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1
Introduction

The phase behavior of liquid crystals and the solubility of gases in them are studied in
this thesis using molecular simulation techniques. The aim of this study is twofold: (1) to
provide a basic understanding of molecular principles behind the phase behavior of liquid
crystals and the solubility of gases in them, and (2) to contribute with state-of-the-art sim-
ulation data on the liquid crystal phase behavior of chain fluids. The importance of this
study is rooted on the potential use of liquid crystals as solvents for CO2 capture. Results
obtained in this work are used to understand the effect of molecular structure on gas sol-
ubility. Furthermore, simulation data is used to validate a recently developed equation of
state for nematic liquid crystal phases. The nature of liquid crystal phases and the prin-
ciple behind their use as solvents for CO2 capture is shown in section 1.1 and section 1.2
respectively. Molecular models used for the simulation of liquid crystals together with an
introduction to molecular simulation techniques are presented in section 1.4. Finally, the
outlook and scope of this thesis are described in section 1.5.

1



1

2 1 Introduction

a) b) c) d)

Figure 1.1: Schematic representation of liquid crystal phases: a) Isotropic, b) Nematic, c) Smectic-A,
d) Smectic-C.

1.1 Background
Liquid crystals are fluids with a certain degree of molecular order between the liquid and
the crystal state [1]. Liquid crystal phases are identified depending on the orientational and
positional order of their constituents. Fig. 1.1 shows schematically liquid crystal phases
with their molecular ordering and classification. In the isotropic phase (Iso), molecules are
distributed randomly in space without any preferred long-range orientational nor positional
order. In the nematic phase (Nem), molecules are oriented around a preferred direction but
with positions randomly distributed in space. The preferred direction that molecules follow
in the nematic phase is defined as the nematic director (n). In smectic phases, molecules
are distributed in layers showing both long-range orientational (nematic ordering) and posi-
tional order. In smectic-A phases (SmA), the nematic director and the normal vector of the
smectic layers lay in parallel directions. In smectic-C phases (SmC) the nematic director is
tilted with respect to the normal vector of the smectic layers.

Molecular order in liquid crystal phases is a consequence of the balance between trans-
lational and orientational entropy. In the transition from the isotropic to the nematic phase,
the entropy loss by the formation of an orientational ordered phase is more than compen-
sated by the gain in translational entropy. The orientational ordering of molecules in the
nematic phase allows an increase in the number of accessible translational configurations
for the molecules in the fluid. A similar argument can be used to explain the formation of
smectic phases.

A necessary condition for the emergence of liquid crystal phases is shape anisotropy,
i.e. molecular elongation and rigidity [1, 2]. Typically, liquid crystal molecules showing
nematic and smectic phases have a backbone formed by two or more aromatic (or aliphatic)
rings (rigid core) decorated with terminal groups which can vary from monoatomic sub-
stituents to long alkyl chains (flexible tail) [2]. As an example, Fig. 1.2 shows the molecular
structure of the nematic forming 4-trans-4-pentyl-cyclohexyl-benzonitrile (PCH5).

The molecular order of liquid crystal phases confers specific physical properties to these
fluids. For instance, circularly birefringence of twisted nematic liquid crystals is widely
used for modulating light polarization in visual display devices [3]. Strong intermolecular
interactions in a nematic electron-donor liquid crystal fluid can improve charge mobility
in organic photovoltaic cells [4]. Ordering in liquid crystal complexes can modulate the
immune response in dendritic cells [5]. Of particular interest for this thesis is the solubility
of gases in liquid crystals and their use as solvents for gas separation applications [6–10].
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Figure 1.2: Liquid Crystal 4-(trans-4-Pentylcyclohexyl) Benzonitrile (PCH5). Transition temperatures at 1 atm:
solid-nematic T S-N=303.05 K, nematic-isotropic T N-I=328.14 [11].

solvent 
cycle

Feed gas

Treated gas Separated gas

Figure 1.3: Schematic representation of an absorption-desorption process for the separation of gases with
liquid crystal solvents. In the absorption stage (left), the gas of interest is separated from a mixture of gases
by the liquid crystal solvent. In the desorption stage (right), the liquid crystal solvent is cooled down for a
phase transition to an ordered phase, releasing the separated gas. The depleted solvent is recirculated to
the absorption stage to complete the solvent cycle.

1.2 Structured solvents for CO2 capture
The fluid-fluid transition from the isotropic to the nematic phase causes a sudden drop in the
solubility of gases in liquid crystal fluids [7, 12, 13]. This phase change is associated with a
very low enthalpy of transition ∆HN-I∼1−10 kJ/mol, taking place at a broad range of tem-
perature and pressure conditions [14]. Moreover, liquid crystals are scarcely volatile with
reported vapor pressures as low as 0.1−10 Pa at relatively high temperatures ∼373 K [15].
Gas solubility and physical properties of liquid crystal fluids have attracted the attention
to their use as new solvents for CO2 capture processes [6, 7, 16]. Furthermore, the rich
phase behavior observed in liquid crystals fluids offers the potential of highly tailorable
solvents [14, 15].

Fig. 1.3 shows schematically the use of liquid crystals as solvents for gas separation
in an absorption-desorption process. Absorption-desorption processes are widely used in
the chemical industry and represent the reference scheme for post-combustion CO2 capture
processes [17, 18]. In the absorption stage, CO2 is separated from a gas mixture by the
liquid crystal solvent in its isotropic state. In the desorption stage, a temperature drop causes
a phase change of the liquid crystal fluid from its isotropic to the nematic state reducing the
solubility of the gas in the fluid. This temperature drop originates a two-phase region of
the separated gas and the depleted liquid crystal solvent. The depleted solvent is heated
up and recirculated to the absorption column in its isotropic state completing the solvent



1

4 1 Introduction

N+I

I

N

I+G

G

N+G

1 2

34

T

xk

Tabs

Tdes
4'

TP

xdes xabs

Figure 1.4: Schematic phase diagram, temperature T vs. solute composition xk, for a gas solute k diluted
in a liquid crystal solvent. Isotropic (I), nematic (N) and gas phase (G) are single-phase regions. Two-phase
regions are identified with a plus sign. Numbers and dashed lines represent the solvent cycle of a simplified
absorption-desorption process: (1)-(2) absorption, (3)-(4) desorption, the gas is separated at (4’). Tabs is the
temperature in the absorption stage and Tdes is the temperature in the desorption stage. xabs is the mole
fraction of the solute in the loaded liquid crystal solvent after absorption. xdes is the mole fraction of the solute
in the depleted liquid crystal solvent after desorption. TP is the gas-isotropic-nematic triple point.

cycle. The energy consumed in this process is principally due to: (1) cooling of the solvent
in the desorption stage for the phase transition from the isotropic to the nematic phase
Qcooling; (2) heating up the solvent after the desorption stage for recovering the isotropic
phase Qheating; and (3) the energy required for a pump to recirculate the solvent Wpump.
The solvent performance is defined as the energy consumed in the process per amount
of solvent used in the cycle (Qcooling + Qheating + Wpump)/msolvent [19]. It can be observed
that the total energy consumption, and therefore the solvent performance, depends directly
on the amount of solvent recirculated. A larger solubility difference of the gas between
the absorption (isotropic) and desorption (nematic) stages reduces the amount of solvent
employed in the cycle, improving the performance of the solvent. The solubility difference
between the isotropic and the nematic phase can be used as an indication of the performance
of liquid crystal solvents in an absoprtion-desorption process.

In Fig. 1.4, the absorption-desorption process is shown together with a schematic phase
diagram for the mixture of gas solute with a liquid-crystal solvent. The solvent cycle is
represented by the dashed lines. The stages of the solvent cycle are represented as follows:
(1)-(2): the gas is absorbed in the isotropic liquid crystal solvent at constant temperature
Tabs until the solvent is saturated with the gas at a concentration xabs. (2)-(3): the solvent
loaded with the gas is cooled down to the desorption temperature Tdes below the triple
point (TP) to promote a phase split between a nematic and a gas phase. (3)-(4): the gas is
separated in the gas phase (4’) from the depleted liquid crystal solvent in the nematic phase
(4) with a remaining gas concentration of xdes. (4)-(1): the depleted solvent is heated up
from Tdes to Tabs for a phase change in the solvent from the nematic to the isotropic phase
and in that state it is recirculated back to the absorption stage. The solubility difference
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xabs - xdes is directly related to the performance of the solvent as stated before.
Determining the solubility difference xabs−xdes would require the knowledge of a large

part of the phase diagram for a specific liquid crystal solvent and solute (as schematically
represented in Fig. 1.4). However, a similar indication of the solvent performance can be
obtained from the width of the isotropic-nematic region. In this work, the width of the
isotropic-nematic region, i.e. the isotropic-nematic solubility difference, is used as a simple
criteria for comparing the potential solvent performance of different liquid crystal fluids.

1.3 Molecular models for ordered phases
A certain degree of shape anisotropy is a necessary molecular condition for the appearance
of ordered phases [1, 2]. Shape anisotropy introduces anisotropic repulsive and attractive
interactions between molecules in a liquid crystal fluid. Repulsive interactions are responsi-
ble for excluded volume effects while attractive interactions induce molecular aggregation.

Nematic ordering in a fluid was first predicted by Onsager as early as 1949 considering
anisotropic hard repulsive interactions only [20]. Almost a decade later, Maier and Saupe
described the isotropic-nematic phase transition using an average angle-dependent attrac-
tive potential derived from a mean-field approach [21–23]. In this mean-field approach re-
pulsive forces are neglected assuming spherical symmetry in the distribution of the centers
of mass. Quantitative deviations between theory and experiments have led to criticism on
the validity of the basic assumptions made in the Maier-Saupe theory [24–28]. Specifically,
it has been shown that including angle dependent short-range repulsive interactions improve
the description of this mean-field approach [25, 29]. Therefore, it is assumed that a certain
degree of anisotropic repulsive interactions is essential for the appearance of liquid crystal
phases [29–32]. Molecular simulation studies have shown the existence of liquid crystal
phases in fluids made of molecules with a broad range of hard anisotropic shapes: hard
disks [33, 34], hard ellipsoids [35–38], hard spherocylinders [39–44], cut hard spheres [45]
and hard-sphere chains [46]. Frenkel [47] and Allen [48] provide excellent reviews on
molecular simulation of anisotropic hard molecules forming athermal liquid crystal phases.

Molecular models including both anisotropic attractive and repulsive interactions have
been used in the simulation of thermotropic liquid crystals [49, 50]. From these, the Gay-
Berne potential is a popular model based on an anisotropic form of the Lennard-Jones po-
tential [51–56]. Other more elaborated anisotropic interaction models including attractive
and repulsive interactions are: hard-spherocylinder with an attractive square-well poten-
tial [57–60], hard-spherocylinder with an attractive Lennard-Jones potential [61], hard-disc
with an anisotropic square-well attractive potential [62], anisotropic soft-core spherocylin-
der potential [63], and copolymers [64–66].

In this work, tangent chain molecules are used for the simulation of liquid crystal phases
as described in section 2.1. Chain molecules are molecules formed by a sequence of tangent
bonded segments that interact with a defined form of the pair potential, e.g hard-sphere,
Lennard-Jones or square-well potentials. The use of a segment-based approach is justified
from a multi-scale description of fluids, connecting molecular information summarized in
a coarse-grained model with a molecular-based theory for the description of liquid crystal
phases. In a coarse-grained model, the information of the molecular structure (based on
chemical groups, or small molecules, or in general a collection of atoms) is reduced to the
pair potential parameters of a force-field [67, 68]. Simulations based on coarse-grained



1

6 1 Introduction

models reach longer time and length scales than their atomistic counterparts, allowing a
bulk description of fluids. Moreover, molecular-based fluid theories as the family of theories
derived from the statistical association fluid theory (SAFT) are based on a segment-based
description of molecules [69–76]. A common form of the interaction potential between
both theory and molecular simulations allow a direct comparison of theoretical results with
simulation data. Recently, an analytical equation of state describing nematic liquid crystal
phases based on a SAFT approach was developed [77–79]. In this context, the study of
segment-based chain molecules is meaningful in the sense that this type of model offers
the structural form required for a coarse-grained description of liquid crystal molecules
providing, at the same time, a basis for validating the predictions obtained from a molecular-
based equation of state.

1.4 Molecular simulation
Molecular simulations are used to calculate the physical properties (macrostate) of a molec-
ular system from statistical mechanics principles. A system is defined by a number N of
interacting molecules at some defined thermodynamic state. The statistical nature of a
molecular system determines that an observed macrostate is an average of a series of in-
stantaneous states or microstates in which the system can exist. In a classical approach,
a microstate is defined by the instantaneous set of positions and momenta (rN , pN) of all
molecules in the system, representing coordinates in the phase space P. The collection of
all possible microstates is identified as an ensemble.

The physical properties of a system at thermal equilibrium can be determined from the
ensemble average [80],

〈A〉 =

∫
P

drNdpN exp
[
H(rN ,pN)/kBT

]
A(rN ,pN)∫

P
drNdpN exp

[
H(rN ,pN)/kBT

] . (1.1)

in which 〈A〉 stands for the ensemble average of an observable macroscopic property
A(rN ,pN). The Hamiltonian H corresponds to the total energy of the system considering
the potential and kinetic contributions. T is the temperature and kB is the Boltzmann factor.
In Eq. 1.1, the integration over momenta can be carried out analytically and independently
from the integration over positions since the forces between particles are momentum inde-
pendent. Therefore, equilibrium properties of a system made of N molecules at constant
volume V and temperature T can be determined by the configurational average,

〈A〉 =

∫
V drN exp

[
−U(rN)/kBT

]
A(rN)∫

V drN exp
[
−U(rN)/kBT

] . (1.2)

The Boltzmann factor exp
[
−U(rN)/kBT

]
is proportional to the probability of the system to

be in a specific configuration rN as a function of the configuration’s potential energy U(rN)
and temperature T .

The denominator of Eq. 1.2 is proportional to the partition function of the a system at
constant number molecules, volume, and temperature, i.e. the NVT ensemble,
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QNVT =
1

Λ3N N!

∫
V

drN exp
[
−U(rN)/kBT

]
, (1.3)

where Λ is the thermal de Broglie wavelength. The partition function is related to the
macroscopic or thermodynamic properties of a system. In the case of the NVT ensemble,
the partition function is directly related to the Helmholtz energy A(N,V,T ) of the system,

A(N,V,T ) = −kBT ln QNVT . (1.4)

All thermodynamic properties of a system could be in principle determined from Eq. 1.4,
however, the integration over all possible microstates required by Eq. 1.3 is in practice im-
possible. Random sampling over a finite space would in principle approximate macroscopic
properties calculated from configurational averages as in Eq. 1.2. This method is known as
Monte Carlo simulation and is the principle that is used in this work for determining ther-
modynamic properties. However, direct random sampling with equal probability for all
configurations has the problem that most of the configurations have a very large energy
and consequently a Boltzmann factor close to 0, resulting in an undefined division 0/0 for
the configurational average in Eq. 1.2. Metropolis et al. [81] provided a solution to this
problem, proposing an algorithm in which configurations are generated with a probability
proportional to the Boltzmann factor, sampling therefore the Boltzmann distribution:

“...the method we employ is actually a modified Monte Carlo scheme, where,
instead of choosing configurations randomly, then weighting them with
exp (−E/kBT ), we choose configurations with a probability exp (−E/kBT ) and
weight them evenly.” [81]

Using the Metropolis sampling scheme, configurational averages can be calculated by,

〈A〉 =

n∑
i=1

A
(
rN

i

)
n

, (1.5)

where n is the number of configurations visited during sampling.
Different configurations are obtained by performing molecular trial moves, e.g molecu-

lar translation or rotation. Every trial move is an attempt of changing the configuration of
the system from a configuration α to β.

In Monte Carlo molecular simulations, obeying detailed balance is a sufficient condition
for sampling a correct distribution [80, 82]. The condition of detailed balance is given by,

Pα Pmove
αβ Pacc

αβ = Pβ Pmove
βα Pacc

βα , (1.6)

where,

Pα : probability of the system to be in configuration α. In the NVT ensem-
ble, Eq. 1.3, this probability is proportional to exp

[
−U(rN)/kBT

]
.
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Pmove
αβ : probability for attempting a change in the configuration of the system

from α to β.
Pacc
αβ : probability that a change in the configuration of the system from α

to β is accepted.

The probabilities of the backward move from configuration β to α are analogous. Usually
the probability of attempting a forward and backward move is selected to be the same,
simplifying Eq. 1.6 to,

Pα Pacc
αβ = Pβ Pacc

βα . (1.7)

The criterion Cαβ for the transition from a configuration α to β is given by,

Cαβ =
Pacc
αβ

Pacc
βα

=
Pα

Pβ
. (1.8)

In the Metropolis scheme the probability of accepting a change in the configuration of
the system from α to β is chosen as follows [81],

Pacc
αβ = min

(
1, Cαβ

)
. (1.9)

For accepting a trial move, a random number R obtained from an uniform distribution is
generated. The probability that this number is less than Pacc

αβ is equal to Pacc
αβ . Therefore, a

trail move is accepted when R < Pacc
αβ . This method assures that microstates are sampled

following the Boltzmann distribution.
The criterion for accepting a trial change from configuration α to β in the NVT ensemble

is given by,

Cαβ =
Pacc
αβ

Pacc
βα

=
Pα

Pβ
= exp

[
−

U(β) − U(α)
kBT

]
= exp

[
−

∆U
kBT

]
. (1.10)

where U(α) and U(β) are the potential energies of configuration α and β, and ∆U = U(β)−
U(α) is the energy difference between both configurations.

It can be observed that a configuration change, in the NVT ensemble, associated with
a negative difference in the potential energy (∆U < 0) will be always accepted. Changes
carrying out a positive difference in energy (∆U > 0) will be accepted with a probability
proportional to exp [−∆U/kBT ].

