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Summary
Systems far from equilibrium have numerous practical uses, but challenge our under-
standing of their underlying physics. Materials like foams, emulsions, suspensions
and granular matter can show liquid-like properties or get trapped in a solid-like
jammed state. The phase transition between the flowing and static state is often
referred to as the ‘jamming transition‘.

This work focuses on the mechanical behavior of amorphous viscoelastic mate-
rials, close to the jamming point. In many traditional solids, the relation between
stress and strain is well described by a linear proportionality, known as Hooke’s law.
In jammed solids, by contrast, the stress-strain relation quickly becomes nonlinear,
making them much harder to model. Here we ask how and why the linear response
breaks. To answer the questions, we investigate the breakdown of linear response
as a function of deformation rate and amplitude.

In Ch. 2 we map out the boundaries to Hooke’s law by systematically performing
stress relaxation and shear start up tests. We then derive scaling arguments, that
define the window where linear response is valid. Our results show that the window
vanishes at the transition, meaning that even small or slow deformations will break
linear response.

In Ch. 3 we investigate the relation between viscoelasticty and nonlinear effects.
The relaxation time is the governing time scale in the dynamics of viscoelastic
materials. On comparatively short time scales viscous losses are dominant. On
relatively long time scales the behavior of the material is determined mainly by
elastic forces. By performing step strain experiments, we map out the dependence
of the relaxation time on strain amplitude and the distance to jamming. We find two
windows in strain where the relaxation time is insensitive to the strain amplitude,
and determined only by the distance to jamming. Surprisingly, even the window at
high strain is well described by theoretical predictions derived for vanishingly small
strains.

In Ch. 4 we investigate connection between nonlinearity and irreversibility. By
performing shear reversal tests, we observe plastic work as a function of the maxi-
mally applied strain and the distance to jamming. Remarkably, we find that even
for small, linear deformations the plastic work is nonzero. This means that some
degree of irreversibility is already present even when the stress-strain curve has not
deviated from its linear elastic form. We find that irreversibility grows with strain
and eventually saturates. From these observations we conclude, that irreversibility
precedes softening and that nonlinearity is connected only to a ‘fully developed‘
irreversibility.

ix





Samenvatting
Systemen ver uit evenwicht hebben verschillende praktische toepassingen. Het is
echter een uitdaging om het gedrag van deze systemen goed te begrijpen. Materia-
len zoals schuim, emulsies, suspensies en granulaire materialen kunnen eigenschap-
pen hebben van vloeistoffen, maar ook van vaste stoffen. Dit laatste betreft de
zogenaamde jammed state. De faseovergang tussen een vloeistofachtige fase en de
jammed state wordt de jamming transitie genoemd.

Dit proefschrift beschrijft het mechanisch gedrag van amorfe visco-elastische ma-
terialen in de buurt van het jamming punt. Voor de meeste (conventionele) vaste
stoffen wordt de relatie tussen spanning en vervorming beschreven door de wet van
Hooke, die stelt dat vervorming en spanning recht evenredig met elkaar zijn. Voor
systemen in de jammed state zijn vervorming en spanning niet evenredig. Dit maakt
de modellering van mechanische eigenschappen een stuk lastiger. Graag willen we
weten waarom er een niet-lineair verband bestaat tussen vervorming en spanning
voor systemen in de jammed state. Om dit te begrijpen wordt onderzocht hoe de
afwijking van dit lineaire verband samenhangt met de deformatiesnelheid en ampli-
tude van de vervorming.

In hoofdstuk Ch. 2 onderzoeken we de limiet van de toepasbaarheid van de
wet van Hooke door systematisch de initiële schuifspanning te variëren en de span-
ningsrelaxatie te meten. Dit leidt tot schalingsregels waarmee precies kan worden
gedefinieerd waar lineaire respons geldig is en waar niet. De resultaten laten zien
dat het gebied waar lineaire respons geldig is geheel verdwijnt in de buurt van het
jamming point, zodat daar zelfs hele kleine of langzame deformaties niet voldoen
aan de wet van Hooke.

De relatie tussen visco-elasticiteit en niet-lineaire effecten wordt onderzocht in
hoofdstuk Ch. 3. De dynamica van visco-elastische materialen wordt bepaald door
de relaxatietijd. Op korte tijdschalen zijn visceuze verliezen dominant. Op lange
tijdschalen wordt het gedrag van materialen bepaald door elastische krachten. Door
een stapvormige vervorming aan te brengen wordt de invloed van de amplitude van
de vervorming en de afstand tot het jamming point op de relaxatietijd onderzocht.
Er zijn twee gebieden in het domein van mogelijke vervormingen waarbij de re-
laxatietijd vrijwel onafhankelijk is van de amplitude van de vervorming. Tot onze
verrassing wordt het gebied bij grote vervorming nauwkeurig beschreven door the-
oretische voorspellingen afgeleid voor zeer kleine vervormingen.

In hoofdstuk Ch. 4 wordt het verband tussen niet-lineariteit en irreversibiliteit
onderzocht. Door het uitvoeren van omgekeerde afschuifproeven wordt zogenaamd
plastic work waargenomen als functie van de maximaal toegepaste vervorming en de
afstand tot het jamming point. Verrassend genoeg blijkt dat zelfs voor kleine lineaire
deformaties de plastic work niet gelijk is aan nul. Daaruit blijkt dat enige mate van
irreversibiliteit reeds aanwezig is indien de spanning-vervormingscurve niet afwijkt

xi
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van lineair gedrag. Deze irreversibiliteit neemt toe met toenemende vervorming en
vlakt uiteindelijk af tot een plateauwaarde. Hieruit kan geconcludeerd worden dat
irreversibiliteit voorafgaat aan het zacht worden van het materiaal, en dat niet-
lineariteit alleen gerelateerd is aan een volledig ontwikkelde irreversibiliteit.
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What do shaving foam and sand on the beach have in common? If we hold the
two materials in our hands, we might not observe many similarities. Nevertheless,
they do share particular properties. For instance, both can behave like a liquid or
solid, depending on the circumstances.

Figure 1.1: Sand flowing through
an hourglass.

Sand, a granular material, flows through an hour-
glass and splashes to the bottom, in a way that is
reminiscent of water flowing out of a faucet, visible
in Fig. 1.1. However, it does not fill up the bottom
as a conventional fluid would, but creates a solid pile.
Shaving foam can also from a ”pile” on your hand,
but it flows when you smear it on your skin. Sand
and foams have a comparable microscopic structure,
from which follow similar properties. Sand is com-
prised of many individual grains, which are different
shapes and sizes. As all grains are different they can
only arrange in a disordered manner. Similarly, when
observed under a microscope, shaving foam is com-
prised of individual, not grains, but bubbles dispersed
in water. The bubbles are polydispersed and disor-
dered like the sand, and only interact when they are
almost or actually touching each other. Due to the
different shapes and sizes of the grained and bubbles,
it is impossible for them to arrange in a ordered, crys-
talline structure. Instead they jam into disordered
solid-like states.

Aside from granular matter and foams, there exist
other materials which also display a similar disordered liquid-solid transition. When
emulsions for example are subjected to a high enough stress, they lose any kind of
rigidness and start to flow. Think of face cream as it is taken out of container. It
does not flow down your arms, but it is possible to smear it on your hands.

The threshold above which a material yields and flows is called the yield stress.
The yield stress changes with the volume fraction, that is denser systems must
overcome a larger threshold to flow.

We see that all these are very different materials, but nevertheless share similar
properties. In [2], Liu and Nagel presented a phase diagram, combining observations
about dense amorphous matter. (A third axis temperature is omitted because this
thesis deals only with non-Brownian systems.) We only consider two principal axes
of the phase diagram, the stress σ and the volume fraction ϕ, shown in Fig. 1.2. We
see the boundary between jammed and unjammed phases. Jammed amorphous lose
their rigidity through decreasing volume fraction or yielding. Point J in this sense
is quite remarkable. A material with zero stress can, at one point, cross over to the
unjammed phase. That means that at point J , we can speak of a critical volume
fraction ϕ(J) = ϕc. Materials in this state are marginally stable [3].
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Figure 1.2: The jamming phase diagram. Arrow icon by [1]

1.1. Jamming transition in foams
Point J corresponds to the state where the volume fraction, equals that of a random
close packing. The random close packing volume fraction is the highest that ran-
domly assembled particles can occupy while the external pressure is zero. In three
dimensions it is ϕ3D

c = 64% and in two dimensions it is ϕ2D
c = 84% [4–6]. If the

volume fraction is increased above RCP, by applying pressure, the material jams,
and can act as a solid.

Figure 1.3: Schematic of a foam as the volume fraction changes, highlighting the specially of the
jamming transition at ϕc

Fig. 1.3 illustrates the microscopic changes in a foam while the volume fraction
increases and crosses the critical point. At low ϕ bubbles have enough space to
spread out and do not touch. Because the bubble interactions are short ranged and
repulsive [7], the individual bubbles are unaware of each other. The material prop-
erties are then dominated by the continuous phase, exhibiting liquid-like behavior.
At the critical point, ϕ = ϕc, the bubbles suddenly start touching. Upon contact,
they exert repulsive force on each other, because surface tension favors spherical
shapes.

Because the bubbles repel one another, contact is only possible when they are
confined by an external stress due to e.g walls or gravity. At ϕc an entire contact
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network is formed, spanning through the whole system. The bubbles jam, and the
material becomes rigid [8] i.e. it is capable of resisting bulk changes to its size and/or
shape. The average number of contacts, z, is zero below critical volume fraction and
jumps form zero to a finite number, at ϕc [4].

What is the minimum average number of contacts per bubble, that is needed in
order for the material to jam? In [9], Maxwell introduced a counting argument which
balances degrees of freedom (particle positions) and constraints (the contacts). The
result is that the average number of contacts at the critical point zc must be

zc = 2d, (1.1)

where d is the number of spatial dimensions. A system in which z = zc is termed
isostatic. Point-J is an isostatic point [4, 10], where the number of contacts are just
enough for the material to be rigid. Hence the distance to isostaticty ∆z = z − zc
is also a useful quantifier of the system’s state.

1.2. Mechanics of jammed solids
As foams and emulsions are soft, they can be pushed above the jamming volume
fraction. Then bubbles are pressed into each other, abandoning their spherical
shape as shown in Fig. 1.3. By compressing them, the number of contacts increases.
Because of this contact network, the amorphous solid can support stress. Earlier
works establish [4, 7, 11] a scaling argument for the average number of contacts per
particle that the system has in excess of zc

z − zc ∼ (ϕ− ϕc)
1/2. (1.2)

The pressure also changes as the volume fraction increases. At ϕc bubbles touch
without deforming, and so

pc = 0. (1.3)

Above ϕc bubbles deform, leading to a pressure that grows linearly with the excess
volume fraction [4],

p− pc ∼ p ∼ ϕ− ϕc. (1.4)

Where convenient, we will use p as a measure of distance to (un)jamming.
In conventional solids, when deformations are small the stress response is linear,

meaning if the strain is doubled the stress also doubles. However, if the deformation
is reversed the material returns to its original form. The linear approximation is
mathematically simple and universally applicable for small enough deformations.
Hooke’s law [12, 13] expresses the linear relation of strain γ and stress σ,

σ = Gγ, (1.5)

where G is the shear modulus, a material property. In jammed solids the shear
modulus depends the distance to hamming and vanishes at ϕc,

G ∼ ϕ− ϕc
1/2, (1.6)
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Figure 1.4: Evolution of the shear modulus as a function of the volume fraction.

as illustrated in Fig. 1.4 [4, 14].
In many conventional solids, Hooke’s law gives a good description of the stress-

strain curve up the point where they fail. Amorphous solids, on the other hand, can
easily be pushed into the regime where Hooke’s law is violated. There are two main
ways, Hooke’s law can break - either the deformation is too fast or too large. We
describe these in turn.

Figure 1.5: Collapsing of shaving
foam in time. (top) fresh foam,
(bottom) decaying in time.

Viscoelaticty Taking some shaving foam out of a
can and simply putting it on a surface, it will sit
on it and keep its form, like in the top picture in
Fig. 1.5. This is a hallmark of a solid. After some
time has passed the foam will lose its shape and start
to collapse, as seen in the bottom picture in Fig. 1.5
[15, 16]. When bubbles slide past each other, they
dissipate energy. This dissipation is viscous, i.e. it
depends on the rate of deformation. Viscous dissi-
pation is neglected in Hooke’s law, which depends
on strain but not on strain rate. If the system is
sheared slowly enough, viscous effects can indeed be
neglected. For higher strain rates, however, viscous
contributions to the stress become comparable to
elastic contributions, and can no longer be neglected.
The competition between elastic storage and viscous
losses is governed by a characteristic time scale, the
relaxation time. A deformation is ”fast” if the in-
verse strain rate is smaller than the relaxation time.
One of the main results of this thesis will be to show
that, close to the jamming transition, viscous effects grow in importance and cannot
be neglected.

Fig. 1.6 illustrates the process of relaxation in a jammed solid [17]. The particles
are initially displaced according to an affine profile (Fig. 1.6a). However, these
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new positions are not force balanced. The particles then move non-affinely until
mechanical equilibrium is reached. These non-affine motions are a significant source
of dissipation.

(a) Affine displacement of particles. (b) Final displacement of individual particles, after
returning to an equilibrium state.

