be made.

In Fig. 7.1, we compare simulation results to predictions from the perturbation
theory. In agreement with simulations, the theory predicts coexistence of isotropic
and nematic phases, without the appearance of a vapor-liquid equilibrium. At high
temperatures, the effect of the attractive interactions decreases and the isotropic-
nematic-equilibrium increasingly resembles that of the corresponding hard-chain
fluid of effective segment size d. At lower temperatures, the effect of attractive
interactions becomes more pronounced, leading to a significant widening of the
phase envelope.
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Figure 7.1: The phase diagram of rigid linear LJ 10-mers as obtained the perturbation theory developed
in this chapter (lines) for different values of the anisotropic parameter ξLC. Comparison to results
obtained from GEMC simulations (symbols).

To analyse the effect of the anisotropic dispersion contribution on the EoS, theo-
retical results are included for several values of the anisotropic parameter ξLC. Our
results clearly show that for ξLC = 0, the best agreement between simulations and
theory is obtained. For the isotropic coexistence densities, agreement is quantita-
tive. Due to small inaccuracies in the description of the purely repulsive reference
system (Chapter 4), nematic coexistence densities and the density difference at the
phase transition are slightly overestimated.

A further evaluation of the perturbation theory is included in Fig. 7.2, where we
compare predicted isothermal pressures and nematic order parameters (at T ∗ = 7)
to results obtained from NPT MC simulations. Agreement between theory and
simulations is very satisfactory. As for the isotropic-nematic equilibria, the best
agreement is obtained if the anisotropic parameter ξLC is set to zero. Theoretical
results for other values of ξLC were not included for clarity.

Given the good agreement between simulations and theory for ξLC = 0, we con-
clude that the difference between the dispersive Helmholtz energy contribution of an
isotropic and nematic fluid is mainly caused by the density difference between both
phases. The (direct) effect of orientational ordering on the attractive contribution
to the EoS (as reflected by ξLC) is very small, and can be neglected.
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Figure 7.2: Isothermal pressure (P ∗ = Pσ3/ε) and nematic order parameter (S2) of a system of
rigid linear LJ 10-mers at a temperature T ∗ = 7, as obtained from the perturbation theory (solid
lines) and NPT MC simulations (symbols). The simulated coexistence points were obtained from
expanded GEMC simulations. The dotted line connects the isotropic and nematic coexistence points as
obtained from the theory. Note that theoretical results are calculated based on the isotropic dispersion
contribution only (i.e. ξLC = 0.0).

7.5.2. Theoretical analysis of phase equilibria
We continue with a theoretical analysis of phase equilibria. Given the results
from the previous section, only the isotropic perturbation contribution is consid-
ered (ξLC = 0).

In Fig. 7.3, we show a typical phase diagram. The system under consideration
is a rigid linear LJ 5-mer. Three types of phase equilibria are observed. At high
temperatures, the effect of the attractive intermolecular interactions is negligible;
hence, in analogy to systems of purely repulsive molecules [52, 140, 146], only an
isotropic-nematic equilibrium is present. As the temperature is decreased, the at-
tractions become more prominent, leading to a widening of the isotropic-nematic re-
gion. Moreover, the attractions between the molecules stabilize the nematic phase,
thereby shifting the isotropic-nematic transition to lower densities. The soft re-
pulsion of the molecules (as described by the effective segment size d(T ∗,m, ρ∗s))
enhances this effect. At lower temperatures a vapor-liquid equilibrium appears.
When the temperature is decreased further, the vapor-liquid and liquid-nematic
equilibria coincide, leading to a vapor-liquid-nematic triple point. At temperatures
below the triple point, only a stable vapor-nematic equilibrium is obtained. Us-
ing the classification scheme of Varga et al. [266], the phase behaviour sketched in
Fig. 7.3 is defined as Type I behaviour. Other systems for which Type I behaviour
was predicted from theory are, for example, hard spherocylinders- [195, 267], hard
ellipsoids- [266, 267], and hard disks equipped with isotropic square-well attrac-
tions [20]. Type I behaviour was also observed in molecular simulation studies of
Gay-Berne fluids [268] or solutions of hard rod-like colloids in a solvent of spherical,
ideal polymer particles. Effectively, these colloid-polymer systems can be consid-
ered as pseudo one-component systems of attractive colloids due to polymer-induced
depletion interactions [94].