1.5 Scope and outline
The scope of this thesis is to contribute with simulation data to the understanding of the
behavior of liquid crystal phases and the solubility of gases in them. Linear and partially-
flexible chain molecules are used for simulating the behavior of liquid crystal phases. The
effect of molecular elongation is studied by linear chain molecules of different lengths and
the effect of flexibility is studied by partially-flexible molecules made of a linear and a
freely-jointed part. The pair interaction between segments is accounted by hard-sphere and
Lennard-Jones potentials. The use of these potentials allows to study the effect of purely
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repulsive (excluded volume effects) and soft-attractive interactions (aggregation) on the liq-
uid crystal behavior of chain fluids. The molecular model and pair interaction potentials
are presented in chapter 2 together with the simulation techniques used in this work. Chap-
ter 2 includes a detailed description of the expanded Gibbs ensemble method used for the
calculation of liquid-crystal fluid phase equilibria. The liquid crystal behavior of single
component hard-sphere chain fluids is reported in chapter 3. In this chapter, the effect of
molecular elongation and flexibility on the phase behavior (packing fraction and pressure)
and its relation with solubility is determined. Chapter 4 shows the isotropic-nematic phase
equilibria of single component and binary mixtures of hard-sphere chain fluids. The effects
of mixing on the coexisting isotropic-nematic phases and on the solubility of gases in them
are determined in this chapter. Temperature effects for Lennard-Jones systems are studied
in chapter 5. In this chapter, isotropic-nematic phase equilibria are determined for single
component systems with different degrees of molecular anisotropy and for a binary mix-
ture of linear Lennard-Jones chains. Isotropic-nematic phase equilibria simulation results
are compared with predictions obtained from the recently developed analytical equation of
state by van Westen et al.: for hard-sphere chain fluids Refs. 77, 78, 83, and Lennard-Jones
chain fluids Refs. 79, 84. Assumptions made in the development of the equation of state are
directly evaluated by comparing analytical results with simulation data. A large amount of
simulation data on the liquid crystal behavior of chain fluids and on the solubility of gases
in liquid crystal phases is presented in this work.





2
Molecular simulation methods for chain fluids

Linear and partially-flexible chain molecules are used to study the phase behavior of liq-
uid crystal fluids using Monte Carlo simulations. The properties defining these molecu-
lar models are introduced in section 2.1 together with the pair potentials defining their
interactions. Ordered phases are identified by nematic and smectic order parameters as
described in section 2.2. Monte Carlo algorithms for the calculation of single-phase and
two-phase systems are presented in section 2.3. Phase equilibria calculations of large chain
molecules are difficult to perform using classical methods due to the very low acceptance
rate for the molecular exchange between phases. In section 2.4, an expanded version of
the Gibbs ensemble is presented which improves the efficiency of phase equilibria calcu-
lations compared to classical methods. Solubilities of gases in liquid crystal phases are
calculated using the Widom test-particle insertion method and are presented here as Henry
coefficients. Section 2.5 presents the Widom test-particle insertion method for determining
Henry coefficients.

11
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Figure 2.1: Partially-flexible chain molecule m−mR−mer made of a linear part (gray area) and a freely-jointed
flexible part (white area). This specific model molecule is denoted as a 7-5-mer.

2.1 Chain fluids and ordered phases
The molecular models used in this work are rigid linear chain and partially-flexible chain
molecules. A chain molecule is defined as a molecule made of spherical segments con-
nected tangentially by a rigid bond with fixed length equal to the segment diameter σ. A
linear chain is a molecule with all segments laying on the same molecular axis. Partially-
flexible molecules are made of a linear part and a freely-jointed flexible part as shown in
Fig. 2.1. The linear part introduces rigidity while the flexible part incorporates flexibility to
the model. The freely-jointed part does not have any bond-bending or torsional potential,
therefore it is free to move between any possible molecular configuration limited only by
the rigid bond length constraint and the pair potential interaction between segments. The
partially-flexible model is proposed in similarity with real liquid crystal molecules, formed
by a rigid core and a flexible tail. The linear chain is a special case of the partially-flexible
model where no segments are present in the freely-jointed part. A linear chain with a num-
ber of m segments is identified as a linear m-mer. A partially-flexible chain molecule made
of m segments in total and mR segments in the rigid part is denoted as a partially-flexible
m-mR-mer. Two types of pair interactions between segments, denoted here as ui j, are used
in this study: the hard-sphere potential (section 2.1.1), and the Lennard-Jones potential
(section 2.1.2).

2.1.1. Hard-sphere chain fluids
Hard-sphere segments are defined by a rigid sphere with diameter σ. Hard repulsions are
the only interactions present in this model with an infinite repulsion energy at distances ri j

lower than the segment diameter,

ui j =

{
∞ ; ri j < σ
0 ; ri j ≥ σ

. (2.1)

Vega et al. [85] studied the phase behavior of linear hard-sphere chain fluids with a
length of 3, 4, 5, 6 and 7 segments from constant pressure Monte Carlo simulations. These
authors observed that hard-sphere chain fluids with a length of 5 segments and higher are
able to form liquid crystal phases, while shorter chains experience a direct transition from
the isotropic to the crystal state [85–87]. A more detailed simulation study on the phase
behavior of the linear hard-sphere 7-mer was performed by Williamson and Jackson [88].
The isotropic-nematic phase behavior of the linear hard-sphere 8-mer and 20-mer chain
fluids was obtained by Yethiraj and Fynewever [89]. Whittle and Masters [90] studied the
phase behavior of 6 and 8 segment linear fused hard-sphere molecules with length-to-width
ratios ranging from 3.5 to 5.2, observing a nematic phase only for the longest molecule.
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A partially-flexible model was employed by McBride and Vega et al. [91–93] for fused
hard-sphere molecules composed of a linear and a freely-jointed part with a total length
of 15 beads and with 8 to 15 segments in the linear part, observing isotropic, nematic,
and smectic phases, in all but the most flexible molecule where a nematic phase was not
detected. Escobedo and de Pablo [94] calculated the isotropic-nematic phase transition of
8 and 16 hard-sphere chain molecules with finite and infinite (linear chains) bond-bending
potentials.

2.1.2. Lennard-Jones chain fluids
The Lennard-Jones pair potential between two segments separated a distance ri j is defined
by,

ui j = 4ε

( σri j

)12

−

(
σ

ri j

)6 , (2.2)

where ε is the depth of the potential well, and σ is the segment diameter defined as the dis-
tance at which the potential between two segments is zero. Intermolecular pair interactions
take place between segments of different molecules and intramolecular pair interactions
between segments of the same molecule separated by two or more bonds. In this work,
the Lennard-Jones pair potential is truncated at a cutoff radius rc = 2.5σ and the usual
long-range tail corrections are applied [37, 80].

Simulation results for the liquid crystal behavior of Lennard-Jones chains could not
be found in any other previous study. Galindo et al. [95] studied the phase behavior of
linear Lennard-Jones chains of 3 and 5 segments, however, no liquid crystalline phases
were observed due to the short length of the chains.

2.2 Order parameters
2.2.1. Nematic order parameter
Orientational order is determined by the nematic order parameter and it is used for mon-
itoring the transition from the isotropic to the nematic phase. It has a value of 0 in the
isotropic fluid and experiences a near-step change at the isotropic-nematic phase transition
approaching 1 in the nematic fluid.

The nematic order parameter S 2 is defined by the second-order Legendre polynomial [34],

S 2 =
1
N

〈 N∑
i=1

P2(cos θi)
〉

=
1
N

〈 N∑
i=1

(
3
2

cos2 θi −
1
2

)〉
, (2.3)

where θi is the angle between the molecular axis and the nematic director n of each molecule
in the system. For partially-flexible molecules, the molecular axis is defined as the eigen-
vector corresponding to the lowest eigenvalue of the moment of inertia tensor [89].

In molecular simulations when a nematic phase is formed, molecules do not necessary
align across the largest dimension of the simulation box and knowledge a priori of the
direction of the nematic director is in general not possible. In practice, the orientation
of the liquid crystal phase with respect to the laboratory framework is identified with the
eigenvectors of the so-called de Gennes Q-tensor [1], Q = 1

N
∑N

i=1(qiqi −
1
3 I), where q is
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a unit vector identifying the direction of the molecular axis with respect to the laboratory
frame. In the case that two of the eigenvalues of Q are equal, an uniaxial nematic phase is
identified and the nematic director is associated with the eigenvector corresponding to the
different eigenvalue, i.e. the largest eigenvalue of Q. In the case that all three eigenvalues
are the same, the system is found in an isotropic state. For an uniaxial nematic phase,
Q = S (n ⊗ n − 1

3 I), where n ⊗ n is the tensor product of the nematic director n. The
eigenvalues of the Q-tensor are λ+ = 2

3 S and λ0 = λ− = − 1
3 S , where S =

∑N
i=1( 3

2 cos2 θ− 1
2 )

[96]. The order parameter S 2 is estimated as S 2 = 3
2 〈λ+〉. It has to be noticed that the

Q tensor is diagonalized for every configuration considered in the ensemble average. An
average phase direction can also be obtained by the average 〈Q〉, whereby the Q tensor is
diagonalized only at the end of the simulation run. However, this approach requires that
fluctuations in the direction of the nematic director with respect to the laboratory frame
are negligible, which is in principle not the general case and therefore this approach is not
implemented here. In this work, the order parameter is obtained from the ensemble average
〈λ+〉 calculated every 103 Monte Carlo cycles.

2.2.2. Smectic order parameter
Positional ordering is detected by the smectic order parameter, which is defined by the
magnitude of the first Fourier component of the normalized density wave along the nematic
director [97, 98],

τ =
1
N

〈∣∣∣∣∣∣∣∣
N∑

j=1

eikzz j

∣∣∣∣∣∣∣∣
〉
. (2.4)

where N is the total number of molecules and kz=2π/λz. The periodicity of the smectic lay-
ers is λz and z j are the coordinates of the center of mass of the j-th molecule in the direction
of the nematic director. Values of the smectic order parameter, which differ significantly
from zero indicate the presence of smectic layers.

2.3 Monte Carlo simulations
In this section classical methods for the simulation of fluid systems are presented. The gen-
eral principles of Monte Carlo simulation methods were presented in section 1.4 together
with the isobaric-isothermal NVT ensemble. Changes in the configuration of partially-
flexible chain molecules are obtained using the configurational-bias method. The isobaric-
isothermal NPT ensemble is described for the calculation of properties of single phase
systems. Direct phase equilibrium calculations of simple fluids are performed in the Gibbs-
ensemble. The methods and algorithms presented here are general independent of the form
of the pair interaction potential. The specific cases of hard-sphere or Lennard-Jones poten-
tials are obtained by replacing the form of the interaction potential ui j by Eq. 2.1 or Eq. 2.2
respectively.

2.3.1. Configurational-bias Monte Carlo
In the configurational-bias method [99–102], the configuration of a partially-flexible molecule
is changed by regrowing the freely-jointed part attempting a change from configuration α to
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β. In this method, the flexible part is regrowth segment by segment attempting each time a
number of trail orientations with coordinates {b1, ...,bk} for every regrown segment. For the
chain molecules with fixed bond length studied here, the trial orientations are distributed
around a sphere with radius equal to the segment diameter. Each trail orientation experi-
ences pair interactions with the other segments of the same molecule (excepting the segment
from which the trail segment is regrown from) and with the segments of all other molecules
in the system. For the actual regrown segment i, the Boltzmann factor is calculated for each
trail orientation k, and one of those, denoted by n, is selected with a probability,

pi(bn) =
exp [−ui(bn)/kBT ]

k∑
j=1

exp
[
−ui(b j)/kBT

] . (2.5)

For each regrown segment, the statistical weight of the segment in the regrowing process
of the flexible part is the denominator of Eq. 2.5,

wi =

k∑
j=1

exp
[
−ui(b j)/kBT

]
. (2.6)

In partially-flexible molecules, only the configuration of the flexible part is changed, i.e
from segment mR + 1 to m. After the whole chain is regrown, the Rosenbluth factor of the
new configuration β is obtained,

Wβ =

m∏
i=mR+1

wi. (2.7)

The Rosenbluth factor of the old configuration α is also calculated using the old con-
figuration as the first trial direction. Considering the condition of microscopic reversibility,
Eq. 1.7, the criterion for accepting a change in the configuration of a chain molecule by
configurational-bias regrowth is given by,

Cαβ =
Wα

Wβ
. (2.8)

A trial change in the configuration of a chain molecule from α to β is accepted with a
probability given by Eq. 1.9.

2.3.2. NPT ensemble
The phase behavior of single phase system made of N molecules at constant pressure P and
temperature T are obtained in the isobaric-isothermal NPT ensemble [80],

QNPT =

(
P

kBT

)
1

Λ3N N!

∫ ∞

0
dV VN exp

[
−

PV
kBT

] ∫ 1

0
dsN exp

[
−

U(sN)
kBT

]
. (2.9)

The scaled coordinates, s = r/L where L = V1/3, are introduced here to perform a
random walk in a sampling space that is independent of the actual size of the simulation
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box. These coordinates refer to the position of every segment of all molecules in the system
accounting therefore for the molecular configuration and orientation of molecules. The
partition function of the NPT ensemble for configurational changes in the logarithm of the
volume V is derived as follows,

QNPT =

(
P

kBT

)
1

Λ3N N!

∫ ∞

−∞

d ln V VN+1 exp
[
−

PV
kBT

] ∫ 1

0
dsN exp

[
−

U(sN)
kBT

]
. (2.10)

The probability that the system is in a determined configuration α with volume ln V and
coordinates sN is proportional to,

Pα ∝ VN+1 exp
[
−

PV
kBT

]
exp

[
−

U(sN)
kBT

]
. (2.11)

Changes in the configuration of the system are performed by trial changes in the posi-
tion/orientation of molecules, the molecular configuration of partially-flexible molecules,
and the volume of the system (the size of the simulation box). Trial changes that do not
involve a change in volume of the system are equivalent to a change in the NVT ensemble
and the acceptance criterion for a trail change from a configuration α to a configuration β is
equivalent to the one presented in section 1.4,

Cαβ = exp
[
−

∆U
kBT

]
, (1.10)

where ∆U is the difference in potential energy between both configurations.

Volume change
The acceptance criterion for a trial change in ln V is given by,

Cαβ = exp
[

P∆V
kBT

+ (N + 1) ln
(

V + ∆V
V

)
−

∆U
kBT

]
. (2.12)

where ∆V is the change in the volume of the system.

2.3.3. Gibbs ensemble
Direct phase equilibria simulations are performed in the method proposed by Panagiotopou-
los [103, 104], denoted as the Gibbs ensemble. The basis of this method are presented in
this section as a preamble of the expanded Gibbs ensemble simulation method developed
in the next section. In the Gibbs ensemble method two phases, subsystems a and b, are
brought into contact to achieve thermal, mechanical, and chemical potential equilibrium:

Ta = Tb = T
Pa = Pb (= P)
µa,i = µb,i.

(2.13)

Two forms of the method can be identified: simulations at constant total volume V and
temperature T conditions (NVT Gibbs ensemble), or simulations at constant pressure P and
temperature T conditions (NPT Gibbs ensemble). In both cases, simulations are performed
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for a total number of molecules N = Na + Nb.
The NVT Gibbs ensemble is used to calculate the phase equilibria of pure component

systems. In this case, only one thermodynamic variable, the temperature, is required for
determining the thermodynamic state of the system. The total volume of the system V =

Va + Vb is selected in order to match a density in the two-phase region. The volume of one
of the phases is varied independently until both phases reach the same pressure.

The NPT version of the Gibbs ensemble is used in the case of mixtures where two ther-
modynamic variables, in this case temperature and pressure, are required for determining
the thermodynamic state of the system.

In both cases, thermal equilibration is achieved by rotation/displacement of molecules
and partial-regrowth of partially-flexible molecules. Mechanical equilibrium is obtained
by: volume changes of one subsystem in the NVT Gibbs ensemble, or by volume changes
in both subsystems in the NPT Gibbs ensemble. Equality in the chemical potential of every
component i is achieved by molecular exchange between both subsystems.

NVT Gibbs ensemble
The partition function of the NVT Gibbs ensemble is given by [80],

QNVT−Gibbs =
1

N!Λ3NV

N∑
Na=0

N!
Na!Nb!

∫ V

0
dVaVNa

a VNb
b

×

∫ 1

0
dsNa

a exp
[
−

Ua(sNa
a )

kBT

] ∫ 1

0
dsNb

b exp

−Ub(sNb
b )

kBT

 . (2.14)

Similarly as in the previous section, reduced coordinates are introduced, s j = r j/L j

where L j = V1/3
j is the box length of either subsystem a or b. Na and Nb are the number of

molecules in each subsystem.
The probability of finding the system in a configuration α with coordinates (sNa

a , sNb
b )

and volume ratio Va and Vb is proportional to,

Pα ∝
N!

Na!Nb!
VNa

a VNb
b

V
exp

[
−

Ua(sNa
a )

kBT

]
exp

−Ub(sNb
b )

kBT

 . (2.15)

Volume change
Volume changes are performed by a random walk in the logarithm of the ratio between the
volume of both subsystems ln(Va/Vb). The partition function changes then to,

QNVT−Gibbs =
1

N!Λ3NV

N∑
Na=0

N!
Na!Nb!

∫ ∞

−∞

d ln
(

Va

Vb

)
VaVb

V
VNa

a VNb
b

×

∫ 1

0
dsNa

a exp
[
−

Ua(sNa
a )

kBT

] ∫ 1

0
dsNb

b exp

−Ub(sNb
b )

kBT

 . (2.16)
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The acceptance criterion for a trial change in the configuration of the system from α to
β by a volume change trial move in the phase space ln(Va/Vb) = ln(Va/(V − Va)) is then
given by,

Cαβ = exp
[
(Na + 1) ln

(
Va + ∆Va

Va

)
+ (Nb + 1) ln

(
Vb − ∆Va

Vb

)
−

∆Ua

kBT
−

∆Ub

kBT

]
, (2.17)

where ∆Va indicates the magnitude of the volume change in subsystem a, and ∆Ua and ∆Ub

indicate the related energy change in both subsystems.

Algorithm for molecular exchange in the Gibbs ensemble
The algorithm for molecular exchange as originally proposed by Panagiotopoulos [103] is
used in this work. The algorithm is described as follows:

1. The molecular donor and recipient subsystems are first chosen randomly,
P sub a = P sub b = 1/2.

2. The component to be exchanged is chosen randomly with same probability
for all components in the mixture, Pcomp 1 = Pcomp 2 = ... = Pcomp i.

3. A random molecule of component i in the donor subsystem (a in this case) is
selected with probability, Pmol i,a

α = 1/Na,i. If Na,i = 0, then the trail move is
immediately rejected.

3. The molecule is transferred to a random position in the recipient subsystem
(b in this case).

4. A new configuration β is accepted with a probability given by min(1, Cαβ).

A different form of the algorithm satisfying detailed balance can be obtained by select-
ing first the molecule to exchange regardless the subsystem in which it is in. This choice
leads to a different acceptance criterion for the molecular exchange move as the one pre-
sented in this section [105].