Figure 1.6: Displacement of particles on a two dimensional system as a response to an affine
displacement. Large arrow icon by [18]

Softening Small shear strains are reversible, meaning the system returns to its
original state when an applied load is removed. But as strain builds up and the
particles undergo rearrangements, it eventually happens that the system can no
longer return to its initial state. The deformation is then said to be a mixture of
elastic and plastic. One could assume that the onset of plasticity coincides with the
”yield strain”, i.e., the strain where σ = σY . More generally, there is some strain γ†,
where a system no longer follows the linear trend of Hooke’s law, even if the strain
rate is small to remove viscous effects. We call this softening. In Ch. 2 we show
that in jammed matter, γ† is much smaller then the yield strain, and even vanishes
at ϕc.

1.3. Simulations of jammed solids
The results in this thesis are made based on extensive numerical simulations. All
simulations are done using Durian’s ‘Bubble Model‘ [7, 19].

Bubble Model The model takes into account the forces acting on the bubbles
when they touch. Upon contact real bubbles flatten out at the contact and increase
the surface area of the gas-liquid interface. For simplicity, in the bubble model, the
bubbles retain their spherical shape and the contact is characterized by comparing
the sum of the radii, Ri+Rj of bubbles i and j to their center-to-center distance rij .
The difference is the overlap between two bubbles, denoted by δij = (Ri+Rj)− rij .
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Figure 1.7: Illustration of bubble interaction in the Durian bubble model

The force between two bubbles is expressed as a function of the overlap,

fel
ij =

{
kδ

rij
rij

, if δ < 0

0, otherwise,
(1.7)

where k is the spring constant, which is proportional to the surface tension.
Energy is dissipated by the viscous force, which is proportional to the relative

velocity vij = vj − vi of bubbles i and j.

fvis
ij =

{
−bvij , if δ < 0

0, otherwise,
(1.8)

where b is a damping coefficient, proportional to the viscosity of the continuous
phase. We choose units of stress and time such that the spring constant k and the
damping coefficient b are both equal to one. As initial conditions packings with a
fixed number of bubbles, at a fixed distance to jamming are created. The packings
are bidisperse with a ratio of 1:1.4 in a 50:50 distribution [6]. Bubbles are placed
randomly into a fixed volume. We then use an energy minimization algorithm (see
below) to find a local energy minimum, where the gradients with respect to all
particle degrees of freedom vanish, and the gradient with respect to the shear strain
is zero. The latter condition guarantees zero shear stress. When deforming the
packings Lees-Edwards boundary conditions are applied [20].

Two types of simulations were used, molecular dynamics and quasistatic simu-
lations. These have complementary strengths and weaknesses.

Molecular Dynamics (MD) Simulations This is an efficient method to resolve
the dynamics of classical many body systems [21]. After each step, the particles move
according to Newton’s laws, which we integrate using the velocity Verlet algorithm.
This simulation method allows to describe the time dependent dynamics of the
problem. It places a high demand on computational power, compared to quasistatic
methods. The time simulations take depends on the system size, N , the distance
to the critical point (the pressure p) and the size of the deformation (strain step γ).
Results are always ensemble averaged. For MD simulations we typically used an
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ensemble size of 100 packings. For a typical stress relaxation simulations we found
that a system of N = 1024 particles can be simulated in a reasonable time frame for
p as low as 10−5 and for strain step sizes γ = 10−6 . . . 10−2 (these are dimensionless
parameters).

Quasistatic Simulations Because MD simulations are computationally costly,
and for some measurements we are not specifically interested in the dynamics of the
system, we also use quasistatic simulations. Quasistatic methods are appropriate
for describing the response to deformations at arbitrarily slow rates. In this limit
the system always sits at a local minimum, which depends on the particle positions
and the shear strain. Applying a strain perturbs the landscape, causing the particles
to move to a new minimum. This can be found using minimization routines such
as nonlinear gradient method [5, 6] or FIRE [22]. Quasistatic simulations typically
take a fraction of the time of MD simulations, which we exploit to generate higher
ensembles. For our simulations the ensemble size is typically between 300-600.

1.4. Structure of this thesis
The work in this thesis is focused on the behavior of amorphous viscoelastic materials
close to unjamming. We want to understand when and how the stress-strain response
becomes nonlinear and/or rate dependent.

In Ch. 2 we investigate the limits of linear stress-strain response in soft sphere
packings. Linear approximations are often used in simulations and experiments. We
have mapped out the boundaries to Hooke’s law by systematically performing stress
relaxation and shear start up tests. From these we derive scaling arguments that
define the window where linear response is valid. Our results show that the window
vanishes at the transition, meaning that even small or slow deformation will break
linear response.

In Ch. 3 we investigate the relation between viscoelasticty and nonlinear effects.
The relaxation time τ∗ is the governing time scale in the dynamics of viscoelastic
materials. Deformations slower than τ∗ are governed by viscous forces, while for
faster deformations they are negligible. We perform step strain tests to measure
the relaxation time at varying step size. At low strains, in the linear regime the
relaxation time is constant and increases when the response becomes nonlinear.
Our results show that the relaxation time turns constant again for sufficiently high
strains, i.e., the increase in the nonlinear regime is a crossover between two plateau
values. This particular strain dependency scales with the distance to jamming.
These results are important for interpreting experimental data near unjamming.

In Ch. 4 we investigate the connection between nonlinearity and irreversibility
in soft sphere packings, to gain insight into the mechanics of softening. We perform
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shear reversal tests and compare the initial and final states of the packing. From
these simulations we draw conclusions about macroscopic quantities, like plastic
work and the underling microscopic topology of the system. Even after small linear
deformations we find nonzero plastic work. The amount of plastic work increases as
the maximum applied strain is increased. However, our results clearly show, that
after a certain strain irreversibility saturates. Together with the macroscopic results
we draw the conclusion, that irreversibility precedes softening, and that nonlinearity
is connected only to a ‘fully developed‘ irreversibility.





2
Beyond linear elasticity

The shear response of soft solids can be modeled with linear elasticity, provided the
forcing is slow and weak. Both of these approximations must break down when the
material loses rigidity, such as in foams and emulsions at their (un)jamming point
– suggesting that the window of linear elastic response near jamming is exceedingly
narrow. Yet precisely when and how this breakdown occurs remains unclear. To an-
swer these questions, we perform computer simulations of stress relaxation and shear
start-up tests in athermal soft sphere packings, the canonical model for jamming.
By systematically varying the strain amplitude, strain rate, distance to jamming,
and system size, we identify characteristic strain and time scales that quantify how
and when the window of linear elasticity closes, and relate these scales to changes
in the microscopic contact network.

This chapter is based on the following publication: J. Boschan, D. Vågberg, E. Som-
fai, B.P. Tighe, Beyond linear elasticity: jammed solids at finite shear strain and
rate , Soft Matter, 12, 5450-5460 (2016).

11
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2.1. Introduction
Linear elasticity predicts that when an isotropic solid is sheared, the resulting stress
σ is directly proportional to the strain γ and independent of the strain rate γ̇,

σ = G0γ , (2.1)

with a constant shear modulus G0.[12] The constitutive relation (2.1) – a special
case of Hooke’s law – is a simple, powerful, and widely used model of mechanical
response in solids. Yet formally it applies only in the limit of vanishingly slow
and weak deformations. In practice materials possess characteristic strain and time
scales that define a linear elastic “window”, i.e. a parameter range wherein Hooke’s
law is accurate. Determining the size of this window is especially important in soft
solids, where viscous damping and nonlinearity play important roles.[23] The goal
of the present work is to determine when Hooke’s law holds, and what eventually
replaces it, in soft sphere packings close to the (un)jamming transition.

Jammed sphere packings are a widely studied model of emulsions and liquid
foams [7, 24–26] and have close connections to granular media and dense suspensions.
[27–29] Linear elastic properties of jammed solids, such as moduli and the vibrational
density of states, are by now well understood.[30, 31] Much less is known about their
viscoelastic [27, 32] and especially their nonlinear response.[33, 34] Yet the jamming
transition must determine the linear elastic window, because the shear modulus G0

vanishes continuously at the jamming point, where the confining pressure p goes
to zero. Indeed, studies of oscillatory rheology [35] and shocks [36–38] have shown
that, precisely at the jamming point, any deformation is effectively fast and strong,
and neither viscous effects nor nonlinearities can be neglected.

Because elasticity in foams, emulsions, and other amorphous materials results
from repulsive contact forces, microstructural rearrangements of the contact network
have signatures in the mechanical response. Namely, they lead to nonlinearity and
irreversibility in the particle trajectories, and eventually to steady plastic flow.[39–
44] Jammed packings of perfectly rigid particles cannot deform without opening
contacts; their response is intrinsically nonlinear, and the number of contact changes
per unit strain diverges in the limit of large system size.[45, 46] Recently Schreck and
co-workers addressed contact changes inside the jammed phase[47–50]; specifically,
they asked how many contact changes a jammed packing undergoes before linear
response breaks down. They found that trajectories cease to be linear as soon as
there is a single rearrangement (made or broken contact) in the contact network,
and contact changes occur for vanishing perturbation amplitudes in large systems.
Their findings caused the authors to question, if not the formal validity, then at
least the usefulness of linear elasticity in jammed solids – not just at the jamming
point, but anywhere in the jammed phase.

There is, however, substantial evidence that it is useful to distinguish between
linear response in a strict sense, wherein particle trajectories follow from linearizing
the equations of motion about an initial condition, and linear response in a weak
sense, wherein the stress-strain curve obeys Hooke’s law.[51–54] Hooke’s law remains
applicable close to but above jamming because coarse grained properties are less
sensitive to contact changes than are individual trajectories. Agnolin and Roux
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verified numerically that linearization captures the initial slope of a stress-strain
curve, while Van Deen et al. showed explicitly that the slope of the stress-strain
curve is on average the same before and after the first contact change [51, 52].
Goodrich et al. further demonstrated that contact changes have negligible effect on
the density of states.[54] These results verify the intuitive expectation that weak
linear response remains valid even after strict linear response is violated. This in
turn raises – but does not answer – the question of when Hooke’s law eventually
does break down.

Recent experiments [33, 41], simulations, [34, 44, 55, 56] and theory [57] provide
evidence for a two stage yielding process, where response first becomes nonlinear
(stress is no longer directly proportional to strain) and only later establishes steady
plastic flow (stress is independent of strain). To distinguish these two crossovers, we
will refer to them as softening and yielding, respectively; our focus will be mainly
on the softening crossover. It remains unclear precisely how rate dependence, non-
linearity, and contact changes contribute to the breakdown of linear elasticity and
onset of softening. In order to unravel these effects, it is necessary to vary strain,
strain rate, pressure, and system size simultaneously and systematically – as we
do here for the first time. Using simulations of viscous soft spheres, we find that
Hooke’s law is valid within a surprisingly narrow window bounded by viscous dissi-
pation at small strain and plastic dissipation at large strain. The size of the linear
elastic window displays power law scaling with pressure and correlates with the
accumulation of not one, but an extensive number of contact changes.

The basic scenario we identify is illustrated in Fig. 2.1, which presents ensemble-
averaged shear stress versus strain. Shear is applied via a constant strain rate γ̇0
at fixed volume. We identify three characteristic scales, each of which depend on
the initial pressure p: (i) For strains below γ∗ ≡ γ̇0τ

∗, where τ∗ is a diverging
time scale, viscous stresses are significant and Eq. (2.1) underestimates the stress
needed to deform the material. This crossover strain vanishes under quasistatic shear
(γ̇0 → 0, filled squares). (ii) Above a vanishing strain γ† the material softens and
Hooke’s law overestimates the stress. This crossover is rate-independent, consistent
with plastic effects. (iii) For strain rates above a vanishing scale γ̇† (triangles),
Eq. (2.1) is never accurate and there is no strain interval wherein the material
responds as a linear elastic solid.

2.2. Soft spheres: Model and background
We first introduce the soft sphere model and summarize prior results regarding
linear elasticity near jamming.

2.2.1. Model
We perform numerical simulations of the Durian bubble model [7], a mesoscopic
model for wet foams and emulsions. The model treats bubbles/droplets as non-
Brownian disks that interact via elastic and viscous forces when they overlap. Elastic
forces are expressed in terms of the overlap δij = 1 − rij/(Ri +Rj), where Ri and
Rj denote radii and r⃗ij points from the center of particle i to the center of j. The
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Figure 2.1: Ensemble-averaged stress-strain curves of packings sheared at varying strain rate γ̇0.
Close to the jamming point the linear stress-strain curve (dashed line) predicted by Hooke’s law
holds over a narrow interval at low strain, with deviations due to viscous and plastic dissipation.
The crossover strains γ∗ and γ† are indicated for the data sheared at slow but finite rate 0 < γ̇0 < γ̇†

(open circles).

force is repulsive and acts along the unit vector r̂ij = r⃗ij/rij :

f⃗ el
ij =

{
−k(δij) δij r̂ij , δij > 0

0⃗, δij < 0.
(2.2)

The prefactor k is the contact stiffness, which generally depends on the overlap

k = k0 δ
α−2 . (2.3)

Here k0 is a constant and α is an exponent parameterizing the interaction. In the
following we consider harmonic interactions (α = 2), which provide a reasonable
model for bubbles and droplets that resist deformation due to surface tension; we
also treat Hertzian interactions (α = 5/2), which correspond to elastic spheres.