In Fig. 7.4, we analyze the effect of the chain length m on the phase equilibria
of rigid linear LJ chain fluids. An increase in chain length results in an increase
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Figure 7.3: The vapor-liquid (VL), liquid-nematic (LN), isotropic-nematic (IN) and vapor-nematic (VN)
equilibria of a system of rigid linear LJ 5-mers. Lines are results from the theory developed in this work
(ξLC = 0), symbols are MC data for VLE from Chapter 6. The vapor-liquid critical point estimated
from the MC data is drawn by the cross. The VLN triple point as obtained from the theory is denoted
by the squares, which are connected by the dotted line. We should stress that the theory does not
include a description of solid or smectic phases. In fact, for the system analyzed here, the LNE is most
likely metastable with respect to a liquid-solid equilibrium [216].
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Figure 7.4: The effect of chain length m on the phase diagram of rigid linear LJ chain fluids (ξLC = 0).
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of the vapor-liquid-nematic triple-point temperature. The reason is a stabilization
of the nematic phase, resulting from an increased anisotropy of the pair-excluded
volume of the molecules. The vapor-liquid critical temperature is less affected by
the increase in chain length. Therefore, beyond a certain chain length, the vapor-
liquid equilibrium becomes metastable and a single isotropic-nematic equilibrium
is obtained. Disappearing (metastable) vapor-liquid equilibria were predicted in
several previous theoretical studies on pure-component systems of attractive meso-
gens [20, 20, 162, 195, 266, 267] and this phase diagram is classified as Type
II [266]. Experimentally, Type II behaviour is observed in solutions of polypeptides
in DMF [269]. Given that the size of the solvent molecules relative to the polypep-
tides is very small, these systems can be considered as pseudo one-component sys-
tems of attractive macromolecules. Therefore, they present a relevant reference case
for our present discussion on pure-component systems. Also, Type II behaviour was
confirmed by molecular simulations of hard spherocylinders with polymer induced
attractive interactions [94].

When the chain length is increased to very large values (∼ 35), an additional
nematic-nematic equilibrium arises at the high-temperature part of the phase dia-
gram (see Fig. 7.5). The reason is that, due to the large anisotropy of the molecules,
the nematic phase forms at very low density. As a result, the mechanism that nor-
mally underlies the vapor-liquid equilibrium, i.e. condensation, can now prevail
in the anisotropic part of the phase diagram, leading to an equilibrium between a
low- and high-density nematic phase. The nematic-nematic equilibrium can thus
be interpreted as a Van der Waals-like “vapor-liquid” equilibrium in the anisotropic
phase. This type of behaviour, referred to as Type III behaviour [266], was ini-
tially predicted from a lattice theory for solutions of rigid polymers by Flory and
co-workers [13, 270]. Later, the same behaviour was predicted from several Onsager-
based approaches [20, 162, 195, 266, 267]. Experimentally, the existence of Type III
behaviour is observed for solutions of poly(γ-benzyl-L-glutamate) (PBLG) [269, 271,
272], -polysaccharide Schizophyllan [273, 274], and -hexa-alkylbenzene derivatives
of discotic LCs [275]. Very recently, Wu et al. [20] successfully used a coarse-grained
representation for PBLG in the framework of an Onsager-Van der Waals theory to
correlate the experimental data of the system of PBLG in dimethylformamide [269].