Molecular exchange, pure components
The transfer of a particle between both subsystems will transform the overall configuration
of the system from configuration α to configuration β. The probability of such a transfer is
then equal to,

Pαβ = Na!Nb! Pα P sub, a Pmol, a
α Ppos, b Pacc

αβ , (2.18)

where,

Pαβ : probability to change the configuration of the system from α to β.
Pα : probability of the system to be in configuration α, Eq. 2.15.
P sub, a : probability of choosing subsystem a as molecular donor.
Pmol, a
α : probability that a specific molecule is chosen from the Na molecules

in subsystem a in configuration α.
Ppos, b : probability of selecting a position for insertion in subsystem b.
Pacc
αβ : acceptance criterion for the particle transfer.
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The probability of the backward move, i.e., the probability of a particle exchange from
subsystem b to a and therefore to change the configuration of the system from α to β is
equal to,

Pβα = (Na − 1)!(Nb + 1)! Pβ P sub, b Pmol, b
β Ppos, a Pacc

βα . (2.19)

The probability of the total system to be in configuration β is given by,

Pβ ∝
N!

(Na − 1)!(Nb + 1)!
VNa−1

a VNb+1
b

V

× exp
−Ua(s(Na−1)

a )
kBT

 exp

−Ub(s(Nb+1)
b )

kBT

 . (2.20)

The condition of microscopic reversibility states that the probability of the forward Pαβ

and backward Pβα move has to be the same,

Pαβ = Pβα. (2.21)

The probability of choosing any of both subsystem as molecular donor is the same, therefore
P sub, a = P sub, b = 1/2. The probability of choosing a molecule from subsystem a in
configuration α is proportional to Pmol, a

α = 1/Na for the forward move and the probability
of choosing a molecule in subsystem b is proportional to Pmol, b

β = 1/(Nb + 1) for the
backward move. The probability of choosing a position for the insertion of a molecule is
equal for both subsystems Ppos, a = Ppos, b. Considering this, from Eq 2.18 and Eq. 2.19,
the following acceptance criterion is derived from Eq. 2.21,

Cαβ =
Pacc
αβ

Pacc
βα

=
(Na − 1)!(Nb + 1)!

Na!Nb!
P sub, b

P sub, a

Ppart, b
β

Ppart, a
α

Ppos, a

Ppos, b

Pβ

Pα

= exp
[
ln

(
NaVb

(Nb + 1)Va

)
−

∆Ua

kBT
−

∆Ub

kBT

]
, (2.22)

where ∆Ua and ∆Ub are the change in energy in both subsystems due to molecular ex-
change.

NPT Gibbs ensemble
The NPT version of the Gibbs ensemble is used for the calculation of the phase equilibria
of mixtures. Here, the partition function and algorithms are developed for the case of a
binary mixture. The general case of a multicomponent mixture is presented at the end of
the section. The partition function for phase equilibria calculations in the Gibbs ensemble
at constant number of molecules N, pressure P and temperature T , for a binary mixture of
components 1 and 2 is given by,
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QNPT−Gibbs =
1

N1!Λ3N1 V0

1
N2!Λ3N2 V0

N1∑
Na,1=0

N1!
Na,1!Nb,1!

N2∑
Na,2=0

N2!
Na,2!Nb,2!

×

∫ ∞

0
dVaVNa

a exp
[
−

PVa

kBT

] ∫ ∞

0
dVbVNb

b exp
[
−

PVb

kBT

]

×

∫ 1

0
dsNa,1

a,1

∫ 1

0
dsNa,2

a,2 exp

−Ua(sNa,1

a,1 , s
Na,2

a,2 )

kBT


×

∫ 1

0
dsNb,1

b,1

∫ 1

0
dsNb,2

b,2 exp

−Ub(sNb,1

b,1 , s
Nb,2

b,2 )

kBT

 , (2.23)

where N1 = Na,1 + Nb,1 is the total number of molecules of component 1, and Na,1 and Nb,1
are the number of molecules of component 1 present in subsystem a and b respectively. As
before, reduced coordinates are introduced, where sNa,1

a,1 are the coordinates of the segments
of all molecules of component 1 in subsystem a. All other coordinates are represented in a
similar manner. V0 is a reference volume introduced here for making the partition function
dimensionless.

The probability that the system is in configuration α is proportional to,

Pα ∝ exp
ln  N1!

Na
1 !Nb

1 !

 + ln
 N2!

Na
2 !Nb

2 !

 + Na ln Va + Nb ln Vb

−
PVa

kBT
−

PVb

kBT
−

Ua(sNa,1

a,1 , s
Na,2

a,2 )

kBT
−

Ub(sNb,1

b,1 , s
Nb,2

b,2 )

kBT

 . (2.24)

Volume change
Volume changes are performed in an independent manner in both subsystems. As before,
a random walk in the logarithm of the volume is preferred and the criterion for accepting a
trial change in ln V j, where j is either subsystem a or b, is equivalent to Eq. 2.12.

Molecular exchange, binary mixtures
The equality of chemical potentials is obtained by the exchange of particles of component 1
and 2 between both subsystems a and b at constant temperature and pressure. The transfer
of a molecule, e.g. of component 1, between both subsystems will transform the overall
configuration of the system from configuration α to configuration β. The probability of
such a transfer is then proportional to,

Pαβ = Na,1!Nb,1!Na,2!Nb,2! P sub a Pcomp 1 Pmol 1,a
α Ppos b Pα Pacc

αβ , (2.25)

where,

Pαβ : probability of changing the overall configuration of the system from
α to β due to molecular exchange.

P sub a : probability of choosing subsystem a as particle donor.
Pcomp 1 : probability of choosing component 1 for molecular exchange.
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Pmol 1,a
α : probability that a specific molecule of component 1 is chosen from

the Na,1 molecules in subsystem a.
Ppos b : probability of selecting a position for insertion in subsystem b.
Pα : probability of the total system to be in configuration α, Eq 2.24.
Pacc
αβ : acceptance criterion for the particle transfer.

The probability of the reverse move, i.e. the probability of transferring a molecule
of component 1 from subsystem b to a, changing therefore the configuration of the system
from configuration α to β, is equal to,

Pβα = (Na,1 − 1)!(Nb,1 + 1)!Na,2!Nb,2!

× P sub b Pcomp 1 Pmol 1,b
β Ppos a Pβ Pacc

βα , (2.26)

where now,

Pβ ∝ exp
[
ln

(
N1!

(Na,1 − 1)!(Nb,1 + 1)!

)
+ ln

(
N2!

Na,2!Nb,2!

)
+ Na ln Va + (Nb + 2) ln Vb −

PVa

kBT

−
PVb

kBT
−

Ua(sNa,1−1
a,1 , sNa,2

a,2 )

kBT
−

Ub(sNb,1+1
b,1 , sNb,2

b,2 )

kBT

 . (2.27)

The acceptance criterion Cαβ is obtained from the condition of microscopic reversibility
Eq. 2.21. The probability of choosing any of both subsystems is the same P sub a = P sub b =

1/2. The probability of choosing component 1 or 2 for molecular exchange is also sym-
metric Pcomp 1 = Pcomp 1 = 1/2. The probability of choosing a molecule of component
1 in subsystem a in configuration α is Pmol a

α = 1/Na,1 and the probability of choosing a
molecule of component 1 in subsystem b in configuration β is Pmol b

α = 1/(Nb,1 + 1). If
Na,1 = 0 then the trial move is immediately rejected. The probability of selecting a posi-
tion for insertion is the same in both subsystems Ppos a = Ppos b. Therefore, the acceptance
criterion for a trial move involving molecular exchange is given by,

Cαβ =
Pacc
αβ

Pacc
βα

=
(Na,1 − 1)!(Nb,1 − 1)!Na,2!Nb,2!

Na,1!Nb,1!Na,2!Nb,2!
P sub b

P sub a

Pcomp 1

Pcomp 1

Pmol 1,b
β

Pmol 1,a
α

Ppos a

Ppos b

Pβ

Pα

= exp
[
ln

(
Na,1Vb

(Nb,1 + 1)Va

)
−

∆Ua

kBT
−

∆Ub

kBT

]
. (2.28)

∆Ua and ∆Ub are the changes in energy in both subsystems due to the molecular exchange
of a molecule of component i from subsystem a to b.
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Molecular exchange, multicomponent mixtures
After inspection of Eq. 2.28 and Eq. 2.22, the following acceptance criterion can be deduced
for the molecular exchange of any component i in a multicomponent system following the
selection algorithm described in the beginning of this section,

Cαβ = exp
[
ln

(
Na,iVb

(Nb,i + 1)Va

)
−

∆Ua

kBT
−

∆Ub

kBT

]
. (2.29)

2.4 Expanded Gibbs ensemble
Phase equilibria of simple systems can be directly calculated using the Gibbs ensemble as
shown in the previous section. In Gibbs ensemble simulations, the equilibrium of chemi-
cal potentials is achieved by the exchange of whole molecules between both phases. While
transfer of whole molecules between phases is effective only for short and simple molecules,
highly anisotropic or complex molecules have a very low probability of transfer accep-
tance [101, 104, 106]. This condition results in poor ergodic sampling of systems made of
non-simple molecules within reasonable simulation time. Advanced techniques have been
developed to overcome this difficulty. Configurational-bias sampling [100, 107] was im-
plemented in the Gibbs ensemble for improving the simulation of vapor-liquid equilibria
of non-simple fluids [102, 108–111]. Although configurational-bias Monte Carlo shows
an improved molecular transfer efficiency over the traditional Gibbs ensemble scheme,
it is computational expensive and its efficiency is decreased as molecular complexity in-
creases [112–114]. Even improvements of the configurational-bias Monte Carlo technique
as the Recoil Growth method show to be inefficient for dense systems [115, 116].

Either in the traditional or in the configurational-bias implementation of the Gibbs en-
semble, molecular transfers are attempted by insertion/deletion of whole molecules. In-
tuitively, molecular transfer efficiency can be improved by attempting at every step the
transfer of molecular segments rather than of whole molecules. Expanded ensemble tech-
niques are based on this principle [117–119]. In these methods, the ensemble of a system
of whole molecules is expanded into a series of sub-ensembles covering for one fractional
molecule, the range between a “ghost” molecule (a molecule without any intermolecular
interactions) to a fully coupled molecule (a molecule where all intermolecular interactions
are present). In expanded Gibbs ensemble simulations, molecular transfer between phases
is achieved by gradually coupling a fractional molecule in one phase while, at the same
time, a complementary fractional molecule is decoupled from the other [120, 121]. Grad-
ual coupling/decoupling is performed by a random walk over sub-ensembles, each one of
them corresponding to a defined fractional state that determines the degree of intermolecular
coupling of the fractional molecules. In the traditional Metropolis sampling scheme [81], a
random walk over fractional states results in an uneven distribution of the relative probabil-
ity of visiting fractional states. This condition restricts molecular transfer between phases,
limiting the efficiency of the method. A smooth transition between all fractional states is
desired, striving ideally to the same relative probability for visiting any fractional state. For
this aim, the partition function of the expanded ensemble is modified by a weight function
for each fractional state, changing the Boltzmann statistics of the original system [122–
124]. Numerical values for these weight functions are not known a priori and an iterative
method for determining them is required, see section 2.4.3 and Refs. [117–119].
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Simulation of chain molecules are performed in this study in an expanded version of the
Gibbs ensemble [125]. The method is based on the gradual exchange of molecules between
phases by the coordinated coupling/decoupling of segments of a fractional molecule . There
is one fractional molecule present in each subsystem for each component. The simulation
method is based on the ideas of Lyubartsev et. al. [117, 126, 127] on expanded ensembles
and is similar in spirit to the Continuous Fractional Component Monte Carlo method of
Maginn and co-workers [121, 128–140]. Instead of the continuous insertion presented in
their work, here a segment-wise insertion of chain molecules is proposed. Similarly, Es-
cobedo and de Pablo developed the expanded ensemble ideas for the calculation of phase
equilibria of polymer molecules [119, 120, 141]. However, in their method, configurational-
bias is used for stepwise insertion/deletion of molecular segments. Furthermore, in that
method, fractional molecules in their end-states are counted as whole molecules, changing
the form of the partition function every time an end-state is visited [119]. In the method
presented here, the total number of whole molecules and therefore the form of the partition
function remain unchanged during the simulation.

Constant volume expanded Gibbs ensemble simulations are used for determining the
phase equilibria of pure components. A constant pressure formulation of the expanded
Gibbs ensemble is used for the calculation of the phase equilibria of binary mixtures.

2.4.1. NVT expanded Gibbs ensemble
The partition function for a multicomponent system made of n components with a total
number of N whole molecules and one fractional molecule per component in each subsys-
tem, a and b, for a constant total volume V = Va + Vb, at constant temperature T , is given
by,

QNVT−EG =
1

Λ3(N+2n)V

n∏
i=1

1
Ni!

Ni∑
Na,i=0

mi∑
λi=0

Ni!
Na,i!Nb,i!

exp [wi(λi)]

×

∫ V

0
dVa (Va)(Na+n) (Vb)(Nb+n)

×

∫ 1

0
dsNa

a dsn
a exp

−Ua(sNa
a , sn

a, λ1, ..., λn)
kBT


×

∫ 1

0
dsNb

b dsn
b exp

−Ub(sNb
b , sn

b, λ1, ..., λn)
kBT

 . (2.30)

Here Λ is the de Broglie wavelength and kB is the Boltzmann factor. Ni = Na,i + Nb,i is the
total number of whole molecules of component i, and Na =

∑n
i Na,i and Nb =

∑n
i Nb,i are the

total number of whole molecules in subsystem a and b respectively. A molecule is defined
by a chain of interacting segments with a total length mi for a molecule of component i. The
dimensionless coordinates sNa

a and sNb
b describe the positions of all segments of the Na and

Nb whole molecules. The dimensionless coordinates sn
a and sn

b describe the positions of all
beads of the n fractional molecules in subsystem a and b respectively. Each subsystem has
one fractional molecule per component with fractional states defined by the coupling pa-
rameter λi. The coupling parameter determines the fractional state (number of interacting
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segments) of the fractional molecules in both subsystems simultaneously, i.e. λi coupled
segments in subsystem a and (mi − λi) in subsystem b. Therefore, λi = 0 defines an ideal
chain molecule in subsystem a (a molecule where only bonded interactions are present) and
a fractional molecule identical (but not equal) to a whole molecule in subsystem b. Here,
discrete values of the coupling parameter in the range λi = [0, ...,mi] are considered, leading
to a total of mi + 1 possible fractional states. Note that only whole molecules of a specific
component are indistinguishable from each other and can be permuted between subsystems.
This explains the factors 1/Ni! and Ni!/Na,i!Nb,i! expressed in terms of the number of whole
molecules. The weight functions wi(λi) are introduced to modify the Boltzmann statistics
of the system in order to improve the sampling efficiency of all fractional states. The weight
functions of each component are considered to be independent of each other, which is exact
in the thermodynamic limit. Weight functions are determined iteratively using the Wang-
Landau sampling method [142, 143] as explained below. The total energy of a subsystem
Ua (the same for subsystem b), is the sum of the bonded interactions Ubond

a for all molecules
in the subsystem, plus the intermolecular U inter

a (sNa
a , sn

a, λ1, ..., λn) and intramolecular interac-
tions U intra

a (sNa
a , sn

a, λ1, ..., λn) for the Na whole and n fractional molecules in the subsystem,
Ua = Unon−bonded

a + Ubonded
a = U inter

a + U intra
a + Ubond

a . Only non-bonded interactions (inter-
molecular and intramolecular) are a function of the fractional state. Bonded interactions do
not depend on the fractional state and are equivalent to those of whole molecules.

The probability that the system is in configuration α is proportional to,

Pα ∝ exp

 n∑
i=1

(
ln

(
Ni!

Na,i!Nb,i!

)
+ wi(λi)

)
+(Na + n) ln Va + (Nb + n) ln Vb

−
Ua(sNa

a , sn
a, λ1, ..., λn)

kBT
−

Ub(sNb
b , sn

b, λ1, ..., λn)
kBT

 . (2.31)

A Markow chain in the space of fractional states can be organized by random changes
in the coupling parameter, λi. Two different cases can be identified: changes without
molecule transfer, and changes with molecule transfer. A coupling parameter change with-
out molecule transfer will occur when the new fractional state λnew

i = λold
i + ∆λi has a value

within the range [0, ...,mi] and a change with molecule transfer takes place when λnew
i is

outside this range. The end-states, λi = 0 and λi = mi, deserve special attention. A frac-
tional molecule with coupling parameter λi = mi is fully coupled to the system, however,
this molecule will become equal to a whole one only when a further change in the fractional
state takes place (see Fig. 2.2). A molecule transfer is therefore defined as the state transi-
tion λi = mi → 0 from the old to a new randomly inserted fractional molecule. Strictly, only
configurations with fractional molecules in their end-states have a clear physical meaning
equivalent to that of a system without fractional molecules. However, sampling only when
an end-state is visited has the inconvenience of observables averaged over a reduced number
of samples. For a pure component system this is not truly a limitation, but for multicompo-
nent systems the probability of visiting an end-state for all components at the same time is
reduced to the joint probability of visiting those states. Nevertheless, in the thermodynamic
limit, the fractional state does not affect the properties of the system. Therefore, all thermo-
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...

Ni Ni+1

mi10 2

...
... mi10 2
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λ - space

Figure 2.2: Schematic representation of changes in the coupling parameter space λ for component i. When a
change in λi reaches the end-state mi, the fractional molecule has the same interactions as a whole molecule
but it is still not considered as a whole one. A new whole molecule is transferred to the subsystem, Ni + 1,
only when a further change in the coupling parameter reaches a state beyond the full fractional state mi.

dynamic properties are calculated based on the number of whole molecules present in the
system independent of the fractional state.

Volume change
As in the case of the Gibbs ensemble, volume changes are performed by a random walk
in the logarithm of the relative volume ln[Va/Vb]. Taking this into account, the partition
function takes the form,

QNVT−EG =
1

Λ3(N+2n)V

n∏
i=1

1
Ni!

Ni∑
Na,i=0

mi∑
λi=0

Ni!
Na,i!Nb,i!

exp [wi(λi)]

×

∫ ∞

−∞

d ln
(

Va

Vb

)
VaVb

V
(Va)Na+n(Vb)Nb+n

×

∫ 1

0
dsNa

a dsn
a exp

−Ua(sNa
a , sn

a, λ1, ..., λn)
kBT


×

∫ 1

0
dsNb

b dsn
b exp

−Ub(sNb
b , sn

b, λ1, ..., λn)
kBT

 . (2.32)

The criterion for a reversible change in the volume by a random walk in ln[Va/(V−Va)]
is then equal to,

Cαβ = exp
[
(Na + n + 1) ln

(
Va + ∆Va

Va

)
+ (Nb + n + 1) ln

(
Vb − ∆Va

Vb

)

−
∆Ua

kBT
−

∆Ub

kBT

]
, (2.33)

where ∆Ua and ∆Ub are the change in energy related to the volume change in in both
subsystems.
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Algorithm for a coupling parameter change in the expanded Gibbs ensemble
The algorithm for performing a trail change in the coupling parameter is described as fol-
lows:

1. The subsystem in which the fractional state is incremented is first chosen
randomly with equal probability, P sub a = P sub b = 1/2.