We perform simulations using two separate numerical methods. The first is a
molecular dynamics (MD) algorithm that implements SLLOD dynamics [58] using
the velocity-Verlet scheme. Energy is dissipated by viscous forces that are propor-
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tional to the relative velocity ∆v⃗ c
ij of neighboring particles evaluated at the contact,

f⃗visc
ij = −τ0 k(δij)∆v⃗ c

ij , (2.4)

where τ0 is a microscopic relaxation time. Viscous forces can apply torques, hence
particles are allowed to rotate as well as translate.

In addition to MD, we also perform simulations using a nonlinear conjugate gra-
dient (CG) routine [5], which keeps the system at a local minimum of the potential
energy landscape, which itself changes as the system undergoes shearing. The dy-
namics are therefore quasistatic, i.e. the particle trajectories correspond to the limit
of vanishing strain rate.

All results are reported in units where k0, τ0, and the average particle diameter
have all been set to one. Each disk is assigned a uniform mass mi = πR2

i , which
places our results in the overdamped limit.

Bubble packings consist of N = 128 to 2048 disks in the widely studied 50:50
bidisperse mixture with a 1.4:1 diameter ratio.[6] Shear is implemented via Lees-
Edwards “sliding brick” boundary conditions at fixed volume V (area in two dimen-
sions). The stress tensor is given by

σαβ =
1

2V

∑
ij

fij,αrij,β − 1

V

∑
i

mivi,αvi,β , (2.5)

where f⃗ij is the sum of elastic and viscous contact forces acting on particle i due to
particle j, and v⃗i is the velocity of particle i. Greek indices label components along
the Cartesian coordinates x and y. The confining pressure is p = −(1/D)(σxx+σyy),
where D = 2 is the spatial dimension, while the shear stress is σ = σxy. The second
term on the righthand side of Eq. (2.5) is a kinetic stress, which is always negligible
in the parameter ranges investigated here.

We use the pressure p to measure a packing’s distance to jamming. Common
alternatives are the excess volume fraction ∆ϕ = ϕ − ϕc and excess mean contact
number ∆z = z − zc, where ϕc and zc = 2D refer to the respective values at
jamming.[4, 30, 59] We prefer to use the pressure as an order parameter because it
is easily accessed in experiments (unlike z), and its value at the transition, pc = 0,
is known exactly (unlike ϕ). Therefore, prior to shearing, all packings are prepared
at a targeted pressure. The equilibration procedure includes the box size and shape
in addition to the particle positions as degrees of freedom, which guarantees that
the stress tensor is proportional to the unit matrix and that the packing is stable to
shear perturbations.[60] At each pressure there are fluctuations in ϕ and z, however
for a given preparation protocol the probability distributions of ϕ and z tend to a
delta function with increasing N [4, 5], and typical values (e.g. the mean or mode)
satisfy the scaling relation

p

k
∼ ∆ϕ ∼ ∆z2 . (2.6)

Here k is a typical value of the contact stiffness k(δij) in Eq. (2.3), which is simply the
constant k0 in the harmonic case (α = 2). For other values of α, however, k depends
on the pressure. As the typical force trivially reflects its bulk counterpart, f ∼ p,
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the contact stiffness scales as k ∼ f/δ ∼ p(α−2)/(α−1). In the following, all scaling
relations will specify their dependence on k and the time scale τ0. In the present work
τ0 is independent of the overlap between particles (as in the viscoelastic Hertzian
contact problem [61]), but we include τ0 because one could imagine a damping
coefficient kτ0 with more general overlap dependence than the form treated here.
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Figure 2.2: The ensemble-averaged relaxation modulus Gr at pressure p = 10−4.5 for four val-
ues of the strain amplitude γ0. In all four cases, Gr displays an initial plateau corresponding
to affine particle motion (inset a), followed by a power law decay as the particle displacements
become increasingly non-affine (b). At long times the stress is fully relaxed and the final particle
displacements are strongly non-affine (c).

2.2.2. Shear modulus and the role of contact changes
In large systems the linear elastic shear modulus G0 vanishes continuously with
pressure,

G0/k ∼ (p/k)µ , (2.7)
with µ = 1/2. Hence jammed solids’ shear stiffness can be arbitrarily weak. The
scaling of G0 has been determined multiple times, both numerically [4, 62, 63] and
theoretically [14, 35, 64]; it is verified for our own packings in Fig. 2.3a and c, as
discussed in Section 2.3.

There are two standard approaches to determining G0. The first, which we
employ, is to numerically impose a small but finite shear strain and relax the packing
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to its new energy minimum.[4, 62] In the second approach one writes down the D
equations of motion for each particle and linearizes them about a reference state,
which results in a matrix equation involving the Hessian; solutions to this equation
describe the response to an infinitesimally weak shear.[3, 35, 60, 63–65] The latter
approach allows access to the zero strain limit, but it is blind to any influence of
contact changes.

When calculating the shear modulus using the finite difference method over
strain differences as small as 10−9, double precision arithmetic does not provide
sufficiently accurate results.[66] A straightforward but computationally expensive
approach is to switch to quadruple precision. Instead we represent each particle
position as the sum of two double precision variables, which gives sufficient precision
for the present work and is significantly faster than the GCC Quad-Precision Math
Library. Since we are aware of precision issues, we have taken great care to verify
our results. The shear modulus calculated using finite difference method agrees with
the corresponding shear modulus obtained using the Hessian matrix [30], provided
the strain amplitude is small enough that the packing neither forms new contacts,
nor breaks existing ones.

Van Deen et al. [52] measured the typical strain at the first contact change, and
found that it depends on both pressure and system size,

γ(1)
cc ∼ (p/k)1/2

N
. (2.8)

The inverse N -dependence is consistent with what one would expect from a Poisson
process. Similar to the findings of Schreck et al. [47], who determined a critical
perturbation amplitude by deforming packings along normal modes, the strain scale
in Eq. (2.8) vanishes in the large system limit, even at finite pressure. Earlier work
by Combe and Roux probed deformations of rigid disks precisely at jamming; they
identified a dimensionless stress scale σ

(1)
cc /p ∼ 1/N1.16. Naïvely extrapolating to

soft spheres would then give a strain scale γ
(1)
cc ∼ σ

(1)
cc /G0 ∼ (p/k)1/2/N1.16, in

reasonable but not exact agreement with Eq. (2.8).

2.3. Stress relaxation
We will characterize mechanical response in jammed solids using stress relaxation
and flow start-up tests, two standard rheological tests. In the linear regime they
are equivalent to each other and to other common tests such as creep response and
oscillatory rheology, because complete knowledge of the results of one test permits
calculation of the others.[23]

We employ stress relaxation tests to access the time scale τ∗ over which viscous
effects are significant, and we use flow start-up tests to determine the strain scale
γ† beyond which the stress-strain curve becomes nonlinear. We consider stress
relaxation first.

In a stress relaxation test one measures the time-dependent stress σ(t, γ0) that
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develops in a response to a sudden shear strain with amplitude γ0, i.e.

γ(t) =

{
0 t < 0
γ0 t ≥ 0 .

(2.9)

The relaxation modulus is
Gr(t, γ0) ≡

σ(t, γ0)

γ0
. (2.10)

We determine Gr by employing the shear protocol of Hatano.[27] A packing’s parti-
cles and simulation cell are affinely displaced in accordance with a simple shear with
amplitude γ0. E.g. for a simple shear in the x̂-direction, the position of a particle i
initially at (xi, yi) instantaneously becomes (xi + γ0yi, yi), while the Lees-Edwards
boundary conditions are shifted by γ̂0Ly, where Ly is the height of the simulation
cell. Then the particles are allowed to relax to a new mechanical equilibrium while
the Lees-Edwards offset is held fixed.

The main panel of Fig. 2.2 illustrates four relaxation moduli of a single packing
equilibrated at pressure p = 10−4.5 and then sheared with strain amplitudes varying
over three decades. All four undergo a relaxation from an initial plateau at short
times to a final, lower plateau at long times. The character of the particle motions
changes as relaxation progresses in time. While the particle motions immediately
after the deformation are affine (Fig. 2.2a), they become increasingly non-affine as
the stresses relax to a new static equilibrium (Fig. 2.2b,c).

For sufficiently small strain amplitudes, linear response is obtained and any
dependence of the relaxation modulus on γ0 is sub-dominant. The near-perfect
overlap of the moduli for the two smaller strain amplitudes Fig. 2.2 indicates that
they reside in the linear regime. The long-time plateau is then equal to the linear
elastic modulus G0. In practice there is a crossover time scale τ∗ such that for
longer times t ≫ τ∗ viscous damping is negligible and the relaxation modulus is well
approximated by its asymptote, Gr ≃ G0. For the data in Fig. 2.2a the crossover
time is τ∗ ≈ 104τ0. In the following Section we will determine the scaling of τ∗ with
pressure.

2.3.1. Scaling in the relaxation modulus
We now characterize stress relaxation in linear response by measuring the relaxation
modulus, averaged over ensembles of packings prepared at varying pressure. We will
show that Gr collapses to a critical scaling function governed by the distance to the
jamming point, thereby providing a numerical test of recent theoretical predictions
by Tighe.[35] In particular we test the prediction that the rescaled shear modulus
G/G0 collapses to a master curve when plotted versus the rescaled time t/τ∗, with
a relaxation time that diverges as

τ∗ ∼
(
k

p

)λ

τ0 (2.11)

for λ = 1. Both the form of the master curve and the divergence of the relaxation
time can be related to slowly relaxing eigenmodes that become increasingly abun-
dant on approach to jamming. These modes favor sliding motion between contacting



2.3. Stress relaxation

2

19

particles [63], reminiscent of zero energy floppy modes [67], and play an important
role in theoretical descriptions of mechanical response near jamming.[3, 14, 35, 64,
68] For further details, we direct the reader to Ref. [35].

We showed in Fig. 2.2 that a packing relaxes in three stages. The short-time
plateau is trivial, in the sense that viscous forces prevent the particles from relaxing
at rates faster than 1/τ0; hence particles have not had time to depart significantly
from the imposed affine deformation and the relaxation modulus reflects the contact
stiffness, Gr ∼ k. We therefore focus hereafter on the response on time scales t ≫ τ0.

To demonstrate dynamic critical scaling in Gr, we first determine the scaling
of its long-time asymptote G0. We then identify the time scale τ∗ on which Gr

significantly deviates from G0. Finally, we show that rescaling with these two pa-
rameters collapses the relaxation moduli for a range of pressures to a single master
curve. While we address variations with strain in subsequent Sections, the strain
amplitude here is fixed to a value γ0 = 10−5.5. We have verified that this strain
amplitude is in the linear regime for all of the data presented in this Section.

As noted above, at long times the relaxation modulus approaches the linear
quasistatic modulus, Gr(t → ∞) ≃ G0. We verify Eq. (2.7) in our harmonic packings
with two closely related tests. First we fit a power law to data from systems of
N = 2048 particles; the best fit has a slope of 0.48 (Fig. 2.3a, dashed line). Next,
we repeat the finite size scaling analysis of Goodrich et al. [69], who showed that
finite size effects become important when a packing has O(1) contacts in excess of
isostaticity, or equivalently when p/k ∼ 1/N2 – c.f. Eq. (2.6). Consistent with their
results, Fig. 2.3a shows clear finite size effects in G0. Data for different system sizes
can be collapsed to a master curve by plotting G ≡ G0N versus the rescaled pressure
x ≡ pN2. The master curve approaches a power law xµ consistent with µ = 0.5, as
shown in Fig. 2.3c. The scaling of Eq. (2.7), and specifically the value µ = 1/2, is
verified by this data collapse, together with the requirement for the modulus to be
an intensive property of large systems. To see this, note that G0 is intensive only if
G ∼ x1/2 for large x.

Again referring to Fig. 2.2, there is clearly some time scale τ∗ such that for t < τ∗

the relaxation modulus deviates significantly from the quasistatic modulus. The
relaxation time is determined from the point where Gr, averaged over an ensemble
of at least 100 packings per condition, has decayed to within a fraction ∆ of its final
value, Gr(t = τ∗) = (1 + ∆)G0. We present data for ∆ = 1/e, but similar scaling
results for a range of ∆.[56] Raw data for varying p and N is shown in Fig. 2.3b.
Fitting a power law to the data for N = 2048 gives an exponent λ = 0.94. We now
again seek to refine our estimate by collapsing data to a master curve. As τ∗ and
G0 are both properties of the relaxation modulus, we require the rescaled pressure
to remain x = pN2, which collapses the G0 data. We then search for data collapse
in τ∗ by rescaling the relaxation time as τ∗/N2λ, which implies that τ∗ diverges in
large systems in accord with Eq. (2.11). While we find reasonable data collapse for
λ = 0.94, the best collapse occurs for a larger value λ ≈ 1.13, shown in Fig. 2.3d.
The theoretical prediction λ = 1 clearly falls within the range of our numerical
estimates,[35] although on the basis of the present data we cannot exclude a slightly
different value of λ.
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Figure 2.3: (a) The linear shear modulus G0 in harmonic packings for varying pressure p and
number of particles N . (b) The relaxation time τ∗ for the same range of p and N as in (a).
(c) Finite size scaling collapse of G0. (d) Finite size scaling collapse of τ∗. (e) The relaxation
modulus Gr collapses to a master curve when Gr and t are rescaled with G0 and τ∗, respectively,
as determined in (a) and (b). At short times the master curve decays as a power law with exponent
θ = µ/λ ≈ 0.44 (dashed line), using the estimates from (c) and (d).
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We now use the linear quasistatic modulus G0 and the characteristic time scale
τ∗ to collapse the relaxation modulus to a master curve R(s). Fig. 2.3c plots
R ≡ Gr/G0 versus s ≡ t/τ∗ for a range of pressures and system sizes; data from
the trivial affine regime at times t < 10τ0 have been excluded. The resulting data
collapse is excellent, and the master curve it reveals has two scaling regimes: R ≃ 1
for s ≫ 1, and R ∼ s−θ for s ≪ 1. The plateau at large s corresponds to the
quasistatic scaling Gr ≃ G0. The power law relaxation at shorter times corresponds
to Gr ∼ G0(t/τ

∗)−θ for some exponent θ. By considering a marginal solid prepared
at the jamming point, one finds that the prefactor of t−θ cannot depend on the
pressure. Invoking the pressure scaling of G0 and τ∗ in the large N limit, identified
above, we conclude that θ = µ/λ. Hence in large systems the relaxation modulus
scales as

Gr(t)

k
∼
{

(τ0/t)
θ

1 ≪ t/τ0 ≪ (k/p)λ

(p/k)µ (k/p)λ ≪ t/τ0 .
(2.12)

with µ = 1/2, λ ≈ 1, and θ = µ/λ ≈ 0.5. These findings are consistent with the
theoretical predictions in Ref. [35].