In Fig. 7.6, we analyze the effect of intramolecular flexibility on the phase be-
haviour by comparing the phase diagram of a rigid linear LJ 10-mer, a 10-9 rod-coil,
a 10-8 rod-coil and a 10-7 rod-coil. It can be observed that on making the molecules
partially flexible, the nematic phase is destabilized and therefore shifted to higher
density. The reason is a less anisotropic pair-excluded volume of molecules of in-
creased flexibility (Chapter 2). Another aspect that can be observed is that the
density difference at the isotropic-nematic equilibrium (for specified T ∗) decreases
with increased flexibility of the chains. The same result was found in Chapter 4 for
systems of purely repulsive chain molecules.
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7.6 Conclusion
We developed an EoS for describing the isotropic-nematic phase equilibrium of LJ
chain fluids. The EoS was developed by combining the EoS for the hard-chain refer-
ence fluid from Chapters 4-5 with the isotropic dispersion contribution from Chapter
6. Theoretical results for the isotropic-nematic equilibrium of rigid linear LJ 10-mers
were compared to results obtained from expanded NV T GEMC simulations. Excel-
lent agreement was observed. The perturbation contribution of an orientationally
ordered phase is in our approach expressed as that of a (hypothetical) randomly ori-
ented fluid of same density, plus an anisotropic part, namely the Helmholtz energy
contribution for the transition from the randomly oriented fluid to the ordered fluid
at constant density. Our study shows, that the anisotropic part is small and can be
neglected. This result implies that a reliable description of the dispersion interac-
tions of real nematic LCs can be obtained from a theoretical approach designed for
isotropic fluids, such as a (PC-)SAFT approach [65, 66, 72]. Given the relative ma-
turity of such isotropic-fluid theories, this could lead to a considerable simplification
of the description of anisotropic fluids. Other types of interactions, which clearly
depend on the orientation of molecules, such as multipolar interactions, could be
added as a separate contribution to the EoS (e.g. along the lines of Ref. 19).



Appendix A: The excluded volume for chains of
different length

In this appendix, we derive an equation for the excluded volume of two linear
homonuclear tangent hard sphere chains of arbitrary chain length m1 and m2 and
segment size σ. The starting point is the result of Williamson and Jackson [118] for
the excluded volume of linear chains of equal chain length m from Eq. (2.12). Cen-
tral in their analysis is a decomposition of the excluded volume of two chains with
perpendicular orientation (i.e. γ = π/2) into a central part and the excluded volume
of the chains in a parallel orientation (i.e. γ = 0), where the latter is available in
analytical form. For values of γ between the parallel and perpendicular limits the
decomposition is still valid, however for this case the volume of the central part is a
function of γ, i.e.

Vex(γ,m) = V ||ex(m) + Vc(γ,m) (7.12)

From a graphical representation of the excluded volume (see Figs. 4 (a), 4 (b) and 5
of Ref. [118] for details) Williamson and Jackson show that the volume of the central
region is equal to (m − 1)2 times the central region of the corresponding excluded
volume of two dimers Vc(γ;m = 2) [118]. Since the exact expression of Vc(γ;m = 2)
involves some lengthy integrals, a simple linear function of sin(γ) was fitted to the
numerical results to obtain

Vc(γ,m) = 3.5339(m− 1)2 sin(γ) (7.13)

For chains of arbitrary chain length m1 and m2, one can easily see from Fig. 5 of
Ref. [118] that the central region should correspond to (m1 − 1)(m2 − 1) times the
central region of the dimers, leading to

Vc(γ,m1,m2) = 3.5339(m1 − 1)(m2 − 1) sin(γ) (7.14)

Eq. (7.13) is a special case of this general result for mixtures.
For the parallel orientation, the excluded volume (large overlapping spheres of

diameter 2σ) of several pairs of linear chains (small spheres of diameter σ) is shown
in Fig. A.1 . The volume of the overlap region of the large spheres, marked in gray,
is identical for all cases and, as derived by Williamson and Jackson, is given by

Voverlap =
5

2
Vs (7.15)

Here, Vs is the volume of a sphere of diameter σ. Fig. A.1 shows that the excluded
volume of two linear chains in a parallel orientation depends on the average chain
length m̄12 (Eq. (2.21)) rather than on m1 and m2 separately, and we find a general
m̄12-dependence as

V ||ex(m̄12) = (2m̄12 − 1)VS − 2(m̄12 − 1)Voverlap (7.16)
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Figure A.1: The pair-excluded volume of linear homonuclear tangent hard-sphere chains (of segments
size σ) in a parallel orientation for different average chain lengths m̄12 (Eq. (2.21)). The large over-
lapping spheres with diameter 2σ (overlap region marked gray) make up the excluded volume.

Here VS = 8Vs is the volume of the large spheres that make up the excluded volume.
Using Eq. (7.15) we obtain the exact result

V
||
ex(m̄12)

Vm̄12

=
11m̄12 − 3

m̄12
(7.17)

where Vm̄12 is the molecular volume of a chain of m̄12 spheres of diameter σ. The
final result for the excluded volume of two chains of arbitrary chain length m1 and
m2 is then

Vex(γ)

Vm̄12

=
11m̄12 − 3

m̄12
+ 3.5339

(m1 − 1)(m2 − 1)

m̄12
sin(γ) (7.18)

It is important to note that we have not introduced any approximations in extending
Eq. (2.12) to this general result for mixtures.