2. The component i which experiences a change in the coupling parameter is
chosen randomly with same probability for all components in the mixture,
Pcomp 1 = Pcomp 2 = ... = Pcomp i.

3. A positive discrete change in the coupling parameter ∆λi is chosen randomly
from [1, 2, ...,∆λmax

i ], where ∆λmax
i is adjusted depending on the acceptance

ratio required for this trial move.
4. If the coupling parameter change ∆λi is not related with a molecular exchange,

the criterion for accepting a trial change in the coupling parameter is given by
Eq. 2.36.

5. If the coupling parameter change ∆λi is related with a molecular exchange,
a new fractional molecule with random configuration is inserted randomly in
the subsystem where the coupling parameter is increased and the the criterion
for accepting a trial change in the coupling parameter is given by Eq. 2.39.

6. A new configuration β is accepted with a probability given by min(1, Cαβ).

The acceptance criterion for a change in the coupling parameter without and with
molecular exchange is derived based on this form of the algorithm.

Coupling parameter change without molecular exchange
Every attempt of changing the configuration of the system from a configuration α to a
configuration β by a change in the coupling parameter ∆λi for component i has to satisfy
the condition of microscopic reversibility [105],

Pαβ = Pβα. (2.34)

For a change in the coupling parameter λnew
i = λold

i + ∆λi without molecular exchange,
the condition of microscopic reversibility is given by,

P sub a Pcomp i Pα Pacc
αβ = P sub b Pcomp i Pβ Pacc

βα , (2.35)

where,

P sub a : probability of selecting subsystem a for an increase in the fractional
state.

Pcomp i : probability of selecting component i for an change in the coupling
parameter.

Pα : probability of the system to be in configuration α, Eq. 2.31.
Pacc
αβ : acceptance probability for a configurational change from α to β.
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The probability of selecting any of both subsystems for a change in the coupling pa-
rameter is the same, P sub a = P sub b = 1/2, and the probability of selecting a component i
is the same for all components in the system Pcomp 1 = Pcomp 2 = ... = Pcomp i = 1/n. The
criterion for a reversible change in λi without molecular exchange is given by,

Cαβ =
Pacc
αβ

Pacc
βα

=
Pβ

Pα
= exp

[
wi(λnew

i ) − wi(λold
i ) −

∆Ua

kBT
−

∆Ub

kBT

]
, (2.36)

where ∆Ua and ∆Ub indicate the change in energy in both subsystems due to a change in the
coupling state of component i. It has to be noticed that for the case of chain molecules with
constant bond length considered here, the change in energy considers the intermolecular
U inter as well as the intramolecular U intra contributions. A new configuration β is accepted
with a probability given by min(1, Cαβ).

Coupling parameter change with particle transfer
For a change in the coupling parameter ∆λi of component i with particle exchange (from
subsystem a to b), the condition of microscopic reversibility is given by,

Na,i!Nb,i! P sub b Pcomp i Pmol i,a
α Ppos b

α Pα Pacc
αβ =

(Na,i − 1)!(Nb,i + 1)! P sub b Pcomp i Pmol i,b
α Ppos a

β Pβ Pacc
βα , (2.37)

where,

P sub b : probability of selecting subsystem b as the subsystem where the cou-
pling state of the particle is increased.

Pcomp i : probability of selecting component i for a coupling state change.
Pmol i,a
α : probability of choosing a molecule of component i in subsystem a as

the new fractional molecule, 1/Na,i.
Ppos b
α : probability of choosing a position in subsystem b for the insertion of

a new fractional molecule λ = 0.
Pα : probability of the system to be in configuration α, Eq. 2.31.
Pacc
αβ : probability of accepting a change in the configuration of the system

from α to β.
Pmol i,b
β : probability of choosing a molecule in subsystem b as the new frac-

tional molecule, 1/(Nb,i + 1).

The probability of the new configuration β is proportional to,

Pβ ∝ exp

 n∑
j,i

(
ln

(
N j!

Na, j!Nb, j!

)
+ w j(λ j)

)
+ ln

(
Ni!

(Na,i − 1)!(Nb,i + 1)!

)
+ wi(λi)

+(Na + n − 1) ln Va + (Nb + n + 1) ln Vb

−
Ua(sNa−1

a , sn
a, λ1, ..., λn)

kBT
−

Ub(sNb+1
b , sn

b, λ1, ..., λn)
kBT

 . (2.38)
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Therefore, for component type i the criterion for a reversible change in λi with particle
exchange is given by,

Cαβ =
Pacc
αβ

Pacc
βα

=
(Na,i − 1)!(Nb,i + 1)!

Na,i!Nb,i!

Pmol i,b
β

Pmol i,a
α

Pβ

Pα

= exp
[
ln

(
Na,i

Nb,i + 1
Vb

Va

)
+ wi(λnew

i ) − wi(λold
i ) −

∆Ua

kBT
−

∆Ub

kBT

]
, (2.39)

where ∆Ua and ∆Ub indicate the change in energy in both subsystems due to a change
in the coupling state of component i with molecular transfer. As in the case of molecular
exchange without particle transfer, the change in energy for chain molecules with constant
bond length, the change in the energy of both subsystems considers the intermolecular
U inter as well as the intramolecular U intra contributions to the energy. Here, the coupling
state of the new inserted fractional molecule is equal to λnew

i = λold
i + ∆λi − (mi + 1). The

particle transfer step (mi + 1) → 0 does not carry out any weight function change. A new
configuration β is accepted with a probability given by min(1, Cαβ).

2.4.2. NPT expanded Gibbs ensemble
The partition function for constant pressure NPT expanded Gibbs ensemble simulations is
given by (see section 2.3.3 for the constant pressure Gibbs ensemble),

QNPT =

(
P

kBT

)2 1
Λ3(N+2n)

n∏
i=1

1
Ni!

Ni∑
Na,i=0

mi∑
λi=0

Ni!
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exp [wi(λi)]

×

∫ ∞

0
dVa exp

[
−

PVa

kBT

]
VNa+n

a

×

∫ ∞

0
dVb exp

[
−

PVb

kBT

]
VNb+n

b

×

∫ 1

0
dsNa

a dsn
a exp

−Ua(sNa
a , sn

a, λ1, ..., λn)
kBT


×

∫ 1

0
dsNb

b dsn
b exp

−Ub(sNb
b , sn

b, λ1, ..., λn)
kBT

 . (2.40)

The constant value (P/kBT )2 is introduced to keep the partition function dimensionless [80].
Volume changes are performed for each system independently, in the logarithm of the vol-
ume. The criterion for accepting a trial change in the volume of each subsystem is given by
Eq. 2.12. The acceptance criterion for a trial change in the coupling state of a component i
is given by Eq. 2.36 for a change without molecular exchange and by Eq. 2.39 for a change
with molecular exchange.
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2.4.3. Wang-Landau algorithm
Ideally, an equal probability of visiting any fractional state is desired. For this aim, a weight
function for every fractional state wi(λi) is introduced in the partition function (Eq. 2.30
and Eq. 2.40) to bias the statistics of the system. It is clear that in the modified system,
the magnitude of the weight functions has to be inversely proportional to the density of
states of the fractional state of the non-modified system. However, the magnitude of these
weight functions cannot be know a priori and an iterative method is required for their
determination. Wang and Landau proposed an iterative algorithm for estimating the density
of states of systems in energy space [142, 143]. Similarly, this algorithm can be used for
estimating the density of states in any other parameter space. Here, it is used for estimating
the density of states in the coupling parameter space and therefore determining the values
of the weight functions. The method is based on modifying the density of states of the
system every time a fractional state is visited to produce a flat probability distribution in
the coupling parameter space (flat histogram). The density of states is changed through the
weight function wi(λi) by a modification factor ν that reduces the weight of a fractional state
each time it is visited,

wi(λi)→ wi(λi) − ν. (2.41)

When a flat histogram is obtained, the value of the modification factor ν is reduced, ν →
ν/2, and the histograms are set to zero. A complete flat histogram is not possible and a flat
histogram is identified when the difference between the largest and smallest frequency is
smaller than 10% of the largest frequency. Changing the density of states at each step alters
the Markowian chain and only a modification factor as small as the number precision of the
computing machine will strictly obey detailed balance [144]. This condition is practically
impossible and the iteration proceeds until the modification factor is reduced to a very small
value. A final value of 1×10−9 is considered satisfactory in this work. A starting value of
1×10−5 was sufficient for reaching fast convergence avoiding large oscillations in the value
of the weight functions.

2.5 Solubility of gases
2.5.1. Henry’s law
The solubility of sligthly soluble gases in fluids is usually described using Henry’s law,
which establishes a proportional relation between the partial pressure of a gas and its con-
centration in the fluid solvent. The constant of proportionality is called the Henry coefficient
and it is formally defined as [145],

Hk = lim
xk→0

f̂k
xk
, (2.42)

here f̂k is the fugacity of the diluted gas in the fluid mixture. The subindex k is introduced
to identify the gas as the diluted solute and xk is the mole fraction of the diluted gas in the
fluid.
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The fugacity of component k is related to its chemical potential by,

µk = µ0
k + RT ln

f̂k
f 0
k

, (2.43)

where µk is the chemical potential of component k. The reference state is identified with
the superscript 0. A similar equation can be written for an ideal gas,

µIG
k = µ0

k + RT ln
f̂k

IG

f 0
k

. (2.44)

The fugacity of component k in the ideal gas state is equal to its partial pressure, which at
same temperature T and density ρ conditions as in the non-ideal fluid is equal to, f̂k

IG
=

xk ρkBT . Subtracting Eq 2.43 from Eq 2.44 leads to the residual chemical potential of
component k [146],

µres
k (T, ρ, x) = µk(T, ρ, x) − µIG

k (T, ρ, x) = kBT ln
f̂k(T, ρ, x)
xk ρkBT

, (2.45)

where x indicates the mole fraction of the fluid.
The relationship between Henry coefficient and the residual chemical potential at de-

fined temperature and density is obtained by replacing Eq. 2.45 into Eq. 2.42 [146, 147],

Hk(T, ρ, x) = ρkBT exp
[
µres

k (T, ρ, x)
kBT

]
. (2.46)

This expression is obtained in the infinite dilution limit of component k, where the
composition of the fluid x is not changed by the presence of the solute.

A dimensionless Henry coefficient that is directly related to the residual chemical po-
tential is defined as following,

ln H∗k (T, ρ, x) = ln
Hk(T, ρ, x)
ρkBT

=
µres

k (T, ρ, x)
kBT

. (2.47)

The relative effect of connectivity and molecular anisotropy in chain fluids is studied
by relative Henry coefficients, defined as the ratio between the Henry coefficient for the
solubility in a chain fluid Hk to the Henry coefficient for the solubility in a monomer (single-
segment) fluid H0

2 at same temperature and density conditions.

Hk

H0
k

= exp

µres
k (T, ρ, x)

kBT
−
µres,0

k (T, ρ)
kBT

. (2.48)

2.5.2. Widom’s test-particle insertion method
In the test-particle insertion method proposed by Widom [148], the chemical potential of a
component k in a fluid with mole fraction x is calculated by the energy change of a virtual
insertion of a molecule of component k in the fluid. The method is derived from the relation
between chemical potential and the partition function of the system.
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The chemical potential of a component k in a mixture with mole fraction x at constant
temperature T and density ρ is defined by the partial molar property [149],

µk(T, ρ, x) =
∂A(T, ρ, x)

∂Nk

∣∣∣∣∣
T, ρ,N j,k

, (2.49)

where A(T, ρ, x) is the Helmholtz free energy which is related to the canonical partition
(NVT ensemble, Eq. 1.3) as following,

A(T, ρ, x) = −kBT ln QNVT . (2.50)

The canonical partition function is defined by Eq. 1.3, which in reduced coordinates is
expressed as,

QNVT =
VN

Λ3N N!

∫
dsN exp

[
−
U(sN)
kBT

]
. (2.51)

In the Widom’s test particle method, a test-particle is temporary inserted in the fluid.
The partition function of the actual system is identified as QNVT

N and the partition function
of the system with the inserted test-particle is denoted as QNVT

N+1 . Replacing Eq. 2.50 into
Eq. 2.49, the chemical potential of component k is given by,

µk = −kBT ln
QNVT

N+1

QNVT
N


= −kBT ln

(
V

Λ3(N + 1)

)
− kBT ln

〈
exp

[
−

∆U test
k

kBT

]〉
= µIG + µres

k , (2.52)

where ∆U test
k is the energy change in the system by the temporary insertion of a test-particle

of component k. From this last equation, it can be identified that the residual chemical po-
tential of component k in the fluid is obtained from the ensemble average of the Boltzmann
factor related to the energy of insertion of the test-particle [146, 148, 150],

µres
k (T, ρ, x)

kBT
= − ln

〈
exp

[
−

∆U test

kBT

]〉
. (2.53)

In the case of hard-sphere fluids Eq. 2.53 reduces to,

µres,HS
k (T, ρ, x)

kBT
= − ln〈p〉, (2.54)

where the parameter p takes the value of 1 for a virtual test-particle insertion without over-
lap or 0 for a virtual insertion with overlap.
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Calculation of the residual chemical potential in the NPT ensemble is derived from the
partition function given in Eq. 2.9,

QNPT =

(
P

kBT

)
1

Λ3N N!

∫ ∞

0
dV VN exp

[
−

PV
kBT

] ∫ 1

0
dsN exp

[
−

U(sN)
kBT

]
=

P
kBT

∫ ∞

0
dV exp

[
−

PV
kBT

]
QNVT . (2.55)

The chemical potential of component k can be then obtained from,

µk = −kBT ln
QNPT

N+1

QNPT
N


= −kBT ln

(
〈V〉

Λ3(N + 1)

)
− kBT ln

〈
V exp

[
−∆U test

k /kBT
]〉

〈V〉

= µIG + µres
NPT . (2.56)

Therefore, the residual chemical potential of component k is calculated in the NPT ensem-
ble from [132, 151, 152],

µres(T, ρ′, x)
kBT

= − ln

〈
V exp

[
−∆U test

k /kBT
]〉

〈V〉
. (2.57)

It has to be noticed that in this equation calculations are performed at constant temperature
and pressure conditions and the density in Eq. 2.57 is obtained from the ensemble average
ρ′ = 〈ρ〉 = 〈N/V〉. In the case of hard-sphere systems, this expression reduces to,

µres,HS
k (T, ρ′, x)

kBT
= − ln

〈V p〉
〈V〉

, (2.58)

where the parameter p takes the value of either 1 or 0 as explained before.
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Liquid crystal phase behavior of hard-sphere chain fluids

The liquid crystal phase behavior of linear and partially-flexible hard-sphere chain fluids
and the solubility of a hard-sphere gas in them are studied using constant pressure Monte
Carlo simulations (NPT ensemble). An extensive study on the liquid crystal phase behavior
of linear hard-sphere 7-mer to 16-mer, 18-mer, and 20-mer chain fluids is shown in this
chapter. The phase behavior of partially-flexible fluids with a total length of 8, 10, 14 and
15 segments with different lengths in the linear part was also determined. For linear fluids,
a maximum in the isotropic to nematic packing fraction change is observed for the linear
15-mer and 16-mer chain fluids. The infinite dilution solubility of hard spheres in linear
and partially-flexible hard-sphere chain fluids is calculated using the Widom test-particle
insertion method. To identify the effect of chain connectivity and molecular anisotropy,
solubility is expressed as relative Henry coefficients, defined as the ratio between the Henry
coefficient of a gas in the chain fluid to Henry coefficient of a gas in a monomer fluid
at same packing fraction. A linear relationship between relative Henry coefficients and
packing fraction is observed for all linear fluids. Furthermore, this linearity is independent
of liquid crystal ordering and seems to be independent of chain length for the linear hard-
sphere 10-mer and longer chains. A similar trend was observed for the solubility of hard
spheres in partially-flexible fluids. At higher packing fractions, the small flexibility of these
fluids seems to improve solubility in comparison with their linear counterparts.

This chapter is based on:
B. Oyarzún, T. van Westen, and T.J.H. Vlugt J. Chem. Phys. 138 (2013) 204905 [46].
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3.1 Introduction
Fluids made of linear hard-sphere chain molecules can show liquid crystal phase for chain
molecules with sufficient elongation. Vega et al. [85] studied the phase behavior of linear
hard-sphere chain fluids with a length of 3, 4, 5, 6 and 7 segments (3-mer to 7-mer) from
constant pressure Monte Carlo simulations. These authors observed that the linear hard-
sphere 5-mer and longer chains form liquid crystal phases, while shorter chains experience
a direct transition from the isotropic to the crystal state [85–87]. Williamson et al. [88]
investigated the phase behavior of the linear hard-sphere 7-mer fluid in all phases from
the isotropic to the crystal state. The isotropic-nematic phase behavior of the linear hard-
sphere 8-mer and 20-mer chain fluid was obtained by Yethiraj et al. [89]. Whittle et al. [90]
studied the phase behavior of linear 6-mer and 8-mer fused hard-sphere chain molecules
with length-to-width ratios ranging from 3.5 to 5.2, observing a nematic phase only for the
longest molecule.

Real liquid crystal molecules have a certain degree of flexibility which is mainly pro-
vided by alkyl terminal substituents [2]. It has been shown that increasing flexibility desta-
bilizes the nematic and smectic phases favoring the isotropic state [91, 153]. Introducing
molecular flexibility into hard-sphere chain molecules can be done either homogeneously
by semi-flexible molecules where a bond-bending and torsional potential is defined for
the whole molecule, or heterogeneously by partially-flexible molecules where potentials
are defined for different parts of the molecule. The first approach was used by Wilson et
al. [153, 154] for a fluid made of semi-flexible hard-sphere 7-mer chain molecules bonded
by potential wells, as well as by Yethiraj et al. [89] who determined the isotropic and
nematic phase behavior of semi-flexible hard-sphere 8-mer and 20-mer chain molecules
with bending potentials of varying stiffness. A partially-flexible model was employed by
McBride et al. [91, 91, 93] for fused hard-sphere molecules composed of a linear and a
freely-jointed part with a total length of 15 segments and with 8 to 15 segments in the linear
part. Escobedo et al. [94] used the expanded Gibbs ensemble and the pseudo-Gibbs ensem-
ble for calculating the isotropic-nematic phase transition of hard-sphere 8-mer and 16-mer
chain molecules with finite and infinite bond bending potentials (linear chains).