Anomalous stress relaxation with exponent θ ≈ 0.5 was first observed in simula-
tions below jamming [27] and is also found in disordered spring networks.[70, 71] It
is related via Fourier transform to the anomalous scaling of the frequency dependent
complex shear modulus G∗ ∼ (ıω)1−θ found in viscoelastic solids near jamming.[35]
We revisit the scaling relation of Eq. (2.12) in Section 2.4.6.

2.4. Finite strain
When does linear elasticity break down under increasing strain, and what lies be-
yond? To answer these questions, we now probe shear response at finite strain using
flow start-up tests.

2.4.1. Flow start-up
In a flow start-up test, strain-controlled boundary conditions are used to “turn on”
a flow with constant strain rate γ̇0 at time t = 0, i.e.

γ(t) =

{
0 t < 0
γ̇0t t ≥ 0

(2.13)

To implement flow start-up in MD, at time t = 0 a packing’s particles and simu-
lation cell are instantaneously assigned an affine velocity profile v⃗i = (γ̇0 yi, 0)

T in
accordance with a simple shear with strain rate γ̇0; the Lees-Edwards images of the
simulation cell are assigned a commensurate velocity. Then the particles are allowed
to evolve according to Newton’s laws while the Lees-Edwards boundary conditions
maintain constant velocity, so that the total strain γ(t) grows linearly in time.

We also perform quasistatic shear simulations using nonlinear CG minimization
to realize the limit of vanishing strain rate. Particle positions are evolved by giv-
ing the Lees-Edwards boundary conditions a series of small strain increments and
equilibrating to a new minimum of the elastic potential energy. The stress σ is then
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Figure 2.4: Averaged stress-strain curves under quasistatic shear at varying pressure p. Solid and
dashed curves were calculated using different strain protocols. Dashed curves: fixed strain steps
of 10−3, sheared to a final strain of unity. Solid curves: logarithmically increasing strain steps,
beginning at 10−9 and reaching a total strain of 10−2 after 600 steps.

reported as a function of the accumulated strain. For some runs we use a variable
step size in order to more accurately determine the response at small strain.

Fig. 2.1 illustrates the output of both the finite strain rate and quasistatic pro-
tocols.

2.4.2. Quasistatic stress-strain curves
To avoid complications due to rate-dependence, we consider the limit of vanishing
strain rate first.

Fig. 2.4 plots the ensemble-averaged stress-strain curve σ(γ) for harmonic pack-
ings at varying pressure. Packings contain N = 1024 particles, and each data point
is averaged over at least 600 configurations. Several features of the stress-strain
curves stand out. First, there is indeed a window of initially linear growth. Second,
beyond a strain of approximately 5 - 10% the system achieves steady plastic flow
and the stress-strain curve is flat. Finally, the end of linear elasticity and the be-
ginning of steady plastic flow do not generally coincide; instead there is an interval
in which the stress-strain curve has a complex nonlinear form. We shall refer to the
end of the linear elastic regime as “softening” because the stress initially dips below
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the extrapolation of Hooke’s law. (In the plasticity literature the same phenomenon
would be denoted “strain hardening”.) Moreover, for sufficiently low pressures there
is a strain interval over which the stress increases faster than linearly. This surpris-
ing behavior is worthy of further attention, but the focus of the present work will
be on the end of linear elasticity and the onset of softening. This occurs on a strain
scale γ† that clearly depends on pressure.

2.4.3. Onset of softening
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Figure 2.5: (main panel) Data from Fig. 2.4, expressed as a dimensionless effective shear modulus
σ/G0γ and plotted versus the rescaled strain γ/p. (inset) The crossover strain γ† where the
effective shear modulus has decayed by an amount ∆ in a system of N = 1024 particles.

We now determine the pressure and system size dependence of the softening (or
nonlinear) strain scale γ†.

Fig. 2.5 replots the quasistatic shear data from Fig. 2.4 (solid curves), now with
the linear elastic trend G0γ scaled out. The rescaling collapses data for varying
pressures in the linear regime and renders the linear regime flat. The strain axis in
Fig. 2.5b is also rescaled with the pressure, a choice that will be justified below. The
onset of softening occurs near unity in the rescaled strain coordinate for all pressures,
which suggests that γ† scales linearly with p in harmonic packings (α = 2).

Unlike the linear relaxation modulus in Fig. 2.3c, the quasistatic shear data
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in Fig. 2.5 do not collapse to a master curve; instead the slope immediately after
softening steepens (in a log-log plot) as the pressure decreases. As a result, it is
not possible to unambiguously identify a correlation γ† ∼ pν between the crossover
strain and the pressure. To clarify this point, the inset of Fig. 2.5 plots the strain
where σ/G0γ has decayed by an amount ∆ from its plateau value, denoted γ†(∆).
This strain scale is indeed approximately linear in the pressure p (dashed curves),
but a power law fit gives an exponent ν in the range 0.87 to 1.06, depending on the
value of ∆. Bearing the above subtlety in mind, we nevertheless conclude that an
effective power law with ν = 1 provides a reasonable description of the softening
strain. Section 2.3.1 presents further evidence to support this conclusion.

2.4.4. Hertzian packings
In the previous section the pressure-dependence of γ† was determined for harmonic
packings. We now generalize this result to other pair potentials, with numerical
verification for the case of Hertzian packings (α = 5/2).

Recall that the natural units of stress are set by the contact stiffness k, which
itself varies with pressure when α ̸= 2. Based on the linear scaling of γ† in harmonic
packings, we anticipate

γ† ∼ p

k
∼ p1/(α−1) , (2.14)

which becomes γ† ∼ p2/3 in the Hertzian case. To test this relation, we repeat the
analysis of the preceding Section; results are shown in Fig. 2.6. We again find a
finite linear elastic window that gives way to softening. Softening onset can again
be described with a ∆-dependent exponent (see inset). Its value has a narrow spread
about 2/3; power law fits give slopes between 0.63 and 0.74.

2.4.5. Relating softening and contact changes
Why does the linear elastic window close when it does? We now seek to relate
softening with contact changes on the particle scale.[41–44, 47, 52] Specifically, we
identify a correlation between the softening strain γ†, the cumulative number of
contact changes, and the distance to the isostatic contact number zc. In so doing
we will answer the question first posed by Schreck and co-workers [47], who asked
how many contact changes a packing can accumulate while still displaying linear
elastic response.

We begin by investigating the ensemble-averaged contact change density ncc(γ) ≡
[Nmake(γ) + Nbreak(γ)]/N , where Nmake and Nbreak are the number of made and
broken contacts, respectively, accumulated during a strain γ. Contact changes are
identified by comparing the contact network at strain γ to the network at zero
strain.

In Fig. 2.7a we plot ncc for packings of harmonic particles at pressure p = 10−4

and varying system size. The data collapse to a single curve, indicating that ncc is
indeed an intensive quantity. The effect of varying pressure is shown in Fig. 2.7b.
There are two qualitatively distinct regimes in ncc, with a crossover governed by
pressure.
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Figure 2.6: (main panel) The dimensionless shear modulus of quasistatically sheared Hertzian
packings plotted versus the rescaled strain γ/p2/3. (inset) Pressure-dependence of the crossover
strain γ†.

To better understand these features, we seek to collapse the ncc data to a master
curve. By plotting N ≡ ncc/p

τ versus y ≡ γ/p, we obtain excellent collapse for
τ = 1/2, as shown in Fig. 2.7b for the same pressures as in Fig. 2.7a and system
sizes N = 128 . . . 1024. The scaling function N ∼ y for small y, while N ∼ yτ for
y ≳ 1. The rescaled strain y provides further evidence for a crossover scale γ† ∼ p/k,
now apparent at the microscale. Moreover, the fact that data for varying system
sizes all collapse to the same master curve is an important indicator that γ† is an
intensive strain scale that remains finite in the large system size limit.

The scaling collapse in Fig. 2.7c generalizes the results of Van Deen et al. [52],
who determined the strain scale γ

(1)
cc ∼ (p/k)1/2/N associated with the first contact

change. To see this, note that the inverse slope (dγ/dncc)/N represents the average
strain interval between contact changes at a given strain. Hence the initial slope of
ncc is fixed by γ

(1)
cc ,

ncc(γ) ≃
1

N

(
γ

γ
(1)
cc

)
(2.15)

as γ → 0. From Fig. 2.7 it is apparent that ncc remains linear in γ up to the
crossover strain γ†. We conclude that γ

(1)
cc describes the strain between successive
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Figure 2.7: The contact change density shown for (a) varying system size and (b) varying pressure.
(c) Data collapse for pressures p = 10−2 . . . 10−5 in half decade steps and system sizes N =
128 . . . 1024 in multiples of 2. Dashed lines indicate slopes of 1 and 1/2.

contact changes over the entire interval 0 < γ < γ†. In the softening regime the
strain between contact changes increases; it scales as ncc ∼ γ1/2 (see Fig. 2.7c). This
corresponds to an increasing and strain-dependent mean interval γ1/2/N between
contact changes.

Let us now re-interpret the softening crossover strain γ† ∼ ∆z2 (c.f. Eq. (2.6))
in terms of the coordination of the contact network. We recall that ∆z = z − zc is
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the difference between the initial contact number z and the isostatic value zc, which
corresponds to the minimum number of contacts per particle needed for rigidity.
The excess coordination ∆z is therefore an important characterization of the contact
network. The contact change density at the softening crossover, n†

cc, can be related
to ∆z via Eq. (2.15), while making use of Eq. (2.6),

n†
cc ≡ ncc(γ

†) ∼ ∆z . (2.16)

Hence we have empirically identified a topological criterion for the onset of softening:
an initially isotropic packing softens when it has undergone an extensive number
of contact changes that is comparable to the number of contacts it initially had in
excess of isostaticity. Note that this does not mean the packing is isostatic at the
softening crossover, as ncc counts both made and broken contacts.

2.4.6. Rate-dependence
To this point we have considered nonlinear response exclusively in the limit of qua-
sistatic shearing. A material accumulates strain quasistatically when the imposed
strain rate is slower than the longest relaxation time in the system. Because re-
laxation times near jamming are long and deformations in the lab always occur at
finite rate, we can anticipate that quasistatic response is difficult to achieve and
that rate-dependence generically plays a significant role. Hence it is important to
consider shear at finite strain and finite strain rate. We now consider flow start-up
tests in which a finite strain rate γ̇0 is imposed at time t = 0, cf. Eq. (2.13).

Fig. 2.8 displays the mechanical response to flow start-up for varying strain rates.
To facilitate comparison with the quasistatic results of the previous section, data
are plotted in terms of the dimensionless quantity σ(t; γ̇0)/G0γ, which we shall refer
to as the effective shear modulus. The data are for systems of N = 1024 particles,
averaged over an ensemble of around 100 realizations each. Here we plot data for
the pressure p = 10−4; results are qualitatively similar for other pressures. For
comparison, we also plot the result of quasistatic shear (solid circles) applied to the
same ensemble of packings.

Packings sheared sufficiently slowly follow the quasistatic curve; see e.g. data for
γ̇0 = 10−11. For smaller strains, however, the effective shear modulus is stiffer than
the quasistatic curve and decays as σ/γ ∼ t−θ (see inset). This is rate-dependence:
for a given strain amplitude, the modulus increases with increasing strain rate.
Correspondingly, the characteristic strain γ∗ where curves in the main panel of
Fig. 2.8 reach the linear elastic plateau (σ/G0γ ≈ 1) grows with γ̇0. For sufficiently
high strain rates there is no linear elastic plateau; for the data in Fig. 2.8 this
occurs for γ̇0 ≈ 10−8. Hence there is a characteristic strain rate, γ̇†, beyond which
the linear elastic window has closed: packings sheared faster than γ̇† are always
rate-dependent and/or strain softening.

To understand the rate-dependent response at small strains, we revisit the re-
laxation modulus determined in Section 2.3. In linear response the stress after flow
start-up depends only on the elapsed time t = γ/γ̇0,

σ

γ
=

1

t

∫ t

0

Gr(t
′)dt′ . (2.17)
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Figure 2.8: The effective shear modulus during flow start-up for packings of N = 1024 particles at
pressure p = 10−4, plotted versus strain for varying strain rates γ̇0. (inset) The same data collapses
for early times when plotted versus t, decaying as a power law with exponent θ = µ/λ ≈ 0.44
(dashed line).