Appendix B: A recursive TPT2 EoS for partially
flexible chains

To use TPT2 to describe partially flexible chain fluids, we combined the recursive
TPT2 equation that was developed by Phan et al. [137] with the work of Müller
and Gubbins [134] on the triplet correlation function. For clarity, we give a brief
summary of the equations in this section.

As shown by Phan et al. [137], the chain contribution of TPT2 can be obtained
from that of TPT1 [63] upon adding an additional term:

Ach
TPT2

NkT
=
Ach

TPT1

NkT
−

NC∑
i

xi ln[J2(mi,λλλi)] (7.19)

Here, J2 is a quantity that includes the three-body correlations in a fluid (in the
terminology of Phan et al. [137] it is defined as I2(M)/g(σ)M−1). The λλλi-vector
effectively contains the triplet correlation function of all m− 2 triplets in a chain of
component i. For a specific triplet j with a rigid bond-angle θb, λj is given by [134]

λrig
j =

g
(3)
hs (σ, σ, 2σ sin(θb/2))

[ghs(σ)]2
− 1 (7.20)

Here, g(3)
hs is the triplet correlation function of three tangentially bonded hard spheres

of diameter σ. Since it is generally difficult to obtain g(3)
hs , Müller and Gubbins [134]

defined a different triplet correlation function g0 as

g0 =
g

(3)
hs (σ, σ, 2σ sin(θb/2))

[ghs(σ)]2
(7.21)

Based on an integral equation approach of Attard [276], Attard and Stell [277]
reported tabulated values for g0 which were correlated by Müller and Gubbins [134]
using the following analytical expression

g0 =
1 + aη + bη2

(1− η)3
(7.22)

Here, a and b depend on the bond-angle θb. For a bond-angle of 180◦, a = −2.9643
and b = 2.5575. For other bond-angles, the values of a and b were tabulated by
Müller and Gubbins [134]. For fully flexible bonds, λj is calculated as [134]

λflex
j =

2

3

∫ π

π/3

λrig
i sin(θb)dθb (7.23)

Using Eqs. (7.20)-(7.22), Müller and Gubbins [134] evaluated the above integral
numerically and fitted the results to the following function

λflex
j = 0.233633η(1 + 0.472η) (7.24)
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This function can be used for a packing fraction up to 0.47. For the case that
all triplets in all chain molecules in the mixture are bound by the same flexibility
constraints (i.e. λj = λ), J2(mi,λλλi) can be calculated as [137]

J2(mi, λ) =
1√

1 + 4λ

[(
1 +
√

1 + 4λ

2

)mi
−
(

1−
√

1 + 4λ

2

)mi]
(7.25)

When this is substituted in Eq. (7.19), the common algebraic form of TPT2 is
retained. In Chapter 3, this algebraic form is used to describe linear or fully flexible
m-mers. For the more general case, where different flexibility constraints can be
defined for all bond-angles in a molecule, Phan et al. showed that J2(mi,λλλi) is
calculated from [137]

J2(mi, λ1, . . . , λmi−2) = J2(mi − 1, λ1, . . . , λmi−3)

+ λmi−2J2(mi − 2, λ1, . . . , λmi−4)

J2(m = 4, λ1, λ2) = 1 + λ1 + λ2

J2(m = 3, λ1) = 1 + λ1

J2(m = 2) = 1

(7.26)

In the main text, the above recursive equation is used to describe partially flexible
chain fluids. It can be shown that Eq (7.25) is a special case of this general result.



Appendix C: The decoupling approximation

In this appendix, the Onsager Vega-Lago (OVL) theory is derived based on Par-
sons’ decoupling approximation [49]. Although, originally, Parsons considered rigid
molecules (hard rods) only, his method is also perfectly valid for nonrigid chain
molecules.