In this chapter, simulation results are presented for the liquid crystal phase behavior
of linear and partially-flexible hard-sphere chain fluids. Simulation details are described in
section 3.2. The phase behavior of linear hard-sphere chain fluids is presented in section 3.3
and the effect of flexibility is studied in section 3.4 from liquid crystal phase behavior of
partially-flexible hard-sphere chain fluids. The infinite dilution solubility of hard spheres in
hard-sphere chain fluids is described in section 3.5. Results of this chapter are summarized
in section 3.6.

3.2 Simulation details
The phase behavior of linear and partially-flexible hard-sphere chain fluids was obtained
by Monte Carlo simulations in the isobaric-isothermal NPT ensemble. Periodic boundary
conditions were used in a rectangular simulation box with varying orthogonal dimensions.
The following Monte Carlo trial moves were used: displacement, rotation, volume change,
and partial-regrowth of the freely-jointed part using the Configurational-bias Monte Carlo
method [80, 100, 101, 155]. In the Configurational-bias Monte Carlo method 10 trail direc-
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tions were attempted for regrowing each segment in the freely-jointed part. A system size of
N=350 molecules was used for all simulations except for the linear hard-sphere 7-mer and
8-mer chain fluids in which a larger number of 576 molecules was employed. The latter was
done in order to compare actual simulation results with previous simulation data, especially
with that obtained by Williamson et al. [88] for the linear hard-sphere 7-mer chain fluid.
Simulations with 216 and 350 molecules were also performed for the linear 7-mer in order
to study the system size effect. In the equilibration period, the maximum displacement and
rotation angle were adjusted in order to obtain an acceptance ratio of 20%. Rotation around
every Cartesian axes was considered separately due to the orientation of molecules around
the nematic director in nematic and smectic phases. Volume changes were performed in an
anisotropic manner by choosing independently the box side which is expanded/contracted
[89, 91]. In this way, the natural anisotropy introduced by a rectangular box is decoupled
from the phase anisotropy inherent to ordered systems. Displacement and rotation trial
moves were selected with the same probability, while the probability of attempting a vol-
ume change was set to 2%. In the case of partially-flexible molecules, 15% of the trial
moves were attempted to regrow the freely-jointed part. The anisotropic expansion of the
simulation box may result in the contraction of one of its dimensions to zero due to the
finite size of the system. This event is avoided by using large system sizes but at the cost
of long simulation runs. A good balance between a very low occurrence of this event and
short simulation runs was obtained for a system size of 350 molecules. A typical simulation
run comprises 1×106 Monte Carlo cycles in the equilibration period and 1×106 cycles in
the production period. Every Monte Carlo cycle consisted of a total of N Monte Carlo trial
moves. However, close to the isotropic-nematic transition region, the required number of
simulation cycles in the equilibration and production periods was normally doubled due to
large fluctuations in the observed variables.

Initial isotropic and nematic configurations were used for the simulation of linear hard-
sphere chain fluids. For partially-flexible systems, however, only nematic initial configura-
tions were used, since for these systems simulations starting from an isotropic configuration
required very long equilibration periods, typically larger than 5×106 Monte Carlo cycles.
For linear chains, simulation starting from an isotropic configuration were obtained for a
region close to the isotropic-nematic phase transition in order to verify that results in the
isotropic and nematic phases are independent of the initial configuration, and to determine
the hysteresis at the isotropic-nematic phase transition. Isotropic initial configurations were
obtained by placing molecules in the simulation box randomly without a preferred orien-
tation. A nematic configuration was generated by placing molecules in random positions
but perfectly aligned on the direction of the largest dimension of the simulation box. In
the case of partially-flexible molecules, an initial linear molecular configuration was cho-
sen. The initial dimensions of the simulation box were selected in order to ensure that the
initial packing fraction of the system is located in either the isotropic or nematic regions.
Every simulation run was started from an independent initial configuration in order to avoid
correlation between results.

Simulations were performed at constant reduced pressure defined as P∗ = P vmol/kBT ,
where P is pressure, kB is the Boltzmann constant, T is temperature, and vmol = mπd3/6
is the volume of a molecule made of m beads with diameter d set to unity. The density
is expressed dimensionless by the packing fraction η = Nvmol/V , where N is the number
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Figure 3.1: Liquid crystal phase behavior of the linear hard-sphere 7-mer chain fluid: (a) reduced pressure P∗,
(b) order parameter S 2 as a function of packing fraction η. Results obtained from initial isotropic and nematic
configurations are denoted by closed (•) and open circles (◦) respectively. Previous data from Williamson
and Jackson [88] are denoted by crosses (×) for initial isotropic configurations and by pluses (+) for initial
crystal configurations. In addition, results of Vega et al. [85] started from a crystal structure are indicated by
an asterisk (∗). The size of the symbols is larger than the relative error in the packing fraction (1-2%) and the
relative error in the order parameter (2-5%) .

of molecules. The orientational order of the system is measured by the order parameter S 2
Eq. 2.3, which has a value of 0 in an isotropic fluid and a value of 1 for a completely aligned
nematic phase.

The solubility of hard spheres in hard-sphere chain fluids at infinite dilution is described
by Henry coefficients defined by Eq. 2.46. The residual chemical potential is calculated by
the Widom test-particle insertion method [148], which for Monte Carlo simulations of hard
spheres at constant pressure takes the form of Eq. 2.54 [152]. A total of 100 test-particle
insertions are performed for each configuration sampled every 1×103 Monte Carlo cycles.

3.3 Linear hard-sphere chain fluids
A systematic study on the liquid crystal phase behavior was performed for linear 7-mer to
16-mer, 18-mer, and 20-mer hard-sphere chain fluids. Previous simulation data for the lin-
ear 7-mer [85, 88], 8-mer and 20-mer [89] are present in literature. Compared to previous
studies, simulation runs in this work were significantly longer (typically by a factor of 2 to
10) in particular close to the isotropic-nematic phase transition. In addition, a large num-
ber of simulations was performed close to the isotropic-nematic phase transition in order to
describe the transition region with high accuracy. The phase behavior of the 7-mer was al-
ready determined by Williamson et al. [88] and Vega et al. [85]. Due to the large collection
of data existing for this system, the linear hard-sphere 7-mer molecule can be considered
as a suitable reference system. Nevertheless, new and more precise simulation data for the
7-mer was obtained. Fig. 3.1 shows the liquid crystal phase behavior of the linear hard-
sphere 7-mer chain fluid compared to literature data. It can be observed that all simulation
data are comparable with slight differences at reduced pressures of 5.0 and higher. From the
extensive results obtained in this work the isotropic-nematic phase transition is found at a
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Figure 3.2: Finite size effect on: (a) reduced pressure P∗, (b) order parameter S 2 for the linear hard-sphere 7-
mer chain fluid as a function of packing fraction η. All results were obtained from initial nematic configurations
with system sizes of 216 (4), 350 (�) and 576 (◦) molecules. The inset in figure (b) shows the system size
dependence of the order parameter for the linear 7-mer in the isotropic region at a reduced pressure of
P∗=1 and at a packing fraction η∼0.178 for systems sizes of 216, 350 and 576 molecules. In this sub-figure,
values are the average of four independent simulation results and the symbol size is larger than one standard
deviation. The solid line is a linear fit with R2 = 0.999.

reduced pressure of P∗∼3.39−3.49 at a packing fraction of ηI∼0.289−0.291 for the isotropic
phase and of ηN∼0.302−0.303 for the nematic phase. These values lie in between the ranges
P∗∼3.15−3.78, ηI∼0.266−0.303 and ηN∼0.285−0.312 reported by Williamson et al. [88],
and it is in agreement with the reduced pressure range P∗∼2.9−3.7 and packing fractions
ηI≈0.274 and ηN≈0.308 reported by Vega et al. [85]. The large hysteresis at the isotropic-
nematic phase transition observed by Williamson et al. [88] was not detected here. It is
suspected that close to the isotropic-nematic phase transition, where fluctuations are large,
the simulations results of Williamson and Jackson may either not be well equilibrated or
their sampling period was too short (4×105 compared to 2×106 of this work). Nevertheless,
a narrow hysteresis of 0.1 in reduced pressure was detected for the linear 7-mer. A phase
transition to the smectic-A phase was observed at a reduced pressure P∗∼4.80−5.00 and
ηN≈0.359, ηS≈0.380.

The system size effect of the linear 7-mer was also studied and results for systems sizes
of 216, 350 and 576 molecules are compared in Fig. 3.2. It can be observed that results for
reduced pressure versus packing fraction at the isotropic and nematic regions for all three
systems are comparable. However, the precise location of the nematic-smectic phase tran-
sition seems to be system size dependent. For the larger 576 molecules system, a first-order
phase transition to a smectic-A phase is detected at a reduced pressure between 4.8 and 5.0.
On the contrary, for the smaller 350 and 216 molecules systems, partial smectic ordering
with no clear defined smectic layers was observed for lower reduced pressure between 4.0
and 5.0. For all three system sizes, smectic-A layers were clearly recognized only at re-
duced pressures of 5.0 and higher. This system size dependence on the nematic-smectic
phase transition was already pointed out by Polson et al. [98] for the nematic to smectic
phase transition of hard spherocylinders in the limit of infinite aspect ratio. In their study,
the free-energy profile at the nematic-smectic phase transition was calculated for different
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system sizes (928, 540 and 280 molecules) as a function of smectic ordering. These au-
thors found that a large Gibbs energy barrier between the nematic and the smectic state
exists only for the larger system. The Gibbs energy barrier was negligible for the interme-
diate system size and vanishing for the smaller one. In their work, Polson et al. concluded
that, in the thermodynamic limit, the nematic to smectic phase transition of spherocylinders
seems to be of first-order for all aspect ratios. Similarly, here, a first order nematic-smectic
phase transition was observed only for the larger system size of 576 molecules and the par-
tial smectic ordering observed in the smaller systems can be a consequence of a low Gibbs
energy barrier caused by the reduced system size.

Another effect of the finite size of the system can be identified in Fig. 3.2 from the order
parameter in the isotropic region. It can be observed that in the isotropic region all three
systems show a positive value different than zero for the order parameter, approaching a
system-size dependent limiting value as the packing fraction is reduced. The origin of
this finite order in the isotropic phase and its corresponding finite order parameter value
was described by Eppenga et al. [34]. For isotropic systems of finite size, these authors
demonstrated the largest eigenvalue of the Q-tensor (from which the order parameter is
estimated) deviates from zero by 1/

√
N. The inset in Fig. 3.2 (b) shows the relation between

order parameter values and system size at same packing fraction. It can be observed that
the 1/

√
N dependence is almost exact leading to a vanishing value of the order parameter

on the thermodynamic limit.
The phase behavior of the linear hard-sphere 8-mer to 16-mer, 18-mer, and 20-mer

chain fluids is shown in Figs. 3.3-3.5. Literature data for the linear 8-mer and 20-mer from
Yethiraj et al. [89] are also included. These authors used a slightly different definition for
the order parameter, based on the middle eigenvalue of the Q-tensor instead of the largest
one used here. The middle eigenvalue leads to values of the order parameter that fluctu-
ate around zero in the isotropic phase. Although both definitions are directly related (as
shown in the previous section), the definition based on the largest eigenvalue is considered
to be more consistent with the mathematical framework of the Q-tensor. Initial isotropic
and nematic configurations led to hysteresis in the isotropic-nematic phase transition. The
magnitude of the hysteresis showed to be dependent of the packing fraction difference at
the isotropic-nematic transition, varying from a difference in reduced pressure of ∼0.04 for
the linear 7-mer to ∼0.17 for the linear 15-mer fluid.

Fig. 3.2 and Table 3.1 summarize the reduced pressure and packing fraction change at
the isotropic-nematic transition for all linear systems studied. Reduced transition pressures
were calculated at the middle-point of the hysteresis, which was estimated by the average of
the reduced pressure at coexistence for results starting from an initial isotropic and nematic
configurations. Packing fractions were obtained by fitting a third order polynomial on the
packing fraction as a function of reduced pressure for each isotropic and nematic branches
separately. The isotropic and nematic packing fraction at phase transition were obtained
using the previous calculated reduced transition pressures in the fitted equations. Fig. 3.2
also includes the available literature data for the isotropic-nematic phase transition of linear
hard-sphere chain fluids. It is observed that the literature data is comparable with the results
for the reduced pressure at coexistence but no systematic behavior can be identified from
literature data for the packing fraction difference. From Fig. 3.2 (a), it can be observed
that with increasing chain length, the transition pressure decreases in a continuous manner.
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Figure 3.3: Liquid crystal phase behavior of linear hard-sphere 8-mer to 11-mer chain fluids: (a) reduced
pressure P∗, (b) order parameter S 2 as a function of packing fraction η. Results obtained from initial isotropic
and nematic configurations are denoted by closed (•) and open circles (◦) respectively. Previous simulation
data from Yethiraj et al. [89] for the 8 linear chain are indicated by an asterisk (∗).
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Figure 3.4: Liquid crystal phase behavior of linear hard-sphere 12-mer to 15-mer chain fluids: (a) reduced
pressure P∗, (b) order parameter S 2 as a function of packing fraction η. Results obtained from initial isotropic
and nematic configurations are denoted by closed (•) and open circles (◦) respectively.
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Figure 3.5: Liquid crystal phase behavior of linear hard-sphere 16-mer, 18-mer, and 20-mer chain fluids" (a)
reduced pressure P∗, (b) order parameter S 2 as a function of packing fraction η. Results obtained from initial
isotropic and nematic configurations are denoted by closed (•) and open circles (◦) respectively. Previous
simulation data from Yethiraj et al. [89] are indicated by an asterisk (∗).
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Table 3.1: Reduced pressure P∗, packing fraction of the isotropic phase ηI , packing fraction of the nematic
phase ηN and packing fraction change at the isotropic-nematic phase transition ∆ηN−I for linear molecules
with a length of linear hard-sphere 7-mer to 16-mer, 18-mer, and 20-mer chain fluids.

m P∗ ηI ηN ∆ηN−I

7 3.47 0.2941 0.3009 0.0068
8 2.65 0.2560 0.2678 0.0118
9 2.08 0.2269 0.2415 0.0146
10 1.76 0.2065 0.2231 0.0166
11 1.53 0.1900 0.2083 0.0183
12 1.32 0.1733 0.1935 0.0202
13 1.20 0.1625 0.1838 0.0213
14 1.09 0.1528 0.1747 0.0219
15 0.99 0.1429 0.1649 0.0220
16 0.94 0.1388 0.1610 0.0220
18 0.78 0.1207 0.1425 0.0218
20 0.65 0.1073 0.1250 0.0177
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Table 3.2: (a) Transition pressures P∗, and (b) packing fraction change ∆ηN−I at the isotropic-nematic co-
existence for linear hard-sphere 8-mer to 16-mer, 18-mer, and 20-mer chain fluids. Previous data from
Williamson et al.[88] for the linear 7-mer (+), Yethiraj et al. [89] for the linear 8-mer and 20-mer (×) and
from Escobedo and et al. [94] for the linear 8-mer and 16-mer (∗) are also indicated.
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Table 3.3: Reduced pressure P∗, packing fraction of the isotropic phase ηI , packing fraction of the nematic
phase ηN and packing fraction change at the isotropic-nematic phase transition ηN−I for partially-flexible
hard-sphere 15-14-mer, 15-13-mer, 15-12-mer, 14-13-mer and 14-12-mer chain fluids.

m − mR P∗ ηI ηN ∆ηN−I

15-14 1.28 0.1577 0.1740 0.0163
15-13 1.77 0.1788 0.1906 0.0118
15-12 2.54 0.2071 0.2174 0.0103
14-13 1.44 0.1689 0.1841 0.0152
14-12 2.12 0.2034 0.2139 0.0105

On the other hand, from Fig. 3.2 (b) it can be observed that the packing fraction difference
shows a maximum for the linear 15-mer and the 16-mer. This is a rather surprising result
that has not been explicitly reported in the simulation of hard-sphere chain systems before.
Bolhuis et al. [44] obtained for spherocylinders the isotropic and nematic densities at co-
existence as a function of shape anisotropy L/D by a modified Gibbs-Duhem integration
method. From their data, it can be identified that a maximum is reached in the isotropic-
nematic density difference at coexistence for a shape anisotropy between 15 and 20. From
an Onsager type density functional theory, Fynewever et al. [156] show a similar behavior
of the packing fraction difference for linear hard-sphere chain fluids as a function of chain
length, with a maximum at a chain length close to 10. However, neither of these studies
mentions the existence of a maximum in the packing fraction difference explicitly.

3.4 Partially flexible hard-sphere chain fluids
The liquid crystal phase behavior of partially-flexible molecules is investigated for different
molecular lengths with varying degree of flexibility. Results for this section were obtained
from an initial nematic configuration only, since simulations started from an initial isotropic
configuration required excessively long equilibration periods. In Fig. 3.6, the phase behav-
ior of the partially-flexible hard-sphere 15-12-mer, 15-13-mer, and 15-14-mer chain fluids
is shown. It can be observed that increasing flexibility destabilizes the nematic phase with
respect to the isotropic phase, leading to higher transition pressures at higher coexistence
packing fractions. The isotropic to nematic phase transition is driven by a difference in the
orientational average of the excluded volume between the isotropic and nematic phase [20].
Flexibility reduces this difference [157], therefore a higher pressure is required in order to
induce the transition to the nematic state. Reduced pressures and packing fraction changes
at the isotropic-nematic phase transition are summarized in Table 3.3. It can be identified
that flexibility increases the transition pressure and reduces the isotropic-nematic packing
fraction difference. A transition to a smectic-A phase is identified at a reduced pressure in
the range of 3.0 − 3.5 for the partially-flexible hard-sphere 15-14-mer and 15-13-mer chain
fluids and between 3.40 − 3.60 for the partially-flexible 15-12-mer.