Employing the scaling relations of Eq. (2.12), one finds

σ

γ
∼ k

(τ0
t

)θ
, τ0 < t < τ∗ , (2.18)

as verified in Fig. 2.8 (inset). Linear elasticity σ/γ ≃ G0 is only established at
longer times, when γ > γ̇0τ

∗ ∼ (k/p)λ γ̇0τ0. Hence the relaxation time τ∗ plays an
important role: it governs the crossover from rate-dependent to quasistatic linear
response. The system requires a time τ∗ to relax after a perturbation. When it is
driven at a faster rate, it cannot relax fully and hence its response depends on the
driving rate.

We can now identify the characteristic strain rate γ̇† where the linear elastic
window closes. This rate is reached when the bound on quasistaticity, γ > γ̇0τ

∗,
collides with the bound on linearity, γ < γ†, giving

γ̇† ∼ (p/k)1+λ

τ0
, (2.19)

with 1+λ ≈ 2. This strain rate vanishes rapidly near jamming, hence packings must
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be sheared increasingly slowly to observe a stress-strain curve that obeys Hooke’s
law.

2.5. Implications for experiment
The time scale τ∗, strain scales γ∗ and γ†, and strain rate γ̇† all place bounds on
the window of linear elastic response. Which of these quantities are most relevant
depends on the particular rheological test one performs. For example, in a flow
start-up test Hooke’s Law is accurate within the window γ∗ < γ < γ†, provided the
strain rate γ̇0 < γ̇†. This is the scenario depicted in Fig. 2.1; it is also illustrated
schematically in Fig. 2.9. In a stress relaxation test, however, the strain amplitude
and test duration can be varied independently. Hooke’s law is then accurate for
γ0 < γ† provided one waits for a time t > τ∗ for the system to relax. (We have
verified that the softening onset still occurs at γ† when the full strain γ0 is applied
in one step, as opposed to a quasistatic series of small steps.) Similar parameter
ranges can be constructed for other rheological tests.

What experimental scales do these quantities correspond to? Most importantly,
one must collect data in the scaling regime near jamming. Quantities such as the ex-
cess coordination and moduli show gradual deviations from scaling when the excess
volume fraction exceeds ∆ϕ ≈ 10−1.[72] Determining the volume fraction with an
accuracy better than 1% is difficult[59, 73, 74], hence the experimentally accessible
scaling regime is typically just one decade wide in ∆ϕ.

The onset of softening occurs at a strain scale γ† ∼ (p/k) ∼ ∆ϕ. If we take the
smallest experimentally accessible value of ∆ϕ to be 10−2, then Hooke’s law can
(potentially) be observed for strains on the order of 1% and smaller.

To estimate the scales τ∗, γ∗, and γ̇†, one must know the microscopic time
scale τ0, which arises from a balance between viscous and elastic forces. Simple
dimensional analysis then suggests a time scale on the order of ηd/γs, where η is the
viscosity of the continuous phase, d is a typical bubble size, and γs is the surface
tension.[75] In dishwasher detergent, for example, viscosities are on the order of 1
mPa·s and surface tensions γs ∼ 10 mN/m, while bubble sizes can from 100 µm to 1
cm.[76, 77] Hence microscopic time scales fall somewhere in the range 10−5 . . . 10−3

s. For ∆ϕ on the order 10−2, the time scale τ∗ ∼ τ0/(p/k) ∼ τ0/∆ϕ remains shorter
than 0.1 s at accessible values of ∆ϕ, while γ̇† ∼ ∆ϕ2/τ0 can be as low as 0.1 s−1.

We offer a note of caution when considering bounds involving the time scale
τ0. First, experiments find power law relaxation at volume fractions deep in the
jammed phase.[78] There is an associated time scale that can be on the order of
1 s depending on sample age, which is significantly longer than our estimates of
τ0 above. This suggests that coarsening and details of the continuous phase flow
within thin films and Plateau borders may play an important role – in addition
to the strongly non-affine motion associated with proximity to jamming [35, 79] –
yet neither are incorporated in Durian’s bubble model.[7] Second, while we have
considered dissipation proportional to the relative velocity of contacting particles,
the viscous force law need not be linear. In foams, for example, the dominant
source of damping depends sensitively on microscopic details such as the size of
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the bubbles and the type of surfactant used.[76] Often one finds Bretherton-type
damping proportional to (relative) velocity to the power 2/3.[77, 80] We anticipate
that nonlinear damping would impact the relaxation dynamics [25, 81, 82] and alter
the value of the exponents θ and λ. For sufficiently long times or slow shearing above
ϕc, however, we expect particles to follow quasistatic trajectories and the differences
between various methods of damping to become negligible.
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Figure 2.9: In a flow start-up test, quasistatic linear response (G ≈ G0) occupies a strain window
γ∗ < γ < γ† (shaded regions). For smaller strains the response is rate-dependent, with a crossover
strain γ∗ that depends on both pressure and strain rate. Softening sets in for higher strains, with
a crossover γ† that depends only on the pressure. The intersection of the rate-dependent and
softening crossovers defines a strain rate γ̇† above which there is no quasistatic linear response,
i.e. the shaded region closes.

2.6. Discussion
Using a combination of stress relaxation and flow start-up tests, we have shown
that soft solids near jamming are easily driven out of the linear elastic regime.
There is, however, a narrow linear elastic window that survives the accumulation
of an extensive number of contact changes. This window is bounded from below by
viscous dissipation and bounded from above by the onset of strain softening due to
plastic dissipation. Close to the transition these two bounds collide and the linear
elastic window closes. Hence marginal solids are easily driven into rate-dependent
and/or strain softening regimes on at volume fractions and strain scales relevant to
the laboratory. Fig. 2.9 provides a qualitative summary of our results for the case
of flow start-up.

While our simulations are in two dimensions, we expect the scaling relations we
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have identified to hold for D > 2. To the best of our knowledge, all scaling exponents
near jamming that have been measured in both 2D and 3D are the same. There is
also numerical evidence that D = 2 is the transition’s upper critical dimension.[54,
69]

Our work provides a bridge between linear elasticity near jamming, viscoelastic-
ity at finite strain rate, and nonlinearity at finite strain amplitude. The measured
relaxation modulus Gr is in good agreement with the linear viscoelasticity pre-
dicted by Tighe,[35] as well as simulations by Hatano conducted in the unjammed
phase.[27] Our findings regarding the crossover to nonlinear strain softening can be
compared to several prior studies. The granular experiments of Coulais et al. show
softening, although their crossover strain scales differently with the distance to jam-
ming, possibly due to the presence of static friction.[33] The emulsions of Knowlton
et al. are more similar to our simulated systems, and do indeed display a crossover
strain that is roughly linear in ∆ϕ, consistent with our γ†.[41] A recent scaling theory
by Goodrich et al.[57], by contrast, predicts a crossover strain γ† ∼ ∆ϕ3/4, which is
excluded by our data. Nakayama et al.[55] claim agreement between their numerical
data and the theoretical exponent 3/4, although they note that their data is also
compatible with a linear scaling in ∆ϕ. A recent study by Otsuki and Hayakawa [34]
also finds a strain scale proportional to ∆ϕ in simulations of large amplitude oscil-
latory shear at finite frequency. The agreement between the crossover strains in our
quasistatic simulations and these oscillatory shear simulations is surprising, as most
of the latter results are for frequencies higher than γ̇†, where viscous stresses domi-
nate. There are also qualitative differences between the quasistatic shear modulus,
which cannot be collapsed to a master curve (Fig. 2.5), and the storage modulus
in oscillatory shear, which can.[34, 56] We speculate that there are corresponding
microstructural differences between packings in steady state and transient shear,
[40] similar to those which produce memory effects.[83]

Soft sphere packings near jamming approach the isostatic state, which also gov-
erns the rigidity of closely related materials such as biopolymer and fiber networks.[84–
87] It is therefore remarkable to note that, whereas sphere packings soften under
strain, quasistatically sheared amorphous networks are strain stiffening beyond a
crossover strain that scales as ∆z [88], which vanishes more slowly than γ† ∼ ∆z2

in packings. Hence nonlinearity sets in later and with opposite effect in networks.[89]
We expect that this difference is attributable to contact changes, which are absent
or controlled by slow binding/unbinding processes in networks.

We have demonstrated that softening occurs when the system has accumulated
a finite number of contact changes correlated with the system’s initial distance from
the isostatic state. This establishes an important link between microscopic and
bulk response. Yet further work investigating the relationship between microscopic
irreversibility, softening, and yielding is needed. The inter-cycle diffusivity in oscil-
latory shear, for example, jumps at yielding [41, 44], but its pressure dependence has
not been studied. Shear reversal tests could also provide insight into the connection
between jamming and plasticity.

While the onset of softening can be probed with quasistatic simulation methods,
rate dependent effects such as the strain scale γ∗ should be sensitive to the manner in
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which energy is dissipated. The dissipative contact forces considered here are most
appropriate as a model for foams and emulsions. Hence useful extensions to the
present work might consider systems with, e.g., lubrication forces or a thermostat.



3
Stress Relaxation

We report the results of molecular dynamics simulations of stress relaxation tests
in athermal viscous soft sphere packings close to their unjamming transition. By
systematically and simultaneously varying both the amplitude of the applied strain
step and the pressure of the initial condition, we access both linear and nonlinear
response regimes and control the distance to jamming. Stress relaxation in viscoelas-
tic solids is characterized by a relaxation time τ∗ that separates short time scales,
where viscous loss is substantial, from long time scales, where elastic storage dom-
inates and the response is essentially quasistatic. We identify two distinct plateaus
in the strain dependence of the relaxation time, one each in the linear and nonlinear
regimes. The height of both plateaus scales as an inverse power law with the distance
to jamming. By probing the time evolution of particle velocities during relaxation,
we further identify a correlation between mechanical relaxation in the bulk and the
degree of non-affinity in the particle velocities on the micro scale.

This chapter is based on the following publication: J. Boschan, S.A. Vasudevan,
P.E. Boukany, E. Somfai, B.P. Tighe, Stress relaxation in viscous soft spheres, Soft
Matter, 13, 6870-6876, (2017).
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3.1. Introduction
Viscoelasticity is associated with one or more time scales that reflect the changing
balance between viscous loss and elastic storage as a material’s response to mechan-
ical perturbations evolves in time.[23, 90] Here we implement a standard rheometric
test of viscoelasticity, namely stress relaxation in response to an instantaneous step
strain, and apply it to a minimal numerical model for foams, emulsions, and soft
colloidal suspensions.[7]

Our focus is on athermal systems close to the nonequilibrium (un)jamming tran-
sition, where the material develops rigidity under compression.[4, 24, 30] Because the
shear modulus vanishes continuously at the jamming point, weakly jammed states
near the transition can be arbitrarily soft.[4] Intuition then suggests that their linear
response window should also be narrow – small changes in strain amplitude should
suffice to drive weakly jammed materials from linear to nonlinear response. Numer-
ics confirm this expectation; under quasistatic shear, for example, the strain scales
where the first contact change occurs and where bulk softening sets in both vanish as
power laws with the pressure.[52, 91, 92] While there has recently been considerable
interest in nonlinear response near jamming,[33, 34, 36, 45–47, 52, 88, 89, 91–96] the
form of the relaxation time for large strain steps remains an important open ques-
tion. Here we demonstrate for the first time that, as the system passes from linear to
nonlinear response, relaxation times depend not only on the material constitution,
but also on the amplitude of a shear perturbation.

A diverging relaxation time is an important mechanical property of soft amor-
phous matter near jamming.[3, 35, 97] In the jammed phase, the stress relaxation
time τ∗ describes the time needed to reach a new mechanical equilibrium after a
sudden shear strain.[92] In linear response, the divergence of τ∗ as the confining
pressure p is sent to zero signals the loss of rigidity.[35] The unjammed phase dis-
plays a similarly growing time scale, which marks a crossover from power law to
exponential stress relaxation.[27] Both linear and nonlinear stress relaxation can
be characterized with the relaxation modulus Gr(t, γ0), which describes the time
evolution of the shear stress σ(t, γ0) after a step strain with amplitude γ0,

Gr(t, γ0) =
σ(t, γ0)

γ0
. (3.1)

For infinitesimal γ0, the stress is directly proportional to the strain and Gr is a func-
tion of time alone. In this limit the relaxation modulus is equivalent (i.e. related by
standard mathematical transformations) to other common rheometric tests, includ-
ing small amplitude oscillatory shear and flow start-up.[23] In the nonlinear regime
this equivalence generally breaks down.

Existing theoretical [35] and numerical[92] studies of Gr near jamming are valid
only in the linear response regime. Its typical form is illustrated in Fig. 3.1. Af-
ter a brief plateau at short times, Gr undergoes a power law decay before reach-
ing a quasistatic plateau. The relaxation time is the time needed to reach the
quasistatic plateau. In linear response it diverges as an inverse power law with
p.[35, 70, 92, 98] Numerical studies of nonlinear response near jamming typically
neglect rate-dependent effects by focusing on quasistatic shear.[34, 52, 91, 92, 94]
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Figure 3.1: The time evolution of the shear relaxation modulus Gr, calculated for a step strain
with amplitude γ0 = 10−6 at pressure p = 10−4 and N = 1024. The characteristic relaxation time
τ∗ is identified as the point where Gr reaches 1 + 1/e times its quasistatic plateau value.