Assuming pairwise additive intermolecular interactions, the compressibility fac-
tor Z = βP/ρ of an inhomogeneous system of anisotropic, nonrigid chain molecules
can be obtained from the pressure equation as [54]

Z = 1− β

6ρV

∫∫∫
r12

∂φ(rrr12, ω̃ωω1, ω̃ωω2)

∂r12
g(rrr12, ω̃ωω1, ω̃ωω2)ρ(r̃rr1)ρ(r̃rr2)dr̃rr1dr̃rr2 (7.27)

Here, g(rrr12, ω̃ωω1, ω̃ωω2) is the pair distribution function of molecules 1 and 2. The
intermolecular potential is defined as

φ(rrr12, ω̃ωω1, ω̃ωω2) =

{
∞ when r12 < σ(r̂̂r̂r12, ω̃ωω1, ω̃ωω2),
0 when r12 ≥ σ(r̂̂r̂r12, ω̃ωω1, ω̃ωω2).

(7.28)

where σ(r̂̂r̂r12, ω̃ωω1, ω̃ωω2) is the conformation-dependent contact distance. This contact
distance is a function of the conformations of molecules 1 and 2 and the orientational
unit vector r̂rr12 between the molecule’s centers of mass.

Since we are concerned with describing nematic phases, the single-molecule den-
sity can be factorized into a uniform number density and a conformational distri-
bution as ρ(r̃rr) = ρf(ω̃ωω) to obtain

Z = 1− β

6
ρ

∫∫∫
r12

∂φ(rrr12, ω̃ωω1, ω̃ωω2)

∂r12
g(rrr12, ω̃ωω1, ω̃ωω2)f(ω̃ωω1)f(ω̃ωω2)drrr12dω̃ωω1dω̃ωω1 (7.29)

The analogue of Onsager’s original second virial theory for nonrigid molecules is
obtained from the above equation by inserting the low-density limit of the pair
distribution function and integrating the pressure over the volume. To extend the
Onsager result to higher densities, Parsons used an improved approximation for the
pair distribution function which is usually referred to as the ’decoupling approx-
imation’. By writing both the intermolecular potential and the pair distribution
function as a function of a reduced intermolecular separation y = r12/σ(r̂̂r̂r12, ω̃ωω1, ω̃ωω2),
all translational and conformational dependencies can be decoupled, according to

Z = 1− β

6
ρ

∫
y3 ∂φ(y)

∂y
g(y)dy

∫∫∫
σ3f(ω̃ωω1)f(ω̃ωω2)dr̂rr12dω̃ωω1dω̃ωω2 (7.30)

The conformational part of this integral can be rewritten in terms of the pair-
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excluded volume, by writing

Vex(ω̃ωω1, ω̃ωω2) =

∫
(1− exp [−βφ(rrr12, ω̃ωω1, ω̃ωω2)]) drrr12 (7.31)

=

∫ r12=σ(r̂̂r̂r12,ω̃ωω1,ω̃ωω2)

r12=0

∫
r2
12dr12dr̂̂r̂r12

=
1

3

∫
σ(r̂̂r̂r12, ω̃ωω1, ω̃ωω2)3dr̂̂r̂r12

To deal with the discontinuity of the intermolecular potential in the translational
integral, a cavity correlation function Y (y) = g(y) exp(βφ) can be introduced as [54]∫

y3 ∂φ(y)

∂y
g(y)dy = − 1

β

∫
y3 ∂ exp(−βφ(y))

∂y
Y (y)dy (7.32)

For the hard, purely repulsive molecules considered in this work, the Boltzmann
factor is a Heaviside step-function, the derivative of which is a Dirac delta function.
Accordingly, the translational integral can be reduced to∫

y3 ∂φ(y)

∂y
g(y)dy = − 1

β
g(1+) (7.33)

Here, g(1+) is the value of the pair distribution function in the limit of contact ap-
proaching from above (contact value theorem) [54]. Inserting Eqs. (7.31) and (7.33)
in Eq. (7.30) one obtains

Z = 1 +
1

2
ρg(1+)

∫∫∫
Vex(ω̃ωω1, ω̃ωω2)f(ω̃ωω1)f(ω̃ωω2)dω̃ωω1dω̃ωω2 (7.34)

Using Eq. (2.6), this result can be recast in the form of a virial

Z = 1 + g(1+)B2[f(ω̃ωω)]ρ (7.35)

Finally, integration over density gives the residual Helmholtz energy
βAres

N
=

∫
Z − 1

ρ
dρ

= B2[f(ω̃ωω)]