The average end-to-end length in the isotropic and nematic regions for the partially-
flexible hard-sphere 15-14-mer, 15-13-mer and 15-12-mer chain fluids is shown in Fig. 3.7
as a function of pressure. It can be clearly identified that in the isotropic region the average
end-to-end length decreases as pressure increases. This behavior is a consequence of the
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Figure 3.6: Liquid crystal phase behavior of partially-flexible hard-sphere 15-12-mer, 15-13-mer and 15-14-
mer chain fluids: (a) reduced pressure P∗, (b) order parameter S 2 as a function of packing fraction η.
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Figure 3.7: Average end-to-end length of partially-flexible hard-sphere 15-14-mer, 15-13-mer, 15-12-mer
chain fluids. Results are shown relative to the total chain length 15-mer.

tendency of molecules to be more entangled at increased packing fractions. On the contrary,
a step increase in the average end-to-end length occurs at the isotropic to nematic phase
transition. This increased molecular elongation is a result of the orientational ordering in
the nematic phase, forcing molecules to stretch along the phase director. Nevertheless, this
step-difference in the average end-to-end length at coexistence is relatively small, varying
from ∼0.2% for the partially-flexible 15-14-mer to ∼1% for the partially-flexible 15-12-mer.
In the nematic region, the average end-to-end length increases asymptotically towards the
total molecular length with increasing pressure. Although changes in the average end-to-
end length are relatively small, Fig. 3.7 shows that the average molecular configuration of
partially-flexible hard-sphere molecules varies with reduced pressure (packing fraction) and
with molecular ordering, either isotropic and nematic. This change in the average molecular
configuration may have an effect on the free volume of the fluid [157], influencing the
solubility of hard spheres in hard-sphere fluids as it will be discussed in section 3.5.

Fig. 3.8 shows the liquid crystal phase behavior of the partially-flexible hard-sphere
14-13-mer, 14-12-mer and 14-10-mer chain fluids. A nematic phase is identified only for
the partially-flexible 14-13-mer and 14-12-mer. Reduced pressures and packing fraction
changes at the isotropic-nematic phase transition for these fluids are specified in Table 3.3.
A transition to the smectic-A phase is identified at a reduced pressure in the range of 3.0−3.5
for the 14-13 fluid and 3.5 − 4.0 for the 14-12 fluid. The more flexible partially-flexible
14-10-mer does not show a nematic phase, experiencing a continuous transition from the
isotropic to the smectic-A phase. The fact that for the partially-flexible 14-10-mer the
isotropic to smectic phase transition is continuous is possibly a consequence of a negligible
energy barrier between these phases due to the reduced system size as was already pointed
out in section 3.3 for the linear hard-sphere 7-mer chain fluid. However, this premise was
not tested here and simulations in larger systems would be required. A clear smectic-A
phase could not be recognized for the partially-flexible hard-sphere 14-10-mer chain fluid,
however partial smectic-A ordering was observed for reduced pressures of 5.0 and 5.2. A
clear smectic-C phase is observed at a reduced pressure of 8.0 but partial smectic-C layering



3

46 3 Liquid crystal phase behavior of hard-sphere chain fluids

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3

S2

η

(b)

14-10

 0.1  0.2  0.3

14-12

 0  0.1  0.2  0.3  0.4

14-13

 0

 2

 4

 6

 8

 10

 0.1  0.2  0.3

P*

η

(a)

14-10

 0.1  0.2  0.3

14-12

 0  0.1  0.2  0.3  0.4

14-13

Figure 3.8: Liquid crystal phase behavior of partially-flexible hard-sphere 14-10-mer, 14-12-mer and 14-13-
mer chain fluids: (a) reduced pressure P∗, (b) order parameter S 2 as a function of packing fraction η.
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is already identified at reduced pressures between 5.4 and 7.0.
Fig. 3.9 shows the phase behavior of the partially-flexible hard-sphere 8-7-mer, 8-6-

mer and 10-8-mer chain fluids. A continuous isotropic to smectic-A phase transition is
observed for the partially-flexible 8-7-mer system in the reduced pressure range of 5.4−5.8
and clear smectic-A layers are identified at reduced pressures of 5.9 and higher. In the
partially-flexible 8-6-mer system, clearly defined smectic-A layers could not be identified,
however partial smectic ordering was observed at a reduced pressure of 14 and higher. For
this system, a continuous phase transition from the isotropic to the smectic-A state was
observed between reduced pressures of 9.4 and 10.4. Finally, the partially-flexible 10-8-
mer shows a continuous phase transition from the isotropic to the smectic-A state between
pressures of 4.7 and 5.6 and clear smectic-A layers at pressures of 5.8 and higher.

3.5 Solubility of hard spheres in hard-sphere chain fluids
The solubility of hard spheres in a hard-sphere chain fluid depends on the available free
volume in the fluid, which is in principle determined by the molecular configuration, pack-
ing fraction, and orientation of all molecules in the fluid [157, 158]. Here, the relative
importance of molecular configuration, i.e. connectivity and rigidity ,is investigated by
means of relative Henry coefficients defined by Eq. 2.48. The residual chemical potential
of a hard sphere in the monomer fluid, i.e. the hard-sphere fluid, H0

k is calculated from the
Boublik-Mansoori-Carnahan-Starling-Leland equation of state [159–161]. The validity of
this equation was verified with simulation results, showing an excellent agreement for the
residual chemical potential of hard spheres in a hard sphere fluid.

Fig. 3.10 (a) shows relative Henry coefficients for the solubility of hard spheres in linear
hard sphere chain fluids and Fig. 3.10 (b) shows the relative Henry coefficients for the
solubility of hard spheres in partially-flexible hard sphere chain fluids. From Fig. 3.10
(a), a linear relationship between relative Henry coefficients and packing fraction can be
identified for all linear fluids. A linear fit calculated from the results for linear hard-sphere
10-mer and longer chain fluids is included in Fig. 3.10 (a) and (b). This linearity seems to
be independent of liquid crystal ordering and fairly independent of chain length for linear
hard-sphere 10-mer and longer chain fluids.

In contrast to linear hard-sphere chain molecules, the average molecular configuration
of partially-flexible hard-sphere molecules changes with packing fraction as it was shown
in Fig. 3.7. It can be observed that at packing fractions lower than η = 0.23 the solubil-
ity of hard spheres in 15-14, 15-13, 15-12, 14-13 and 14-12 partially-flexible hard-sphere
chain fluids follows the same linear relationship with packing fraction as for the linear hard-
sphere chain fluids. As it is shown in Table 3.3, the isotropic-nematic phase transition of the
nematic forming partially-flexible hard-sphere chain fluids takes place at packing fractions
not higher than 0.2174, indicating that partial flexibility do not affect the relative behavior
of solubility with packing fraction at the isotropic-nematic phase transition. The effect of
larger flexibilities is also shown in Fig. 3.10 (b), which includes relative Henry coefficients
calculated from literature data for the chemical potential of hard spheres in a freely-jointed
hard-sphere 16-mer chain fluid [119, 163]. It can be observed that, at low packing frac-
tions η < 0.23, relative Henry coefficients for the partially-flexible and fully flexible chain
molecules do not appreciably deviate from the linear behavior derived from the linear hard-
sphere chain fluids. At packing fractions higher than η=0.23, the solubility of hard spheres



3

48 3 Liquid crystal phase behavior of hard-sphere chain fluids

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4

S2

η

(b)

10-8

 0.1  0.2  0.3  0.4

8-6

 0.1  0.2  0.3  0.4  0.5  0.6

8-7

 0

 2

 4

 6

 8

 10

 0.1  0.2  0.3  0.4

P*

η

(a)

10-8

 0.1  0.2  0.3  0.4

8-6

 0.1  0.2  0.3  0.4  0.5  0.6

8-7

Figure 3.9: Liquid crystal phase behavior of partially-flexible hard-sphere 10-8-mer, 8-6-mer and 8-7-mer
chain fluids: (a) reduced pressure P∗, (b) order parameter S 2 as a function of packing fraction η.
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Figure 3.10: Relative Henry coefficients for the solubility of hard spheres in: (a) linear hard-sphere 7-mer (�),
9-mer (�), 10-mer (◦), 11-mer (•), 12-mer (4), 13-mer (N), 14-mer (O), 15-mer (H) and 20-mer (�); (b) partially-
flexible hard-sphere chain fluids 15-14-mer (�), 15-13 (�), 15-12 (◦), 14-13 (•) and 14-12 (4). The solid line is
a linear fit obtained with the data of the linear hard-sphere 10-mer and longer chain fluids, with slope -2.580
and intersection 1.036 (R2=0.991). Relative Henry coefficients for hard spheres in a hard dumbbell fluid (×)
were calculated from literature data for the chemical potential of hard spheres in a hard dumbbell fluid by
Ben-Amotz and Omelyan [162]. Relative Henry coefficients for hard spheres in a freely-jointed hard-sphere
16-mer chain fluid were calculated from the data of Escobedo and de Pablo [119] (∗) and from the data of
Kumar et al. [163] (×).

seems to increase for the partially-flexible hard-sphere chain fluids and to decrease for the
freely-jointed hard-sphere chain fluid at the same packing fraction. A more clear insight to
this effect is given in Fig. 3.11, where the effect of molecular flexibility in packing fraction
is shown by the dimensionless rigidity parameter defined as the ratio between the number
of rigid bonds angles to the total bond angles in the molecule [77, 157],

χR =


mR − 2
m − 2

; m > 2

1 ; m ≤ 2
. (3.1)

Fig. 3.11 (a) shows that at low packing fractions flexibility χR→0 effectively increases
the packing fraction of the fluid, reducing in principle the solubility of gases in the liquid
crystal phase. However, this increment is relatively small (∼4%), which explains together
with the low values for the packing fraction the unnoticeable difference of relative Henry
coefficients between linear and fully flexible chain fluids at low packing fractions. At high
packing fractions, Fig. 3.11 (b), a minimum in packing fraction is observed as flexibility
increases. For packing fractions below the value corresponding to χR=0, the same packing
fraction value can be related to two different values of the rigidity parameter, one closer to
the linear rigid chain χR=1 and one closer to the flexible chain χR=0. The same argument
can be used for the behavior of solubility with flexibility at high packing fractions, i.e. two
solubilities regimes, one closer to the linear chain fluid and one similar to the fully-flexible
chain. For chain fluids with high flexibility, increasing rigidity reduces the packing fraction
of the fluid with the consequence of a higher solubility compared to the fully-flexible case.
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Figure 3.11: The effect of molecular rigidity χR on the packing fraction η of a hard-sphere 8-mer chain fluid at
constant pressure: (a) P∗ = 0.3, (b) P∗ = 2.7.

For chain fluids with high rigidity, increasing flexibility reduces also the packing fraction
of the fluid with the consequence of a higher solubility compared to the linear case. This
behavior explains in principle the observed increase in solubility due to flexibility for the
partially-flexible molecules shown in Fig. 3.10 (b).

To verify the independence of solubility with nematic ordering, constant volume Monte
Carlo simulations at a packing fraction in-between the isotropic-nematic phase transition
were performed using an umbrella sampling technique for the order parameter [80]. In
these simulations, order parameter values were restricted to ranges of width 0.05 between
0 and 1. The simulation of every order parameter range was performed separately from an
initial nematic configuration, which was allowed to freely evolve until a configuration with
an order parameter value inside the desired range was obtained. From there on, trial moves
that try to change the phase configuration to a new one with an order parameter outside the
selected order parameter range were rejected. Fig. 3.12 shows the results for relative Henry
coefficients as a function of order parameter for a linear hard-sphere 7-mer and 15-mer
chain fluid at a constant packing fraction in-between the isotropic-nematic phase transition.
From this figure, it can be clearly identified that relative Henry coefficients are independent
of the nematic ordering, being a constant for a determined value of the packing fraction.
This result indicates that at constant packing fraction the orientation of molecules does not
influence the free volume between a hard sphere and a linear hard-sphere chain molecule.
Although in the low packing fraction limit this result is expected due to a negligible inter-
action between fluid molecules, at finite values of the packing fraction this behavior could
not be known a priori due to multi-body interactions in the fluid.

3.6 Conclusions
An extended description of the liquid crystal phase behavior of linear hard-sphere 7-mer to
16-mer, 18-mer and 20-mer chain fluids was obtained from constant pressure Monte Carlo
simulations. For these systems, an accurate description of the isotropic to nematic phase
transition was obtained, showing a decrease in the reduced transition pressure with increas-
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Figure 3.12: Relative Henry coefficients as a function of order parameter S 2 for the solubility of hard spheres
in a linear hard-sphere 7-mer chain fluid at constant packing fraction η = 0.295 (�) and in a linear hard-sphere
15-mer chain fluid at constant packing fraction η = 0.147 (4).

ing chain length and a maximum in the isotropic to nematic packing fraction change for the
linear 15-mer and 16-mer. The liquid crystal phase behavior of the partially-flexible hard-
sphere 15-14-mer, 15-13-mer, 15-12-mer, 14-13-mer, 14-12-mer, 14-10-mer, 10-8-mer, 8-
7-mer and 8-6-mer chain fluids was also determined. A nematic phase was only observed
for the partially-flexible 15-14-mer, 15-13-mer, 15-12-mer, 14-13-mer, 14-12-mer chain
fluids. Other partially-flexible fluids experienced a direct transition from the isotropic to the
smectic state. Flexibility increases the transition pressures reducing the isotropic-nematic
packing fraction difference. The infinite dilution solubility of hard spheres in linear and
partially-flexible hard-sphere chain fluids was also studied. A linear relationship between
relative Henry coefficients and packing fraction was observed for all linear hard-sphere
chain fluids. Moreover, this linearity seems to be independent of chain length for the linear
10-mer and longer linear chains. The influence of molecular ordering on solubility was also
investigated, showing that at constant packing fraction the nematic ordering does not influ-
ence the solubility of hard spheres in liquid crystal fluids. Results for the solubility of hard
spheres in the nematic forming partially-flexible hard-sphere 15-14-mer, 15-13-mer, 15-12-
mer, 14-13-mer and 14-12-mer chain fluids showed that in the isotropic-nematic transition
region neither ordering or flexibility affected the linear behavior between relative Henry
coefficients and packing fraction obtained from the linear fluids. However, it was observed
that at higher packing fractions the solubility of hard spheres seems to increase for the low
flexibilities of the nematic forming partially-flexible hard-sphere chain fluids and decrease
for a freely-jointed hard-sphere chain fluid.





4
Isotropic-nematic phase equilibrium of hard-sphere chain
fluids

The isotropic-nematic phase equilibria of single component linear hard-sphere chain fluids
and binary mixtures of them are obtained from Monte Carlo simulations. In addition, the
infinite dilution solubility of hard spheres in the coexisting isotropic and nematic phases is
determined from the residual chemical potential of hard spheres in the fluid. Phase equi-
libria calculations are performed in an expanded formulation of the Gibbs ensemble. This
method allows to carry out an extensive simulation study on the phase equilibria of pure
linear hard-sphere 7-mer to 20-mer chain fluids and binary mixtures of an 8-mer with a
14-mer, a 16-mer and a 19-mer. The effect of molecular flexibility on the isotropic-nematic
phase equilibria is assessed on the 8-mer+19-mer mixture by allowing one and two freely-
jointed segments at the end of the longest molecule. Results for binary mixtures are com-
pared with the theoretical predictions of van Westen et al. Ref. 78. Excellent agreement
between theory and simulations is observed. The infinite dilution solubility of hard spheres
in the hard-sphere fluids is obtained by the Widom test-particle insertion method. As in the
previous chapter on single-component hard-sphere chains, a linear relationship between
relative infinite dilution solubility (relative to that of hard spheres in a hard-sphere fluid)
and packing fraction is found. It is observed that the solubility difference between coex-
isting isotropic and nematic phases is enhanced in binary mixtures compared to the pure
components.

This chapter is based on:
B. Oyarzún, T. van Westen, and T.J.H. Vlugt J. Chem. Phys. 142 (2015) 064903 [164].
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4.1 Introduction
Liquid crystal phases have been observed in molecular simulation studies of anisotropic
hard molecules with diverse shapes [33–45]. From all possible anisotropic systems, tan-
gent hard-sphere chains [46, 85, 88, 89] are the most simple segment-based model of liquid
crystals. Segment-based molecules are relevant in the development of physically-based per-
turbation theories describing the behavior of liquid crystals [78, 83]. Linear and partially-
flexible hard-sphere chains formed by a linear part and a freely-jointed part are used for
studying the properties of liquid crystal fluids. Partial flexibility is introduced to reproduce
the experimental observation that a certain degree of flexibility is required for the stability
of liquid crystal phases over the crystal state [2, 165]. Flexibility is introduced to study
its effect on the isotropic-nematic phase transition. Molecular simulation results for these
systems are scarce, principally due to the difficulties on performing phase equilibria calcu-
lations of non-simple fluids with classical simulation techniques. In this work, an extended
molecular simulation study on the isotropic-nematic phase equilibria of hard-sphere chain
fluids is carried out. Furthermore, simulation results are compared with the theoretical
predictions obtained from a recently developed equation of state [77, 78, 83].

In this chapter, simulation results for the isotropic-nematic phase transition of single-
component and binary mixtures of hard-sphere chain fluids are presented. Details of the
employed simulation technique are described in section 4.2. Simulation results for the
isotropic-nematic phase equilibria of single-component linear hard-sphere chain fluids are
reported in section 4.3. Simulation results for binary mixtures of linear hard-sphere chain
fluids are presented in section 4.4. The effect of flexibility is studied in binary mixtures of
linear and partially-flexible hard-sphere chain fluids is show in section 4.5. Results for the
infinite dilution solubility of hard spheres in all studied systems are reported in section 4.6.

4.2 Simulation details
The isotropic-nematic phase equilibrium of linear and partially-flexible hard-sphere chain
fluids was obtained by Monte Carlo simulations in an expanded version of the Gibbs ensem-
ble [125]. The method is based on the gradual exchange of molecules by the coordinated
coupling / decoupling of segments of a fractional molecule between phases as described in
section 2.4. Constant volume NVT expanded Gibbs ensemble simulations are used for de-
termining the phase equilibria of pure components, while constant pressure NPT expanded
Gibbs ensemble simulations are used for the calculation of the phase equilibria of binary
mixtures.