They have identified two important linear-to-nonlinear crossover strain scales. The
first corresponds to the breakdown of linear response on the scale of individual parti-
cle trajectories, which is driven by changes to the contact network.[45–47, 52, 91, 92]
The contact change strain scales as γcc ∼ p1/2/N .[52, 91, 92] The second characteris-
tic strain corresponds to softening, i.e. the loss of linearity in the average stress-strain
curve. It scales as γ† ∼ p.[34, 92, 94] Note that these two strains scale differently
with p; we will revisit this observation below.

In the present work we study the linear and nonlinear relaxation time of weakly
jammed solids over a wide range in pressure and strain amplitude γ0 connecting
linear and nonlinear response. Our central finding is that the relaxation time as a
function of γ0 displays two plateaus: one in the linear regime, and a second, higher
plateau at larger strains. The pressure dependence of these two plateaus is identical,
i.e. they diverge as power laws with the same exponent. This is a surprising result,
as there is no a priori reason for their exponents to be the same. We further relate
the form of τ∗ to the time evolution of floppy-like, non-affine particle motions during
relaxation.

3.2. Methods and Model
Foams are modeled with the Durian bubble model [7] in two dimensions. Bubbles
are represented as disks that repel elastically when they overlap, with an additional
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dissipative force proportional to their relative velocity. The elastic force between
particles i and j is proportional to their overlap δij = (Ri+Rj)− rij , where Ri and
Rj denote the radii and rij is the length of the vector r⃗ij , pointing from the center
of particle i to the center of particle j,

f⃗ el
ij =

{
−k(δij)δij r̂ij , if δij > 0

0⃗, otherwise.
(3.2)

The viscous force depends on the relative velocity vij of the touching particles
evaluated at the contact,

f⃗v
ij =

{
−τ0kvij , if δij > 0

0⃗, otherwise,
(3.3)

where τ0 is the microscopic relaxation time. All material properties are expressed
in dimensionless units constructed from k, τ0, and the mean bubble size.

The stress tensor is

σαβ =
1

2V

∑
ij

fij,αrij,β − 1

V

∑
i

mivi,αvi,β , (3.4)

where Greek indices denote Cartesian coordinates. The contact stress term contains
the total force at each contact, fij = f el

ij + f v
ij . The inertial stress is dictated by

the center of mass velocity vi. Each particle has unit density, so its mass mi is
proportional to its area. V is the total area of the unit cell. The inertial stress term
is negligible for times longer than the damping time τ0.

Initial conditions are created by randomly populating the simulation box and
then using an energy minimization protocol to quench instantaneously to a local
minimum of the elastic potential energy at fixed volume. The box is then allowed
to undergo small changes in size and shape to achieve a target pressure p and zero
shear stress – these are called “shear-stabilized” packings in the nomenclature of
Dagois-Bohy et al.[60] The pressure provides a convenient measure of proximity to
the (un)jamming point at p = 0. Packings are bidisperse to avoid crystallization; we
use the standard[4, 6] 50-50 mixture of small and large particles and a radius ratio of
1:1.4. Once the initial state is prepared, we use molecular dynamics simulations to
apply shear, which allows us to resolve the time evolution of the system. Newton’s
laws are integrated using a velocity Verlet algorithm.

3.3. Stress relaxation at finite strain
In order to describe the mechanical relaxation of soft sphere packings, we investigate
the system’s shear stress in response to an instantaneous step strain of amplitude γ0
applied at time t = 0. The strain is imposed using Lees-Edwards periodic boundary
conditions while displacing the particles’ coordinates (xi, yi) affinely according to
(xi, yi) → (xi + γ0y, yi). In order to stay clear of any spurious periodic signatures
in our results, we restrict applied strains to γ0 < 0.01; this is still large enough to
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observe the softening crossover for the highest pressure we simulate, as discussed
below. For times t > 0 after the instantaneous shear, the periodic boundaries are
kept fixed in their strained position and the particles are allowed to relax to a new
mechanical equilibrium. The resulting stress relaxation is illustrated in Fig. 3.1,
which shows the relaxation modulus Gr(t, γ0) as a function of time t for a single
strain amplitude and pressure.
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Figure 3.2: (a) The time evolution of the shear relaxation modulus Gr for p = 10−4 and N = 1024
at different strain amplitudes (see legend). (b) The quasistatic, long time shear modulus G as a
function of strain. The data points show the long time response to instantaneous step strains. The
lines are results from a separate set of simulations that reach the same total strain via a series of
incremental steps applied using a quasistatic shear protocol.

The relaxation modulus displays several noteworthy features. There is an initial
plateau at times shorter than the damping time τ0 ≡ 1, which occurs because
viscous forces inhibit the system from relaxing at a rate faster than 1/τ0. On longer
time scales, the shear modulus decreases as a power law 1/tθ with an exponent
θ = 1/2.[35, 92] This relaxation continues until the stress reaches a second, long
time plateau. The height of the plateau defines a quasistatic modulus G(γ0), which
approaches the linear elastic shear modulus G0 = G(0) in the limit of vanishing
strain amplitude. The crossover between power law relaxation and the quasistatic
plateau defines the relaxation time τ∗(γ0).

Fig. 3.2a illustrates the evolution of the relaxation modulus with increasing strain
amplitude at a pressure p = 10−4, which is representative of the entire range of pres-
sures simulated here. All curves show qualitatively similar time evolution. However,
there is a crossover with increasing γ0. For the small values γ0 = 10−6 and 10−5

(solid and dashed curves), the relaxation modulus collapses, which is indicative of
linear response. For higher strain amplitudes, beginning here around γ0 = 10−4,
the entire curve shifts downward. This is strain softening. Softening is also evident
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in the quasistatic modulus G(γ0), estimated from Gr(t = 106, γ0), which we plot
in Fig. 3.2b for varying pressures (symbols). At low strains the modulus remains
constant, consistent with linear response. Softening corresponds to a subsequent
decrease in G(γ0) with increasing γ0. This general trend is evident at all pressures.

Strain softening has been explored previously in Ref. [92], where it was found
that the onset of softening occurs at a strain scale proportional to p, after a finite
fraction of the particles have undergone contact changes. There shear was built
up incrementally using a quasistatic protocol, so that the final amplitude γ0 was
reached via a large number of small steps ∆γ. Once linear response has broken
down and the system has begun to soften, however, there is no fundamental reason
that the result of an incremental quasistatic protocol should correspond to the long
time limit of viscoelastic relaxation after a single large step strain. It is therefore
surprising that when we overplot the results for incremental strain from Ref. [92]
(solid curves), we find near perfect agreement between the two data sets. This
suggests that, on average, the two protocols reach the same minimum in the energy
landscape of the sheared system.

3.4. Relaxation time and strain dependence
We now investigate the time τ∗(γ0) needed to reach the quasistatic plateau after a
strain of amplitude γ0. While linear response can be accessed with careful numerical
experiments,[35, 92] one would prefer to have a complete characterization of the
dependence of the relaxation time, not just on p, but also on the amplitude γ0 of
the strain step. Our main result is the observation of a plateau in τ∗ at large γ0,
with pressure dependence comparable to the relaxation time in linear response.

We identify τ∗ as the time when the relaxation modulus reaches a value 1 + ∆
times its value in the long time plateau. In the following we set ∆ = 1/e; we have
verified that our results are representative of a range of values for ∆. We simulate
relaxation time measurements for stress relaxation over three decades in pressure,
p = 10−2 . . . 10−5, and four decades in strain amplitude, γ0 = 10−6 . . . 10−2. Results
are averaged over at least 500 realizations per condition. In MD simulations the
total simulated time is limited by the available computational resources; especially
for the lowest pressures and largest strain amplitudes, one can ask if the system
might relax yet more at longer times. To exclude this possibility, we have also
performed quasistatic simulations using the FIRE algorithm [22] to determine the
long time limit of the shear modulus. We then recalculate the relaxation time using
the quasistatic plateau value, in combination with the time evolution of the MD
simulation. These results are in good agreement with the relaxation times calculated
directly from MD. Hence we are confident that our results are representative of fully
relaxed packings.

The evolution of the relaxation time, plotted in Fig. 3.3, can be separated into
three stages. At low strains, the response is linear and the plot of τ∗ versus γ0
plateaus, with the height of the plateau determined by the pressure. Next there is a
second, intermediate regime, where linear response breaks down and the relaxation
time begins to grow with increasing strain amplitude. The crossover causes the
relaxation time to increase by approximately one order of magnitude. Finally, there
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is a regime at comparably high strains where τ∗ develops a second plateau. This
trend continues throughout the studied pressure range, with the crossover shifting
to higher strains with increasing pressure. As a result, the linear response window is
at the edge of the sampled strain range for the lowest pressures, while the nonlinear
plateau is only beginning to develop for the highest pressure.
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Figure 3.3: The relaxation time τ∗ as a function of strain γ0 for system size N = 2048 and varying
pressures, p = 10−5 . . . 10−2 (see legend).

In order to highlight pressure dependence, we seek to collapse the relaxation time
data by plotting τ∗/pλ versus γ0/p

ν . We select λ = 0.85, which is the relaxation
time exponent identified numerically in our prior study of strictly linear response,[92]
and close to the theoretically predicted value of 1.[35] For the strain axis rescaling
we select ν = 0.5, which is characteristic of the contact change strain scale γcc
discussed above.[52, 91, 92] This choice is motivated by comparing Figs. 3.2b and
3.3, where one observes that the upturn in τ∗ for increasing γ0 always occurs at a
strain where the quasistatic shear modulus is still approximately flat, i.e. before the
onset of softening. The rescaled data, plotted in Fig. 3.4, show good collapse over
the entire range of strains and pressures. There is a small departure for the lowest
pressure (i.e. closest to jamming) at the highest strain amplitudes, which may be
associated with finite size effects.

The data collapse in Fig. 3.4 indicates one of our central results, namely that the
relaxation time plateaus at low and high strains diverge as inverse power laws with p,
with the same characteristic exponent λ. We consider this result surprising, as there
is no fundamental reason that the divergence of the relaxation times at finite strains
should comply with the form for infinitesimal strain. The rescaling of the strain axis
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with p0.5, and the position of the crossover at a value γ0/p
0.5 ∼ O(1/N), strongly

suggest that the increase in relaxation time is associated with the onset of contact
changes, and therefore the breakdown of linearity in the particles’ trajectories. We
have verified that a plot with γ0/p on the x-axis produces significantly worse collapse,
and also that reducing the system size shifts the crossover to higher strains.
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Figure 3.4: Data collapse of the relaxation time. Data are identical to Fig. 3.3.

3.5. Relaxation and non-affine particle motion
When jammed solids are sheared, particles primarily slide past their contacting
neighbors, rather than interpenetrating.[35, 63, 70, 88] This “floppy-like” motion
is a precursor of true floppy modes, or zero frequency, non-rigid body eigenmodes,
that appear below the jamming transition. Floppy-like motion is the physical origin
of non-affine fluctuations. During floppy-like motion, relative displacements are
predominantly perpendicular to the bond vector r̂ij pointing from the center of
particle i to the center of particle j, not parallel to it. Floppy and non-affine motion
is well understood in linear elastic response.[3, 63] However, little is known about
how these displacements evolve in time, and/or in nonlinear response. Here we
study the time evolution of the relative velocity of contacting particles during linear
and nonlinear stress relaxation.

In order to analyze particle motions during relaxation, it is convenient decompose
each relative velocity vij into longitudinal and transverse parts according to

vij = v∥,ij r̂ij + v⊥,ij t̂ij , (3.5)
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Figure 3.5: PDF’s of longitudinal and transverse relative velocities at different times t/τ∗ (see
legend) in log-log and semi-log representations at p = 10−3 and γ0 = 10−4.

where the longitudinal velocity v∥ is parallel to the r̂ij direction, and the transverse
velocity v⊥ isalong t̂ij = r̂ij × ẑ, defined with respect to the unit vector ẑ pointing
out of the plane. By construction the particles have zero velocity at t = 0, and
they approach a new static state at long times. During the relaxation process we
follow the full statistics of the longitudinal and transverse velocities.

Fig. 3.5 shows the probability distribution functions (PDF’s) of |v∥| and |v⊥| for
one pressure p = 10−3 and several times, presented in units of the relaxation time
τ∗ (see legend). For both longitudinal and transverse velocities, the distribution
grows as PDF ∼ v for small v. The tails at large v are approximately exponential
for short times t/τ∗ ≪ 1. At longer times the distributions decay slower than an
exponential and faster than a power law. Attempts to fit a stretched exponential do
not yield a good fit. Rescaling velocities by their average value ⟨v∥,⊥⟩ at each time
provides an approximate collapse for times t > τ∗, although some scatter remains.
Due to this rough collapse, in the remainder we focus on average quantities, namely
on the root mean squared (rms) velocities vrms

∥ ≡ ⟨v2∥⟩
1/2 and vrms

⊥ ≡ ⟨v2⊥⟩1/2.
A representative example of the time evolution of the rms velocities is plotted

in Fig. 3.6 for pressure p = 10−3 and strain γ0 = 10−4, averaged over an ensemble
of 100 packings. Note that v⊥ is substantially larger than v∥ at all times, indicating
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Figure 3.6: Longitudinal and transverse velocities versus time for p = 10−3 and γ0 = 10−4.

that transverse motion is always dominant. After reaching their peak value at a
time on the order of τ0, the velocities steadily decrease as the packing relaxes, until
eventually they drop sharply and simultaneously due to a fraction of the packings
that fully arrest. This drop occurs long after the relaxation time, which is of the
order τ∗ ∼ O(103) for this value of p and γ0. Our interest here is primarily in the
relaxation time τ∗, so in the remainder we focus on data at times prior to the drop.