∫
g(1+)dρ (7.36)

Let us now assume that g(1+) of the system being described can be approximated
by that of a reference system of the same molecular volume at the same packing
fraction. Assuming the virial from Eq. (7.40) is valid for the given reference system
(note that this is only exact for a system of hard spheres) we can write

g(1+) ≈ gref(1
+) =

(
Zref − 1

ρ

)
1

B2,ref
(7.37)

Substitution in Eq. (7.40) and integrating the compressibility leads to the following
result for the residual Helmholtz energy of a nematic fluid

βAres

N
=
βAres

ref

N

B2[f(ω̃ωω)]

B2,ref
(7.38)



Appendix D: Generalization of the Onsager-Vega-
Lago theory to mixtures

In this appendix, the mixture version of the OVL theory, as presented in Sec. 5.2, is
derived based on Parsons’ decoupling approximation [49]. Starting from the pressure
equation for mixtures of nonrigid chain molecules [54], one can follow the same
derivation as presented in Appendix C for pure-component systems, and use the
decoupling approximation to derive the following virial for the compressibility factor
of a nematic fluid mixture

Z = 1 +
∑
i

∑
j

xixjgij(1
+)B2,ij [f(ωωω)]ρ (7.39)

Here, gij(1+) is the radial distribution function (rdf) of two molecules of type i and
j at contact. We now introduce an averaged rdf gav(1+), according to

Z = 1 + gav(1+)
∑
i

∑
j

xixjB2,ij [f(ωωω)]ρ (7.40)

= 1 + gav(1+)B̄2 [f(ωωω)] ρ (7.41)

Assuming gav(1+) of the nematic fluid can be approximated by that of the isotropic
fluid at the same density, one can write

gav(1+) ≈ gav,iso(1+) =

(
Ziso − 1

ρ

)
1

B̄2,iso
(7.42)

which, when substituted in Eq. (7.40), leads to a generalized OVL theory for nematic
fluid mixtures, according to

Z = 1 + Zres
iso

B̄2 [f(ωωω)]

B̄2,iso
(7.43)

It is important to note that, compared to pure component systems, the above derived
result for mixtures is more approximate. The reason is that, due to the averaging
of the rdf over all components in the mixture, part of the many-fluid behavior is
lost. The accurate comparison of theory and molecular simulation results obtained
in this work (see Sec. 5.3.1 and 5.3.3), however, suggests that the larger part of
this behavior is retained by considering all individual pair-interactions of the fluid
mixture in the second virial coefficient.
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Summary

We developed an equation of state (EoS) for describing the isotropic- and nematic
fluid-phase behaviour of a prototypical model for liquid crystal (LC) molecules of
prolate type. The molecular model assumes a LC molecule as a chain of equally-sized
tangent spheres, the interaction of which is described by a Lennard-Jones potential.
To model the typical structure of real (thermotropic) LC molecules, one part of
the chain is allowed in a rigid linear conformation (referred to as ’rod’), while the
remaining part is fully flexible (referred to as ’coil’). By changing the ratio ’rod’ to
’coil’, the flexibility of a rod-coil molecule can be varied.

The EoS was developed using a perturbation theory. The description of the
repulsive reference fluid (part A of this thesis) was obtained from combining a novel
hard-chain EoS for isotropic fluids (Chapter 3) with a Vega-Lago rescaled Onsager
theory (Chapter 4-5) and an accurate analytical approximation for the orientation-
dependent pair-excluded volume of rod-coil molecules (Chapter 2). Due to the use
of the Onsager trial function for describing the orientational distribution function,
the reference EoS could be recast to a compact analytical form. Theoretical results
for the isotropic-nematic phase equilibrium and nematic order parameter of hard
rod-coil molecules were extensively tested against results obtained from molecular
simulations. Both, for pure-component systems and mixtures, excellent agreement
was obtained.