During a simulation the following trial moves are attempted: displacements, rotations,
reptation, configurational-bias partial regrowths (only for partially-flexible molecules)[80],
volume changes, identity exchanges [67, 166] (only for mixtures of linear chains), and cou-
pling parameter changes. They are selected randomly but with a fixed probability propor-
tional to the ratio 100:100:10:100:1:100:1000 respectively. Volume changes are performed
isotropically in the logarithm of the volume (for simulations at constant pressure, volume
changes are performed in one subsystem at a time). Simulation boxes for a starting iso-
tropic configuration are defined cubic. A rectangular box with edge lengths with a ratio of
1:1.1:1.2 are used for initial nematic configurations. Periodic boundary conditions are used
in all simulation boxes. Maximum displacement, rotation, volume, and coupling param-
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eter changes are adjusted for a maximum acceptance ratio of 20%. A Monte Carlo cycle
is defined by a number of trial moves equal to the number of molecules N in the system,
typically in the order of 1×103. The number of Monte Carlo cycles required were typically
5×106 for equilibration and 2×106 cycles for production. Isotropic and nematic phases are
identified by the order parameter S 2 defined by Eq 2.3. A value of S 2 close to 0 identifies
the isotropic phase and a value close to 1 is related to the nematic phase. Configurations are
sampled periodically independent of the fractional state. For the finite size systems studied
here, it is observed that results obtained from end-state sampling do not differ significantly
from those obtained from sampling regardless the fractional state. Therefore, all thermo-
dynamic properties are calculated based on the number of whole molecules present in the
system independent of the fractional state.

Simulations start with initial isotropic and nematic configurations. Initial configurations
are obtained from independent constant pressure NPT ensemble simulations that approx-
imate the volume of each phase at equilibrium. In the case of pure components, initial
estimations of the packing fractions are taken from the previous section on pure linear
hard-sphere chain fluids, section 3.3. For the case of mixtures, initial packing fractions,
mole fractions, and equilibrium pressures are approximated from the theoretical work of
van Westen et al. [83]. The initial size of the simulation boxes is dependent on chain
length. The initial edge lengths of both simulation boxes are defined with a value that has
to be larger than the length of the longest molecule in the system. Small systems sizes
result in simulation boxes with at least one edge length close to the length of the molecule,
inducing the formation of smectic phases due to restricted positional order perpendicular to
the molecular length. An initial cubic box (isotropic phase) with a size of 25 was sufficient
for all studied systems. For the rectangular box (nematic phase), an initial edge length of
25 (the shorter edge) for systems with molecules shorter than 17 beads, and a length of 27
for longer molecules was observed to be sufficient.

The solubility of gases is expressed in terms of dimensionless Henry coefficients Eq.
2.47. The infinite dilution residual chemical potential is obtained by the Widom test-particle
insertion method as described in section 2.5.2. Equilibrium configurations are sampled
every 1×103 Monte Carlo cycles and a total of 100 test-particle insertions are attempted for
each sample. To identify the effect of connectivity and molecular anisotropy on solubility,
relative Henry coefficients are used as defined by Eq. 2.48. The solubility of hard spheres in
a hard-sphere chain fluid H0 are calculated from the Boublik-Mansoori-Carnahan-Starling-
Leland equation of state [159–161].

4.3 Linear hard-sphere chain molecules
The isotropic and nematic phase behavior of linear hard-sphere chain fluids of different
lengths was reported in the previous section 3.3. There, the isotropic and nematic packing
fractions at equilibrium were approximated from one-phase constant pressure NPT ensem-
ble simulations. The isotropic and nematic packing fractions at equilibrium are directly
calculated from two-phase simulations. In Table 4.1 the isotropic and nematic packing
fractions at equilibrium for linear hard-sphere 7-mer to 20-mer chain fluids. Packing frac-
tion is defined as η = Nmvm/V , where Nm is the total number of segments, vm = πσ3/6
the volume of a single segment, and V the volume of the simulation box. It can be noticed
that a maximum in the packing fraction difference exists for the 14-mer. However, due to
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Table 4.1: Packing fraction of the isotropic ηI and nematic phase ηN , and packing fraction differences ∆ηN−I

at equilibrium for linear 7-mer to 20-mer chain molecules. Mean values and standard deviations are obtained
from at least 10 independent simulation runs.

m ηI ηN ∆ηN−I

7 0.2945 ± 0.0014 0.3033 ± 0.0010 0.0088 ± 0.0017
8 0.2548 ± 0.0011 0.2650 ± 0.0010 0.0102 ± 0.0015
9 0.2274 ± 0.0016 0.2391 ± 0.0009 0.0118 ± 0.0018
10 0.2066 ± 0.0009 0.2228 ± 0.0007 0.0162 ± 0.0011
11 0.1859 ± 0.0010 0.2000 ± 0.0008 0.0141 ± 0.0013
12 0.1722 ± 0.0008 0.1903 ± 0.0006 0.0181 ± 0.0010
13 0.1636 ± 0.0007 0.1859 ± 0.0006 0.0223 ± 0.0009
14 0.1530 ± 0.0009 0.1766 ± 0.0009 0.0236 ± 0.0013
15 0.1426 ± 0.0011 0.1657 ± 0.0011 0.0231 ± 0.0016
16 0.1344 ± 0.0008 0.1574 ± 0.0013 0.0230 ± 0.0015
17 0.1268 ± 0.0005 0.1497 ± 0.0009 0.0230 ± 0.0010
18 0.1192 ± 0.0004 0.1401 ± 0.0006 0.0209 ± 0.0007
19 0.1121 ± 0.0005 0.1311 ± 0.0008 0.0190 ± 0.0009
20 0.1072 ± 0.0008 0.1229 ± 0.0010 0.0157 ± 0.0013

numerical uncertainties, this maximum can be located between the 13-mer and the 17-mer.
In section 3.3, this maximum was identified for a 15-mer and a 16-mer with a value of
∆ηN−I = 0.0220. A large difference in the packing fraction between the isotropic and ne-
matic phase is relevant for the solubility difference of hard spheres between both phases, as
shown below in section 4.6.

4.4 Binary mixtures of linear hard-sphere chain fluids
In this section, results for the isotropic-nematic phase equilibria of binary mixtures of linear
hard-sphere chains are presented. Tables 4.2 to 4.4 show the simulation results for binary
mixtures of linear hard-sphere chains. Figs. 4.1, 4.2 and 4.3 show the reduced pressure
P∗ and packing fraction η vs. mole fraction of the largest component x2, for mixtures
of an 8-mer with a 14-mer, a 16-mer and a 19-mer, respectively. The plus sign is used
to refer to a mixture, e.g. 8-mer+14-mer indicates a binary mixture of an 8-mer with a
14-mer. Reduced pressures are defined, relative to the molecular volume of the shortest
component (in all cases the 8-mer), by P∗=P v8−mer/kBT , where P is the pressure of the
system, and v8−mer is the molecular volume of an 8-mer. Simulation results are compared to
theoretical predictions obtained from a Vega-Lago rescaled Onsager theory by van Westen
et al. [78]. For the larger part of the phase diagrams, excellent agreement between theory
and simulations is obtained, however, for systems very rich in the short component (x2 ≈ 0),
a small overestimation of pressure by the theory is observed. The offset is a consequence
of approximations of higher virial coefficients (which are treated by a Vega-Lago rescaling
procedure). For smaller chain lengths, the phase transition is shifted to higher packing
fractions. Therefore, any errors introduced by the approximate treatment of the higher
virial coefficients become apparent, leading to somewhat larger deviations between theory
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Figure 4.1: Isotropic-nematic phase equilibria for the binary mixture 8-mer+14-mer. (a) reduced pressure
P∗ vs. mole fraction of the largest component x2, (b) packing fraction η vs. mole fraction of the largest
component x2. Black (•) and empty (◦) dots are simulation results for the isotropic and nematic phase
respectively. Broken lines are constant pressure tie-lines. Solid lines are theoretical results obtained from a
rescaled Onsager theory by van Westen et al. [78].

and simulations [78, 83]. The only available simulation data for the phase equilibria of
mixtures of linear hard-sphere chains is that of Escobedo and de Pablo [94]. In Fig. 4.2, the
simulation results of Escobedo and de Pablo are compared with the present ones and with
the theoretical predictions of van Westen et al. [78]. All results are in good agreement with
each other, validating previous results and the simulation technique presented here.

For all systems studied a phase split into an isotropic and a nematic phase is observed.
This phase split is accompanied by a fractionation of the mixture into an isotropic phase
richer in the short component and a nematic phase richer in the long component. Phase
split and fractionation occurs as a consequence of maximizing the total entropy of the sys-
tem, balancing orientational, translational, and mixing entropy. In hard systems this entropy
maximum is associated to a maximization of the free volume or equivalently to a minimiza-
tion of the excluded volume [167, 168]. For a mixture with a specific concentration, at pres-
sures below the isotropic-nematic region, orientational and mixing entropy dominate and a
one-phase isotropic system is observed. At higher pressures the translational entropy of the
isotropic phase is reduced, and a further gain in total entropy is reached by phase split of the
system into a nematic and an isotropic phase. The loss in orientational entropy due to the
phase split and the loss of mixing entropy by the accompanying fractionation are more than
compensated by the gain in translational entropy. Phase split from an isotropic to a nematic
phase increases the translational entropy as a consequence of a reduced excluded volume
in the nematic phase when chains lay fairly parallel [20, 169, 170]. Fractionation occurs
due to a larger tendency to align of the long chains compared to the short chains [171, 172].
This tendency is a consequence of a larger excluded volume difference between the isotro-
pic and nematic phase for the long chains than for the short chains [158]. This excluded
volume difference increases with chain length, broadening the fractionation of the system
into a nematic phase richer in long chains and an isotropic phase more depleted of them.
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Figure 4.2: Isotropic-nematic phase equilibria for the binary mixture 8-mer+16-mer. (a) reduced pressure P∗

vs. mole fraction of the largest component x2, (b) packing fraction η vs. mole fraction of the largest component
x2. Symbols and lines as in Fig. 4.1. Crosses (×) are simulation results from Escobedo and de Pablo [94].

Increasing fractionation with the difference in molecular length was reported in previous
studies [78, 173, 174] and is also observed in the results shown here.

Figs. 4.1 to 4.3 (a) show a broader isotropic-nematic region, in binary mixtures, as the
length of the long chain (14-mer,16-mer and 19-mer) increases for a constant length of the
short chain (8-mer). The behavior of packing fraction with mole fraction of the largest
component is shown in Figs. 4.1 to 4.3 (b). It can be observed that the packing fraction of
the isotropic phase at equilibrium decreases rapidly with mole fraction. This decrement is
caused by the alignment potential that the long chains introduces in the fluid, facilitating the
formation of the nematic phase at lower equilibrium pressures. In the nematic phase, at low
concentrations of the long chains, the packing fraction remains fairly constant (Fig. 4.1)
or increases with mole fraction (Figs. 4.2 and 4.3), although the coexistence pressure de-
creases. This behavior is a consequence of the “induced order” [78] introduced by the
addition of a small amount of the long component to a fluid principally composed by short
molecules. The long chain induce a larger pair excluded volume difference between the
nematic and isotropic phase compared to the short chain [158]. This effect leads to a dra-
matic increase in the orientational order of the system and an increase in the density of the
nematic phase. These two competing effects (reduced pressure vs. induced order) lead to
the observed maximum in the packing fraction of the nematic phase in binary mixtures.

In the theoretical study of van Westen et al. [78], a nematic-nematic region was detected
for binary mixtures at high reduced pressures. Specifically, it was shown that for the mix-
ture 8-mer+19-mer a nematic-nematic region follows the isotropic-nematic equilibria after
a triple point at a reduced pressure of 2.234 [78]. Here, phase equilibria simulations for
the 8-mer+19-mer mixture are performed at high pressures to try to disclose the existence
of the nematic-nematic region. Simulations at a reduced pressure of 2.4 show phase equi-
librium between a nematic phase, concentrated in the short chains, and a smectic-A phase,
concentrated in the long chains. The smectic phase is formed by a layer of short chain
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Figure 4.3: Isotropic-nematic phase equilibria for the binary mixture 8-mer+19-mer. (a) reduced pressure P∗

vs. mole fraction of the largest component x2, (b) packing fraction η vs. mole fraction of the largest component
x2. Symbols and lines as in Fig. 4.1.

molecules without clear positional order between two layers of long chain molecules with
defined positional order. At a higher pressure of 3.0, the nematic phase is turned into a phase
where long chains are locally clustered with a defined orientation and position surrounded
by short chains oriented towards the nematic director but with no clear positional order.
At this pressure, the smectic-A phase is clearly defined arranging a layer of short chains,
formed by two consecutive layers of short chains, between two layers of long chains. These
results are considered as preliminary since the systems and corresponding box sizes are
too small to accommodate smectic phases without any influence of the periodic boundary
conditions on the positional order of the system. Nevertheless, the theoretical existence of
nematic and smectic phases in equilibrium at high pressures has been reported for the case
of hard-spherocylinders [175–177]. And, although, the theoretical results of van Westen et
al. do not consider the formation of smectic phases, Cinacchi et al. [178] showed that
a metastable nematic-nematic region can precede the formation of stable nematic-smectic
equilibria.

4.5 Binary mixtures of linear and partially-flexible hard-
sphere chain fluids

Partially-flexible molecules are introduced to study the effect of molecular flexibility on the
isotropic-nematic phase equilibria. A partially-flexible molecule is defined as a hard-sphere
chain molecule with a linear part and a freely-jointed part. The effect of flexibility is inves-
tigated in two binary mixtures: a linear 8-mer with a 19-18-mer, and a linear 8-mer with a
19-17-mer. Figs. 4.4 and 4.5 show the results for the isotropic-nematic phase equilibria in
these systems. Comparing these results with the fully linear case, Fig. 4.3, it is observed
that flexibility has the effect of, first, increasing the pressure at which the two-phase re-
gion starts to appear, and second, reducing the degree of fractionation between coexisting
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Figure 4.4: Isotropic-nematic phase equilibria for the binary mixture of a linear 8-mer with the partially-flexible
19-18-mer. (a) reduced pressure P∗ vs. mole fraction of the largest component x2, (b) packing fraction η vs.
mole fraction of the largest component x2. Symbols and lines as in Fig. 4.1.
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Figure 4.5: Isotropic-nematic phase equilibria for the binary mixture of a linear 8-mer with the partially-flexible
19-17-mer. (a) reduced pressure P∗ vs. mole fraction of the largest component x2, (b) packing fraction η vs.
mole fraction of the largest component x2. Symbols and lines as in Fig. 4.1.

phases. Flexibility decreases the anisotropy of the chain, diminishing the gain in transla-
tional entropy that can be obtained from a phase split into a nematic phase. Therefore, a
closer packing is needed for the nematic phase to start to form, increasing the pressure at
which the isotropic-nematic equilibria take place. The reduced fractionation is explained
by a lower excluded volume difference between the isotropic and the nematic phase (lower
tendency to align) for the partially-flexible chain compared to the linear case, as shown for
the pair excluded volume of two partially-flexible molecules by van Westen et al. [157].
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Figure 4.6: Relative infinite dilution solubility Hk/H0
k vs. packing fraction η for hard spheres in binary mixtures

of linear and partially-flexible hard-sphere chains in the isotropic and nematic phase at equilibrium. (+) 8-
mer+14-mer, (×) 8-mer+16-mer, (�) 8-mer+19-mer, (N) 8-mer+19-18-mer, and (◦) 8-mer+19-17-mer. The
solid line is a linear regression calculated from all simulation data.

4.6 Solubility of hard spheres in hard-sphere chain fluids
In the previous chapter, it was showed that a linear relationship exists between relative in-
finite dilution solubility, defined by Eq. 2.48, with packing fraction. It was found that this
relationship is practically independent of chain length for the linear hard-sphere 10-mer
chain fluid and longer chains fluids. Moreover, it was demonstrated that this relationship
does not depend on the liquid crystal state of the fluid, either isotropic or nematic, being
only a function of packing fraction. In principle, the independence of relative solubility on
chain length for long linear chains (longer than 10 segments) can be explained from pair
excluded volume interactions. van Westen et al. [157] derived an expression for the dimen-
sionless pair excluded volume between two linear chains of different length V∗ex = Vex/Vm̄,
where Vex is the pair excluded volume and Vm̄ is the volume of a chain of m̄ hard spheres.
Here m̄ = (m1 + m2) /2, with m1 and m2 as the lengths of the two linear chains. If one of the
chains is considered just as a hard sphere, that expression reduces to V∗ex = (11m̄ − 3) /m̄. It
can be observed that as m̄ increases the value of the excluded volume approaches a limiting
value. For the linear hard-sphere 10-mer chain fluid and longer chain fluids, changes in the
relative excluded volume are progressively smaller, explaining in principle the unnoticeable
effect of chain length on solubility reported in the previous chapter. It is remarkable that
this argument taken from pair molecular interactions also holds for high packing fractions
where multi-body interactions start to be relevant.

Fig. 4.6 shows the relative infinite dilution solubility of hard spheres in binary mixtures
of linear, and linear with partially-flexible hard-sphere chains vs. packing fraction. It can
be observed that, as for the pure component case (Ref. 46), a linear relationship of relative
solubility with packing fraction independent of the mixture type is also obtained. Fig 4.6
includes a linear regression for all reported data. The slope and intercept of this regression
are respectively -2.674±0.086 and 1.065±0.015, which are equivalent to the ones reported
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Figure 4.7: Dimensionless Henry’s Law constants ln H∗k vs. mole fraction of the longest component x2 for
the binary mixture 8-mer+16-mer in the isotropic and nematic phase at equilibrium. Symbols and lines as in
Fig. 4.1.

in section 3.5. This result is coherent with the results of solubility in pure components,
where for relatively long enough chains solubility seems to be independent of chain length.
It has to be noticed that similarly to the pure component case, this linear relationship would
eventually not be independent on chain length if one of the components forming the mixture
becomes very small.