To further assess the character of the particle motions at finite time, we introduce
the ratio of rms velocities

Γ =

√
⟨v2⊥⟩
⟨v2∥⟩

. (3.6)

Γ measures the balance between motion that leads to sliding versus interpenetration.
The value of Γ is of order unity for an affine velocity profile, while significantly larger
values of Γ indicate strongly non-affine motion. In the following, we demonstrate
that the relaxation of 1/Γ is strongly correlated with the relaxation of bulk stresses.

Fig. 3.7 depicts 1/Γ for three values of the pressure and three values of the
shear strain, for time intervals 10−3 ≤ t/τ∗ ≤ 10. In all cases 1/Γ decays, indi-
cating that non-affinity increases with time. For further comparison, we overplot
the corresponding Gr in each panel (dashed lines). There is an evident similarity
in their decay profiles; this strongly suggests a correlation between the mechanical
relaxation time τ∗ and the relaxation of floppy-like, non-affine fluctuations.

In order to further probe the correlation between stress relaxation and non-affine
fluctuations, we investigate the time evolution of 1/Γ for three pressures and two
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values of the strain amplitude, as shown in Fig. 3.8. The first strain amplitude,
γ0 = 10−6, is in the linear regime for all values of p, while the second, γ0 = 4×10−3,
is in the second plateau of τ∗ in Fig. 3.4. For both low and high strain amplitudes, we
find reasonable data collapse when time is rescaled by τ∗ and Γ is rescaled with p0.4.
This data collapse is further evidence that the same physics governs the relaxation
of non-affine fluctuations and stress, in both the linear and nonlinear regimes.

The data of Figs. 3.7 and 3.8 indicate a strong correlation between non-affinity at
the micro scale, and stress response on the macro scale. They establish a microscopic
interpretation of the relaxation time: it is the time scale beyond which floppy-like
sliding motion (and hence non-affinity) fully dominates particle motion.
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Figure 3.7: A comparison of the shear relaxation modulus Gr (dashed curves) with 1/Γ (solid
curves) at three distinct pressures and strain amplitudes (see row and column labels).

3.6. Conclusion
We have used stress relaxation tests to determine the relaxation time of jammed
solids as a function of strain and pressure. For sufficiently low strains, linear re-
sponse is valid and the relaxation time approaches a plateau determined solely by
the pressure. Close to jamming, the strains needed to access linear response are
extremely small, and many experimental protocols are likely to probe nonlinear re-
sponse even if care is taken to apply small strain. Beyond linear response, contact
changes accumulate leading to softening, and the relaxation time grows. We find a
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Figure 3.8: p0.4/Γ plotted as a function of the rescaled time coordinate t/τ∗. Solid and dashed
curves are for (γ0, p) pairs corresponding respectively to the linear and nonlinear plateaus of τ∗ in
Fig. 3.4.

second plateau in which τ∗ is approximately independent of strain. To within the
precision of our numerical measurement, this second plateau diverges at jamming
with the same exponent that characterizes linear response. The crossover is associ-
ated with the onset contact changes, and hence the post-crossover plateau should be
accessible experimentally. Rheometry and simultaneous particle tracking in bubble
rafts[77, 99, 100] could also access measures of non-affinity.

In order to relate τ∗ to microscopic properties of the system, we have studied the
statistics of floppy-like, non-affine motion, characterized by the time-dependent ratio
Γ of the rms longitudinal and transverse velocities between particles in contact. We
observe a strong correlation between Γ and the relaxation of shear stress in time. We
infer that τ∗ can be understood as the time needed to observe fully-developed non-
affine response; once non-affinity has reached its maximum, the system’s subsequent
response is quasistatic.

There are several likely directions for future work. A natural question is whether
the observed behavior of the relaxation time persists in D = 3 spatial dimensions.
D = 2 is the upper critical dimension for the jamming transition [54, 69], so we
do not anticipate qualitative differences. One can also ask how the relaxation time
develops for larger strains, up to and including the yielding crossover to steady
plastic flow, which occurs for strains on the order of 10%.[92] We speculate that
there exists some strain scale beyond which the instantaneously applied step strain
is tantamount to thermalization of the system, hence it may be possible to make
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connections to the late stages of relaxation after a temperature quench.[32] Finally,
it is also interesting to ask if there is any relationship between the relaxation time
studied here and the duration of rearrangement events in steady plastic flow.[101,
102]





4
Jamming and Irreversibility

We investigate irreversibility in soft frictionless disk packings on approach to the
unjamming transition. Using simulations of shear reversal tests, we study the rela-
tionship between plastic work and irreversible rearrangements of the contact network.
Infinitesimal strains are reversible, while any finite strain generates plastic work and
contact changes in a sufficiently large packing. The number of irreversible contact
changes grows with strain, and the stress-strain curve displays a crossover from
linear to increasingly nonlinear response when the fraction of irreversible contact
changes approaches unity.

This chapter is based on the following publication: J. Boschan, S. Luding, B.P. Tighe,
Jamming and irreversibility, Granular Mat- ter, 21, 58, (2019).
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Figure 4.1: Sample output from a loading-unloading cycle in simulations. (a) If deformation is
reversible, the loading curve σ(γ↑) and unloading curve σ(γ↓) coincide. (b) In an irreversible
deformation there is hysteresis, and the enclosed area is equal to the plastic work.

Packings of soft spheres prepared at small but finite pressure are marginal solids
– while their response to infinitesimal strains is elastic [4], a small shear stress suffices
to instigate quasistatic plastic flow [25, 103]. Recently there has been considerable
interest in how the ensemble-averaged stress-strain curve for shear becomes non-
linear, and in particular on how the crossover from linear to nonlinear response
depends on the distance to jamming [33, 34, 41, 89, 92, 94, 104–107]. The shear
strain required to make or break a contact vanishes in the limit of large system
sizes, so finite deformations necessarily involve topological changes to the contact
network [45, 47, 52, 91, 108]. It is therefore natural to ask about the relationship
between nonlinearity and plasticity, especially when one approaches (un)jamming.
More precisely, we ask whether there is a correlation between the linear-to-nonlinear
crossover and (ir)reversibile contact changes.

To probe nonlinearity and irreversibility near jamming, we study shear reversal in
marginally jammed packings of athermal, frictionless, purely repulsive soft spheres.
We begin from an isotropic state prepared at a targeted pressure p. We use this
initial pressure (prior to shearing) to quantify the distance to unjamming at p = 0.
After preparation, the system is subjected to simple shear in small quasistatic steps
to a maximum strain γm. The shearing direction is then reversed, and the system
is returned to zero strain. A load is reversible if the stress follows the loading curve
back to its initial value at zero strain. Reversible and irreversible deformations are
illustrated in Fig. 4.1 with data from our simulations. This complements similar
irreversibility under volumetric strain as observed in [105] and interpreted in terms
of a history-dependent critical packing fraction.

The present work builds on results from Boschan et al. [92, 109], who studied
the loading curve but did not consider shear reversal. The loading curve was found
to be linear up to a strain scale γ† ∼ p. After γ† the stress continues to grow,
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albeit more slowly than an extrapolation of the initial linear trend. The crossover
to steady plastic flow occurs later, at a distinct strain scale γy ≃ 0.05. Simulations
of large amplitude oscillatory shear at finite rate also showed two distinct crossovers
with identical scaling properties [106].

Boschan et al. [92] also studied contact changes, i.e. made and broken contacts
during shearing. They found that the linear-to-nonlinear crossover at γ† is also
evident in the contact change statistics, as detailed in Section 4.3. It is plausible
that contact changes are a proxy for irreversible rearrangements, but this must be
verified – while rearrangements involve contact changes, not all rearrangements are
irreversible [39, 40, 106, 110–113].

Here we probe nonlinearity and and irreversibility during a loading-unloading
cycle. We first monitor the plastic work performed during the cycle, and then
correlate these results to the statistics of contact changes at the particle scale. We
find, first, that there is finite plastic work even when the ensemble-averaged stress-
strain curve is linear. Consistent with this observation, we also find that irreversible
contact changes accrue prior to the loss of linearity. Second, prior to γ†, some
fraction of the contact changes are reversible. After γ†, when the stress-strain curve
is nonlinear, essentially all contact changes are plastic.

4.1. Model and Methods
We perform two-dimensional simulations of athermal frictionless disks, a standard
model with a jamming transition [30]. Particles experience a spring-like force pro-
portional to their overlap δij = (Ri + Rj) − rij , where Ri and Rj denote the radii
and rij is the length of the vector r⃗ij pointing from the center of particle i to j.
The contact force on particle i due to particle j is purely repulsive, and there is no
interaction when the particles are not in contact,

f⃗ el
ij =

{
−k(δij)δij ˆ⃗rij δij ≥ 0

0⃗ δij < 0
(4.1)

where a hat indicates a unit vector. We fix the units of stress by setting the spring
constant k and mean particle size to unity. The stress tensor is

σαβ = − 1

2V

∑
ij

fij,αrij,β , (4.2)

where Greek indices denote Cartesian coordinates, and V is the total area of the
unit cell.

Initial conditions are created by randomly populating the bi-periodic simulation
box and then using a nonlinear conjugate gradient energy minimization protocol to
quench instantaneously to a local minimum of the elastic potential energy at fixed
volume [6]. The box is then allowed to undergo small changes in size and shape to
achieve a target pressure p and zero shear stress – these are called “shear-stabilized”
packings in the nomenclature of Dagois-Bohy et al. [54, 60]. Packings are bidisperse
to avoid crystallization; we use the standard [4, 6] 50:50 mixture of small and large
particles and a radius ratio of 1:1.4.
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Figure 4.2: Shear reversal tests for varying maximum strains γm (see legend) at pressure p = 10−4

and system size N = 1024.

Once the initial state is prepared, we apply quasistatic simple shear using Lees-
Edwards boundary conditions with small logarithmically-spaced steps ranging be-
tween ∆γ = 10−8 . . . 10−3. After each strain step the energy is re-minimized [6]
while holding the strain fixed, so particles follow quasistatic trajectories. Once a
maximum strain γm is reached, the direction of shear is reversed and the system is
returned to zero strain, again via a series of small logarithmically-spaced steps.

In order to quantify irreversibility, we calculate the plastic work Wp of the load-
ing/unloading cycle,

Wp =

∮
σ dγ =

∫ γm

0

σ↑ dγ↑ −
∫ γm

0

σ↓ dγ↓ , (4.3)

where upwards and downwards pointing arrows are used to indicate the loading and
unloading curves, respectively. Clearly Wp is zero when the response is reversible.

The phenomenology of a shear reversal test in weakly jammed soft spheres is
illustrated in Fig. 4.1. In panel (a), the maximum shear strain γm = 10−5 is so
small that no contact changes occur [52, 91]. The stress-strain curve is linear and
the loading and unloading curves coincide. In panel (b), the maximum shear strain
γm = 10−2 is substantially larger. On reversal the stress decreases but does not
retrace the loading curve. The loading and unloading curves are both nonlinear.
Because there is hysteresis, there is an associated plastic work. In addition to the
plastic work, irreversibility can be quantified by the plastic strain γp and a plastic
stress σp, corresponding to the intercepts of the unloading curve with the x- and
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Figure 4.3: a) Plastic work versus maximum strain for varying pressures (see legend). b) Collapse
to a master curve with ϱ = 5/2. The dashed lines have slopes 2 and 3/2

y-axis, respectively.

4.2. Plastic Work
We perform shear reversal tests for a range of preparation pressures p and varying
maximum strain γm. Fig. 4.2 illustrates loading and unloading curves for p = 10−4

and γm ranging from 10−5 to 10−2 in half-decade steps. The result is representative
of other pressures.

To quantify the appearance of irreversibility, we analyze the plastic work as a
function of γm and p, as shown in Fig. 4.3. We find nonzero Wp for all investigated
maximum strains, which are as small as 10−5. (As noted above, packings of finite
size can be sheared reversibly if the contact network remains unchanged, but this
strain interval vanishes in the large system size limit [52, 91].) For each pressure Wp

has an approximately power law growth with γm, with an apparent exponent that
varies with pressure.

To better understand the pressure dependence of Wp, we seek to collapse the
data to a master curve. Anticipating a correlation with the onset of nonlinearity, we
plot the rescaled variable x ≡ γm/p ∼ γm/γ†. On the other axis we plot the rescaled
work W ≡ Wp/p

ρ for some exponent ϱ. To motivate ϱ, we note that for small values
of γm, the loading curve is associated with work W↑ ∼ G0γ

2
m, where G0 ∼ p1/2 is

the shear modulus for Hookean particles near jamming [4, 14, 35]. If we assume
G0 also sets the relevant scale for Wp at small γm, then we expect Wp ∼ p1/2γ2

m.
Rearranging in favor of γm/p gives Wp/p

5/2 ∼ (γm/p)
2, which requires ϱ = 5/2.