In part B of this thesis, we extended the reference model with a Lennard-Jones
potential for describing dispersion interactions between the segments of chains. A
Helmholtz energy contribution for describing these interactions was developed by
applying a second order perturbation theory of Barker and Henderson. Perturba-
tion terms were calculated using a novel effective segment diameter for chain fluids
(Chapter 6). The radial distribution function as required in the perturbation theory
was obtained from Monte Carlo simulations of fully flexible chain fluids. Theoretical
results for phase equilibria (e.g. vapour-liquid, vapour-nematic, liquid-nematic) of
LJ chains with variable degree of molecular flexibility were compared to results ob-
tained from molecular simulations. Overall, an accurate comparison was obtained.
Especially the accurate description of isotropic-nematic equilibria (Chapter 7) is
noteworthy. Given that the perturbation terms involve no explicit dependence on
the orientation of molecules we conclude that an EoS contribution for describing
dispersion interactions in real LCs can be obtained from conventional theoretical
methods designed for isotropic fluids, such as a (PC-)SAFT approach.
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Samenvatting

In dit werk ontwikkelen we een toestandsvergelijking voor het beschrijven van het
isotrope- en nematische fase-gedrag van een prototype model voor een (prolaat)
vloeibaar kristal. Het moleculaire model beschrijft de moleculen van een vloeibaar
kristal (nematogenen) als ketens van identieke bollen, wiens interactie wordt be-
schreven met een Lennard-Jones potentiaal. Om de typische moleculaire structuur
van echte (thermotrope) nematogenen te modelleren is een deel van de keten vastge-
legd in een rigide lineaire configuratie (waaraan gerefereerd wordt als ‘rod’), terwijl
de rest van de keten volledig flexibel is en dus alle configuraties kan aannemen
(waaraan gerefereerd wordt als ‘coil’). Door de ratio ‘rod’ ten opzichte van ‘coil’ te
veranderen kan de flexibiliteit van een rod-coil molecuul gevarieerd worden.

De toestandsvergelijking is ontwikkelt door middel van een perturbatietheorie.
De beschrijving van de repulsieve referentie-fluid (deel A van dit proefschrift) is
verkregen door het combineren van een nieuwe toestandsvergelijking voor de iso-
trope fase van harde-keten-moleculen (Hoofdstuk 3) met een Vega-Lago geschaalde
Onsager-theorie (Hoofdstuk 4 en 5) en een nauwkeurige analytische benadering voor
het oriëntatie-afhankelijke uitgesloten volume van twee rod-coil moleculen (Hoofd-
stuk 2). Door gebruik te maken van de Onsager-trial-functie kon de toestandsver-
gelijking voor de referentie-fluid herschreven worden tot een compacte, analytische
vorm. Theoretische resultaten voor het evenwicht tussen de isotrope en nematische
fase en de orde-parameter bij evenwicht zijn uitgebreid vergeleken met resultaten
verkregen uit moleculaire simulaties. Zowel voor systemen met maar één component
als voor mengsels van meerdere componenten vinden we goede overeenstemming tus-
sen theorie en simulaties.

In deel B van dit proefschrift wordt het referentie-model uitgebreid met een
Lennard-Jones potentiaal voor het beschrijven van (dispersieve) attractieve inter-
acties tussen de segmenten van de ketenmoleculen. Een Helmholtz-energie bijdrage
voor het beschrijven van deze interacties is ontwikkelt door een tweede-orde per-
turbatietheorie van Barker en Henderson toe te passen. De perturbatie-bijdragen
zijn berekend op basis van een nieuwe effectieve segmentgrootte voor ketenmole-
culen (Hoofdstuk 6). The radiale verdeelfunctie is verkregen uit Monte Carlo si-
mulaties voor volledig flexibele ketenmoleculen. Theoretische resultaten voor fase-
evenwichten (e.g damp-vloeistof, damp-nematisch, vloeistof-nematisch) van LJ ke-
tenmoleculen met variabele graad van moleculaire flexibiliteit zijn uitgebreid verge-
leken met resultaten verkregen uit moleculaire simulaties. Theorie en simulaties zijn
in goede overeenstemming. Vooral de nauwkeurige beschrijving van het isotroop-
nematisch evenwicht (Hoofdstuk 7) is opmerkelijk. Gegeven dat de perturbatie-
bijdragen niet expliciet afhangen van de oriëntaties van de ketenmoleculen, kan
er geconcludeerd worden dat een Helmholtz-energie bijdrage voor het beschrijven
van dispersie interacties in echte vloeibare kristallen verkregen kan worden uit con-
ventionele methodes zoals ontwikkelt voor gewone (isotrope) vloeistoffen, zoals een
(PC-)SAFT aanpak.
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