This prediction is tested in the log-log plot of Fig. 4.3b, where we find data collapse
to a curve with an initial slope of 2. When x ≫ x∗ ∼ O(1) the plastic work grows
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more slowly with γm, with an exponent of roughly 3/2,

W ∼

{
x2 x < x∗

x3/2 x > x∗ .
(4.4)

Plasticity is indeed sensitive to γ†, because data for Wp collapse with the rescaled
variable x. But irreversibility does not “turn on” when the ensemble-averaged stress-
strain curve becomes nonlinear, as indicated by measurable Wp even when the curve
is linear.

4.3. Contact changes
We now seek to relate irreversibility to the evolution of contact changes during
loading and unloading.

As first shown in Ref. [92] and verified below, the scale γ† is apparent in the
evolution of the number of made and broken contacts per particle, which we refer
to as the contact change density ncc(γ). We now monitor contact changes during
unloading to see to what extent the original contact network is recovered (i.e. broken
contacts are re-made and made contacts are re-broken). Contact changes are always
identified with respect to the initial condition, even during unloading. The “plastic
contact change density” np

cc, equal to ncc at the end of the unloading curve, is a
measure of irreversible (i.e. plastic) contact changes.

Fig. 4.4 depicts loading and unloading curves for three values of γm and three
different initial pressures p = 10−5, 10−4 and 10−3. For the lowest γm, in panel (a),
most contact changes are recovered at the end of the cycle and ncc has a nonzero
slope. np

cc is nevertheless nonzero, and it increases as p tends to zero. Plastic contact
changes also increase with increasing γm (panels (b) and (c)). In the final panel a
large fraction of the contact changes are unrecoverable, ncc hits the vertical axis
with zero slope, and np

cc is nearly equal to ncc(γm).

4.3.1. Contact changes during loading
Fig. 4.5 depicts ncc during loading. The figure shows that data for different pressures
can be collapsed to a master curve by plotting N ≡ ncc/(γ

†)1/2 ∼ ncc/p
1/2 as a

function of y = γ/p ∼ γ/γ†. This collapse was first demonstrated in Ref. [92]; for
completeness we present it in Fig. 4.5 using data from the present study. We find

N ∼

{
y y < y∗

y1/2 y > y∗ .
(4.5)

The crossover y∗ ∼ O(1) is compatible with x∗ from the plastic work. For later
reference, we note that

ncc ≃ amγ1/2
m (4.6)

when γm > γ† = y∗ p. We estimate am ≈ 3.7 ± 0.1 by fitting Eq. (4.6) to N for
y > 10.
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Figure 4.4: The contact change density ncc as a function of γ/γm for a) γm = 10−5, b) γm = 10−4

and c) γm = 10−2 each at pressures p = 10−5, 10−4 and 10−3 at N = 1024. The solid lines indicate
the loading the dashed lines the unloading curves.

We note that, by definition, ncc changes by an amount 1/N when the system
has undergone a strain γcc sufficient to produce one contact change. Hence

dncc

dγ ≈ 1/N

γcc
, (4.7)

and the average strain interval between contact changes, γcc can be read off from the
slope of the curves in Fig. 4.4. (Alternatively, the probability of a contact change
in the interval [γ, γ + dγ) is 1/γcc.) In particular, when the loading curve is linear,
there is a typical strain interval γcc ∼ p1/2/N between contact changes. Van Deen
et al. [52, 91] reached compatible results by directly resolving contact changes. As
noted above, γcc vanishes in the large system size limit.

4.3.2. Contact changes after reversal
To quantify to what extent the initial contact network can be recovered under re-
versal, we now monitor the plastic contact change density np

cc. Clearly np
cc = 0 if

the initial contact network is fully recovered. Fig. 4.6 plots np
cc as a function of γm

for three pressures and system sizes N = 128, 512, and 1024. We find np
cc is an

increasing function of γm, and for a given γm it is larger at smaller pressures. There
is also dependence on N .

The system size-dependence in np
cc suggests that the contact change strain γcc ∼

p1/2/N plays a dominant role, as opposed to γ† ∼ p. To test this hypothesis,
we attempt to collapse data to a master curve by plotting as a function of z ≡
γmN/p1/2 ∼ γm/γcc. We find collapse plotting P ≡ np

ccN
1/2/p1/4 versus p1/2/N ,

as shown in Fig. 4.6b. The master curve is

P ∼

{
z z < z∗

z1/2 z > z∗ .
(4.8)
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Figure 4.5: When appropriately rescaled with the pressure, the contact change density ncc collapses
to a master curve when plotted as a function of γ/p.

The crossover value z∗ ∼ O(102). Therefore

np
cc ≃ apγ

1/2
m (4.9)

after the system has undergone on the order of one hundred contact changes. The
constant ap ≈ 3.5± 0.1.

4.3.3. Relating nonlinearity and irreversibility
We can use the above observations to interpret the strain scale γ† in terms of
irreversibility. To this end, it is useful to introduce the “plastic fraction”

fp(γm) =
dnp

cc

dnm
cc

, (4.10)

where nm
cc is the value of ncc at the end of loading. fp quantifies the extent to

which marginal contact changes tend to be plastic. If fp(γm) = 0, then all marginal
contact changes in an infinitesimal interval around γm are reversible. If fp = 1, all
contact changes are plastic.

While a direct numerical evaluation of fp is noisy, we can infer its scaling prop-
erties by noting that

fp =

(
dnp

cc

dγm

)(
dnm

cc

dγm

)−1

. (4.11)
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Figure 4.6: a) The plastic contact change density np
cc as a function of maximum strain γm at

varying pressures p and system sizes N . b) Data collapse to a master curve. Dashed lines indicate
the slopes 1 and 1/2.

From Eq. (4.9) it follows that
dnp

cc

dγm
≃ ap

γ
1/2
m

(4.12)

in the N → ∞ limit. Similarly, Eq. (4.6) implies that

dnm
cc

dγm
≃ am

γ
1/2
m

(4.13)

when γm > γ†. Thus fp plateaus at a value ap/am ≈ 0.95 when γm > γ†. In other
words, after the linear-to-nonlinear crossover, around 95% of the subsequent contact
changes are plastic. By contrast, for smaller values of γm the plastic fraction evolves
with strain.

4.3.4. From contact changes to the stress-strain curve
A remaining challenge is to determine how plastic events impact stress buildup.
Here we make a first attempt. We expect irreversible contact changes to have an
associated stress drop ∆σp/N due to an eigenvalue of the Hessian matrix going
to zero [17, 114]. Then we assume that the infinitesimal stress dσ generated by a
strain dγ has both an elastic contribution and an offsetting stress release due to
irreversible events

dσ = G0 dγ −∆σp dnp
cc(γ) . (4.14)

Using Eq. (4.9) and rewriting in dimensionless form gives

1

G0

dσ
dγ = 1− ∆σp

p1/2 G0

(
p

γ

)1/2

. (4.15)

It remains to determine the typical stress drop amplitude, ∆σp. The scaling
relation ∆σp ∼ p suggests itself purely on dimensional grounds. Assuming this form
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then predicts that the right hand side of Eq. (4.15) depends on γ and p only via their
ratio γ/p. Reassuringly, this is consistent with the linear-to-nonlinear crossover at
γ† ∼ p, and with recent measurements of the secant modulus during shear startup
[92] and the storage modulus in oscillatory shear [34, 106]. We conclude that the
typical stress drop is indeed linear in p. Eq. (4.15) can then be integrated to find

σ ∼

{
p1/2 γ γ < γ†

p γ1/2 γ > γ† .
(4.16)

This stress-strain curve is compatible with Wp in Fig. 3b, including the γ3/2 scaling
beyond γ ≈ γ†.

The approach presented above is semi-empirical. A more fundamental motiva-
tion would require directly identifying plastic events to determine their frequency
and associated stress drops. The necessary theoretical tools were recently developed
in Refs. [95, 114, 115].

4.4. Discussion
We have investigated irreversibility at the macro and micro scale in systems near
jamming, evidencing irreversibility in both the plastic work and the contact change
statistics for small shear strains. Initially the average loading curve is linear and
most contact changes are reversible. Increasing the maximum strain increases the
number and fraction of plastic contact changes. For γ > γ†, the loading curve be-
comes nonlinear and nearly all contact changes are plastic. The onset of nonlinearity
therefore corresponds not to the onset of irreversibility (as commonly assumed in
continuum elasto-plastic theories), but to “fully developed” irreversibility, as re-
flected in the saturation of the plastic fraction fp. This crossover occurs earlier for
smaller γ† ∼ p.

With hindsight, the above scenario is apparent in the contact change statistics.
For small γm, as in Fig. 4.4(a), the plastic contact change density is much smaller
than nm

cc, and the unloading branch of the ncc curve ends with a nonzero slope –
indicating that shearing the system “a little bit further” to γ↓ < 0 would bring
the system closer to its initial contact topology, i.e. fewer net contact changes. In
contrast, for large γm, as in Fig. 4.4c, np

cc is nearly equal to nm
cc, and the unloading

curve is flat – the system has effectively lost all memory of its initial condition.
Our work has correlated the onset of nonlinearity at the macro scale to a par-

ticle scale crossover from reversible to irreversible contact changes. Both of these
crossovers are sensitive to the proximity to jamming. We have also suggested a
phenomenological approach to relate irreversible rearrangements to the form of the
loading curve, highlighting the need for a deeper understanding of the statistics of
stress drops during loading.
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In this thesis we focused on linear stress-strain response in disordered athermal
solids, close to the jamming transition (pc = 0). We discussed linearity in terms
of Hooke’s law, where the ratio of stress σ and strain γ is a constant, the shear
modulus G = σ/γ. We did different type of simulations to investigate the validity
of linear response in soft sphere packings. By combining macroscopic properties
with investigation of changes in the contact network topology, we described how
and why linear response breaks.

There are two ways for linear elasticity to break down: one, shearing ‘too far’ and
two shearing ‘too fast’. This thesis explored these two effects and their causes. We
showed that together they set the boundaries to linear response and as (un)jamming
is approached, the boundaries become narrower. In the following we will discuss our
results in more detail.

Shearing ‘too far’: When a solid is strained it builds up stress to withstand the
deformation. How well it can do that is captured by its shear modulus. In Ch. 2
we performed step strain simulations of soft sphere packings to describe the stress-
strain relationship in the nonlinear regime. We have shown that for small strains the
shear modulus is indeed constant, but when pushed too far, the material softens and
the shear modulus decreases. A characteristic strain scale determines the crossover
from linear to nonlinear response. Our simulations showed that the characteristic
strain is proportional to the pressure for the system:

γ† ∼ p.

This shows that close the transition, the smallest deformation can break linear
response. One might expect that the onset of nonlinearity corresponds with irre-
versibility in the stress-strain curve. In Ch. 4 we measured irreversibility on a macro
and micro scale by applying strain in one direction and reversing to zero strain. Af-
terwards the initial and final states were compared. We found that even for small
deformations the plastic work is nonzero and it steadily increases with the maximum
strain applied. While the plastic work is sensitive to γ†, there is measurable plastic
dissipation prior to the onset of softening.

To complete the picture we examined the system on the micro scale. We related
softening to changes in the contact network, by asking how many contact changes
are needed until linear response breaks. In Ch. 2 we counted the number of made
and broken contacts, at each applied strain, and concluded that an initially isotropic
material softens This gives a topological criterion for the onset of softening.

In Ch. 4 we extended our conclusions about the contact network by measuring
how much of it can be recovered after shear reversal. We found that the number of
plastic (non-recoverable) contact changes grows with the maximum strain, until the
initial contact network has been fully wiped out. We saw that softening is associated
with this “saturation” of the plastic contact changes.

Shearing ‘too fast’: In viscoelastic materials deformations are followed by internal
dynamics, which in time result in a return to mechanical equilibrium. The relaxation
happens on a characteristic time scale, the relaxation time, τ∗. For deformations
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that are faster than τ∗ viscous losses dominate the dynamics while they become
negligible compared to elastic forces for deformations slower than τ∗. The relaxation
time diverges at the jamming transition [35]. In Ch. 2 we performed flow start up
tests, to measure the dependence of linear response on strain rate γ̇ and the distance
to jamming. Hooke’s law was recovered.

By systematically varying the strain rate, we identified three different regimes,
dependent on strain rate. 1) For slow rates the response is quasistatic, right from the
start. In that case viscous effects are vanishingly slow and linear response breaks,
only when the material softens. 2) For higher rates we first see rate-dependence,
which at characteristic strain γ∗ = γ̇τ∗, crosses over to quasistatic linear response.
3) If the rate is increased even more, γ∗ is higher than the characteristic strain
scale for softening. The rate-dependent stress-strain curve misses quasistatic linear
response entirely. We concluded that there is no strain window over which Hooke’s
law holds when the system is sheared faster than a certain strain rate:

γ̇† ∼ p2.

In many experiments finite strain rates are applied. Our scaling arguments provide
important guidelines for setup and interpretation of such experiments.

We have seen that the relaxation time controls the appearance of rate-dependent
effects, and that rate-dependent and nonlinear effects interact. Therefore in Ch. 3
we performed stress relaxation tests, systematically varying step strain size and the
distance to jamming. When plotting the relaxation time as a function of strain
amplitude, we found two plateaus, where the relaxation time was roughly constant.
Both plateaus scale with the distance to jamming. This is an important result,
as the relaxation time connected to linear response is likley to be inaccessible in
experiments. Experimental strain rates are likely to probe the second regime.

From investigations done on the micro scale we saw that the relaxation is due
to non-affine motions of the particles. We interpret the relaxation time as the time
needed for the system to fully develop non-affine response.
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