Finally, Fig. 4.7 shows dimensionless Henry coefficients, defined by Eq. 2.47, vs. mole
fraction of long chains for the solubility of hard spheres in a mixture of linear chains, 8-
mer+16-mer, at the isotropic-nematic coexistence. It can be observed that the solubility of
hard spheres in the isotropic phase increases with mole fraction (indicated by a decrease
in Henry’s Law constants), showing a rapid increment at mole fractions close to the pure
short chain fluid. The solubility in the nematic phase is fairly decreased at low values of the
mole fraction showing a minimum after which it increases monotonically. This behavior
is analogous to the changes in packing fraction observed in Fig. 4.2. A maximum in the
solubility difference between the isotropic and the nematic phase is detected at a mole
fraction of around 0.5, corresponding to the maximum in the packing fraction difference
between both phases observed at the same concentration.
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4.7 Conclusions
The isotropic-nematic phase equilibria of pure components and binary mixtures of linear
and partially-flexible hard-sphere chains were directly calculated from expanded Gibbs en-
semble simulations. For pure components, the packing fractions of the isotropic and ne-
matic phases at equilibrium were obtained for linear hard-sphere 7-mer to 20-mer chain
fluids. These results show a maximum in the packing fraction difference between both
phases for a chain length between the 13-mer and the 17-mer. For binary mixtures, the
packing fraction and mole fraction of the coexisting isotropic and nematic phases were
obtained for mixtures of a linear 8-mer with a 14-, 16- and 19-mer. Phase split, between
an isotropic and a nematic phase, and fractionation between an isotropic phase richer in
the short component and a nematic phase richer in the large component, is observed for
all binary mixtures. The degree of fractionation between both phases increases with the
chain length of the largest component for a constant length of the short chain. The effect
of molecular flexibility was studied in binary mixtures of an 8-mer with a partially-flexible
19-18-mer, and a 19-17-mer. Flexibility increases the isotropic-nematic equilibrium pres-
sure and reduces the degree of fractionation between both phases. The relative infinite
dilution solubility of hard spheres in the isotropic and nematic phases at equilibrium was
obtained for all studied binary mixtures. A linear relationship between relative solubility
and packing fraction is found. This linear relationship is equivalent to the one obtained
in section 3.5. Binary mixtures show a larger packing fraction difference and, therefore, a
larger hard sphere solubility difference between the isotropic and the nematic phase than
the constituent pure components. This result shows that mixtures of liquid crystals have the
potential of largely increasing the solubility difference of gases between the isotropic and
the nematic phase. A large solubility difference is relevant for the use of liquid crystals as
solvents for gas separation applications, as shown in studies that propose liquid crystals as
novel solvents for CO2 capture processes [6, 7].



5
Isotropic-nematic phase equilibrium of Lennard-Jones chain
fluids

The liquid crystal phase equilibria of Lennard-Jones chain fluids and the solubility of a
Lennard-Jones gas in the coexisting phases are calculated from Monte Carlo simulations.
Direct phase equilibria calculations are performed using an expanded formulation of the
Gibbs ensemble. Monomer densities, order parameters, and equilibrium pressures are re-
ported for the coexisting isotropic and nematic phases of: (1) linear Lennard-Jones chains,
(2) a partially-flexible Lennard-Jones chain, and (3) a binary mixture of linear Lennard-
Jones chains. The effect of chain length is determined by calculating the isotropic-nematic
coexistence of linear Lennard-Jones 8-mer, 10-mer, and 12-mer chain fluids. The effect of
molecular flexibility on the isotropic-nematic equilibrium is studied in a Lennard-Jones 10-
mer chain fluid with one freely-jointed segment at the end of the chain. Isotropic-nematic
phase split and fractionation are observed for a binary mixture of linear 7-mer and 12-mer
chains. Simulation results are compared with theoretical predictions as obtained from the
analytical equation of state from the work of van Westen et al. [79]. Excellent agreement be-
tween theory and simulations is observed. The solubility of a monomer Lennard-Jones gas
in the coexisting isotropic and nematic phases is estimated using the Widom test-particle
insertion method. A linear relationship between solubility difference and density difference
at the isotropic-nematic phase transition is observed. Furthermore, it is shown that gas
solubility is independent of the nematic ordering of the fluid, at constant temperature and
density conditions.

This chapter is based on:
B. Oyarzún, T. van Westen, and T.J.H. Vlugt accepted in Molecular Physics [179].
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5.1 Introduction
In general, a certain degree of molecular anisotropy is required for the appearance of liquid
crystal phases [1, 2]. Early theoretical work, i.e. the work of Onsager [20], Born [180], and
Maier and Saupe [21–23], respectively, has shown that both repulsive and attractive inter-
actions between molecules can drive the transition to a liquid crystal phase. Nowadays, it
is well understood that anisotropic repulsive molecular interactions are a necessary condi-
tion for the appearance of ordered phases [29, 31, 32], while both repulsive and attractive
interactions determine the rich phase behaviour observed in liquid crystal fluids [1, 2].

Simulation and theoretical studies of complex fluids are often based on a coarse-grained
description of molecules. Coarse-grained models are used to reduce the information of
molecular structure into main molecular properties, summarized by a small set of model
parameters. Simulations based on coarse-grained models can access longer time and length
scales than their atomistic counterparts, allowing a bulk description of fluids. Coarse-
grained models are commonly used to represent a simplified picture of large molecules
such as biomolecules [68, 181–184], polymers [110, 185–189], or liquid crystals [47, 48,
60, 62, 190, 191]. Moreover, simulation results obtained from coarse-grained models can
be directly compared with theoretical predictions that are based on a well-defined Hamilto-
nian, such as the family of perturbation theories developed from the statistical association
fluid theory (SAFT) [69–76]. Traditionally, this relation between fluid theories and molec-
ular simulations was primarily used for the development of improved theories. More recent
developments show that this is not a one-way street, as accurate SAFT-type theories also
provide a very efficient means to derive coarse-grained force fields for use in molecular
simulations [187, 189, 192–197] (see Ref. 188 for a recent review).

Typically, coarse-grained models use simple expressions for the interaction energies.
Pair-interaction potentials as hard-sphere [46, 85, 88–90, 154, 164], hard-ellipsoid [35, 37,
38], hard-spherocylinders [39, 43, 44], and the Gay-Berne potential [51–55, 198] are pop-
ular for studying liquid crystals. Other more elaborated interaction models have been pro-
posed, e.g. hard-spherocylinder with an attractive square-well potential [57–60], hard-disc
with an anisotropic square-well attractive potential [62], hard-spherocylinder with an attrac-
tive Lennard-Jones potential [61], anisotropic soft-core spherocylinder potential [63, 199],
and copolymers [64–66].

In this chapter, the isotropic-nematic phase behavior of linear and partially-flexible
Lennard-Jones chain fluids is studied. Apart from our recent work [79, 179], there is
no other study showing simulation results for the isotropic-nematic phase transition of
Lennard-Jones chains. Galindo et al. [95] studied the phase behavior of linear Lennard-
Jones chains of 3 and 5 segments; however, in that study, no liquid crystalline phases were
observed due to the short length of the chains. In this sense, the importance of this chapter is
twofold, first to determine the effect of main molecular characteristics (such as chain length,
flexibility, attractive interactions and composition of mixtures) on the isotropic-nematic be-
havior of long Lennard-Jones chains, and second to validate the analytical equation of state
presented by van Westen et al. [79] for Lennard-Jones chain fluids with variable degree of
flexibility.

The equation of state of van Westen et al. was developed using a perturbation the-
ory based on a reference fluid of hard-chain molecules. An important assumption in the
development of the equation of state was that of orientation-independent attractive interac-
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tions. As shown in Ref. 79, this assumption leads to a surprisingly good description of the
isotropic-nematic phase behaviour of a linear Lennard-Jones 10-mer fluid. Here, a more
elaborate evaluation of the equation of state is obtained by comparing it with simulation
data, allowing further analysis on the effect of molecular orientation on attractive disper-
sion interactions.

An important property of liquid crystals, relevant for technological applications, is the
solubility of gases in them. Recently, liquid crystals have been proposed as new solvents
for CO2 capture [6–10]. The principle behind this application is described in section 1.2 of
this thesis. In this chapter, molecular simulations are used to analyze the effect of density,
temperature, and composition of mixtures, on the solubility difference of gases between the
coexisting isotropic and nematic phases.

Section 5.2 presents the simulation details for the phase equilibrium calculation of
Lennard-Jones chains together with a brief description of the equation of state of van Westen
et al.. Simulation results for the isotropic-nematic phase equilibria of linear Lennard-Jones
chain fluids are presented in section 5.3. The effect of flexibility on the equilibrium proper-
ties is studied in section 5.4 for a partially-flexible Lennard-Jones chain fluid. The isotropic-
nematic phase equilibria of a binary mixture of linear Lennard-Jones chains is shown in sec-
tion 5.5. Solubility results for a Lennard-Jones gas in the coexisting isotropic and nematic
phases are presented in section 5.6. Results are summarized in section 5.7.

5.2 Simulation details and theory
The isotropic-nematic phase equilibria of linear and partially-flexible Lennard-Jones chains
is studied in this chapter. A chain molecule is defined as a molecule made of spherical seg-
ments connected by a rigid segment-to-segment bond length equal to the segment diameter
σ. The pair potential between two segments i and j separated by a distance ri j is defined
by the Lennard-Jones potential, Eq. 2.2. The depth of the potential well ε and the segment
diameter σ are constant and equal to 1 for all molecules and systems considered in this
work. The pressure of the system is calculated by the molecular virial for chain molecules
in a system with periodic boundaries as described by Theodorou et al. [200].

All magnitudes reported here are dimensionless with ε as the basis for energy and σ
as the basis for length. Some of these magnitudes are: reduced temperature T ∗=kBT/ε,
where T is the temperature and kB is the Boltzmann constant; reduced monomer density
ρ∗m= mNσ3/V , where N is the number of molecules; and reduced pressure P∗=Pσ3/kBT ,
where P is the pressure of the system. In a binary mixture, the reduced monomer density
is defined as ρ∗m= (m1x1 + m2x2)Nσ3/V , where x1 and x2 are the mole fraction of the short
and long chain respectively. Nematic phases are characterized by the order parameter S 2,
defined as in Eq. 2.3.

Phase equilibria calculations are performed in an expanded version of the Gibbs en-
semble, see section 2.4 and Refs. 120, 121, 164. Constant volume simulations are used for
the calculation of single component systems, while constant pressure simulations are used
in the case of mixtures. At every Monte Carlo step, one of the following trial moves is
attempted: displacement, rotation, reptation, configurational-bias partial regrowth (only for
partially-flexible molecules)[80], volume change, identity exchanges[166] (only for mix-
tures of linear chains), and coupling parameter change. Trial moves are selected randomly
with a fixed probability proportional to the ratio 100:100:10:100:1:100:1000 respectively.
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Volume changes are performed isotropically in the logarithm of the volume. Initial isotro-
pic configurations are placed in a cubic box, while initial nematic configurations are placed
in a rectangular box with an edge length ratio of 1:1.1:1.2. The maximum displacement,
rotation, volume, and coupling parameter changes are adjusted for a maximum acceptance
ratio of 20%. Periodic boundary conditions are used in all systems. The contribution of the
fractional molecules to the tail corrections is neglected as this energy contribution is very
small. A Monte Carlo cycle consists of a number of trial moves equal to the total number
of molecules in the system (∼1×103). Equilibration requires typically 3×106 cycles and
averages were collected in 2×106 production cycles.

Infinity dilution solubility of gases is expressed as a dimensionless Henry coefficients
defined by Eq. 2.42. Dimensionless Henry coefficients are related to the infinite dilution
residual chemical potential of a gas in a solvent [146], which is calculated in constant
pressure Monte Carlo simulations using the Widom test-particle insertion method as defined
by Eq. 2.57 [148, 152]. The infinite dilution solubility of a single-segment Lennard-Jones
gas molecule is measured in both the coexisting isotropic and nematic phase at equilibrium.
Equilibrium configurations are sampled every 1×103 Monte Carlo cycles in which a total
of 100 test-particle insertions are attempted.

The simulation results presented in this chapter are extensively compared to a recently
developed analytical equation of state by van Westen et al. [79]. The equation of state was
developed from a perturbation theory based on a hard-chain reference fluid. The Helmholtz
energy as obtained from the equation of state can thus be written as a sum of different
contributions according to,

A
NkBT

=
Aid

NkBT
+

Ahc

NkBT
+

Adisp

NkBT
(5.1)

Here, Aid is an ideal gas contribution, Ahc is a Helmholtz energy due to chain formation,
and Adisp is a contribution due to attractive dispersion interactions. The hard-chain term was
obtained from a rescaled Onsager theory, based on the Onsager trial function for describing
the orientational distribution function of the molecules. The dispersion term was developed
using a second order Barker-Henderson theory [201, 202], based on the radial distribution
function of hard-chain molecules in the isotropic phase. The dispersion contribution is
therefore independent on the orientation of the molecules. For details on the equations for
calculating the different contributions, the reader is referred to the work of van Westen et
al. [79]. Details on the development of the different contributions to the equation of state
can be found elsewhere [77, 78, 83, 84, 157].

5.3 Linear Lennard-Jones chains
The liquid crystal phase equilibria of linear Lennard-Jones 8-, 10- and 12-mers were cal-
culated from constant volume expanded Gibbs ensemble simulations. Initial estimates of
densities in the coexisting isotropic and nematic phases were obtained from the equation
of state of van Westen et al. [79]. Reduced monomer densities, order parameters, and re-
duced pressures at the isotropic-nematic coexistence are shown in Table 5.1 as a function of
reduced temperature. Temperature-density phase diagrams are shown in Fig. 5.1 together
with theoretical results obtained from the equation of state. It can be observed that for
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Figure 5.1: Isotropic-nematic phase equilibria of linear Lennard-Jones chain fluids: (a) 8-mer, (b) 10-mer, and
(c) 12-mer. Reduced temperature T ∗ vs. reduced monomer density ρ∗m. Filled (•) and open (◦) symbols are
simulation results for the isotropic and nematic phase respectively. Solid lines are theoretical results obtained
from the analytical equation of state of van Westen et al. [79].

longer chains, the isotropic-nematic equilibrium is shifted towards lower densities while
the density difference between both coexisting phases is increased. Lower equilibrium den-
sities and larger density differences are a consequence of larger excluded volume differences
between the isotropic and the nematic phase as the chain length increases [158]. For longer
chains, the pair-excluded volume is more anisotropic than for shorter chains, resulting in a
larger driving force for the isotropic-nematic transition.

As it is shown in Fig. 5.1, the theoretical results as obtained from the perturbation theory
of van Westen et al. provide an overall excellent description of the isotropic-nematic phase
diagram. Nevertheless, some minor deviations can be observed. The small but systematic
overestimation of nematic equilibrium densities is expected, since densities in the nematic
phase are already overestimated in the description of the hard-chain reference fluid [83].
These small overestimations are a result of the approximations made for describing higher
(third, fourth, etc.) virial coefficients in the rescaled Onsager approach for hard chain fluids.
Equilibrium densities of the isotropic phase are slightly different from simulation results,
with an increasing deviation for longer chain lengths. Albeit the deviations are small, the
increasing deviation with chain length cannot be explained from the behavior of the ref-
erence fluid [83], since the description of the hard-chain reference system improves for
longer chain lengths. Fig. 5.2 shows the reduced pressure vs. reduced temperature diagram
at isotropic-nematic coexistence for linear Lennard-Jones chain fluids. In this figure, it can
be clearly identified that the theoretical description of the isotropic-nematic phase equilibria
is less accurate as the chain length increases. Figs. 5.1 and 5.2 suggest that the theoretical
description misses a small (positive) contribution to the driving force for the isotropic to
nematic phase transition. van Westen et al. assumed that no explicit orientation depen-
dent contribution in the dispersive Helmholtz energy was required for a reliable description
of the isotropic-nematic phase equilibria of Lennard-Jones chain fluids [79]. The results
shown here indicate that this assumption may be less justified for longer chains, wherefore
a stronger effect of anisotropic interactions is expected. Another theoretical assumption
that could explain the observed deviations is the use of a fixed temperature-independent
aspect ratio of the molecules. This assumption is typically needed in a perturbed-chain
approach [84]; however, it reduces the driving force for the isotropic to nematic phase tran-
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Figure 5.2: Reduced temperature T ∗ vs. reduced pressure P∗ at the isotropic-nematic coexistence for linear
Lennard-Jones 8-mer (+), 10-mer (4), and 12-mer (×) chain fluids. Solid lines are theoretical results obtained
from the analytical equation of state of van Westen et al. [79].

sition as the aspect ratio should slightly increase with temperature (see e.g. Ref. 199). An
increased aspect ratio would lead to a more anisotropic molecule and therefore a higher
driving force for the phase transition. In summary, the systematic but small deviations be-
tween theory and simulations could be caused by the assumption of orientation-independent
attractions or a fixed aspect ratio of the molecules. However, it is clear that this assumption
do not diminish an accurate description of the phase equilibrium.

Fig. 5.2 shows a linear relationship between pressure and temperature at the isotropic-
nematic coexistence for linear Lennard-Jones chain fluids. Further analysis is obtained
considering the Clapeyron equation, dP/dT= ∆hI−N/(T∆vI−N), where ∆hI−N is the enthalpy
change at the isotropic-nematic phase transition, and ∆vI−N is the molar volume change
between both phases at coexistence. A constant slope dP∗/dT ∗ indicates a proportional
relationship between enthalpy change and volume change. It is remarkable that energetic
and density effects at the isotropic-nematic phase transition are directly coupled, suggesting
that any energetic change at the phase transition can be described from the isotropic-nematic
density change and vice versa.

At temperatures lower than the ones reported in Fig. 5.1 and Table 5.1, isotropic-smectic
and isotropic-solid phase coexistence is found. Fig. 5.3 shows typical snapshots for a se-
quence of nematic, smectic-C, and crystal phases for a linear 10-mer fluid as temperature
decreases. A similar picture of crystal and smectic-C phases of a 10-mer fluid at a constant
monomer density of ρ∗m = 0.8 was reported by Affouard et al. [203]. In the smectic-C phase,
molecules are positioned in layers and oriented with the nematic director tilted with respect
to the normal of the layers. Smectic phases were detected by the smectic order parameter
(Eq. 2.4) and identified as smectic-C phases by inspecting snapshots of final configurations.
Table 5.2 shows the results for the observed coexistence between isotropic and smectic-
C phases. These data should be considered only as preliminary due to small differences
(∼5%) in the calculated pressure of both coexisting phases. This difference is a conse-
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(a) (b) (c)

Figure 5.3: Typical snapshots of ordered phases for a linear Lennard-Jones 10-mer chain fluid at coexistence
between an isotropic phase and: (a) a nematic phase at T ∗ = 6, (b) a smectic-C phase at T ∗ = 5, and (c) a
crystal phase at T ∗ = 4. The top row shows parallel views and the bottom row shows perpendicular views to
the largest axis of the simulation box.

quence of the difficulties in arranging the tilted oriented layers in the periodically repeating
rectangular box. In the crystal phases, molecules are arranged in layers with the molec-
ular axis pointing in the direction of the normal of the layers. Vega et al. [86] described
the possible crystal phases of hard-sphere dumbbells from closest packing considerations.
These authors identified that dumbbells should be arranged in layers with their axis parallel
but tilted from the normal layer by approximately 35◦. In that study, the stacking of layers
was considered in three different ways, forming an ABAB (hexagonal close packed), or an
ABC (face-centered cubic) sequence, or a sequence where layers are stacked alternating the
tilted angles between successive layers. Galindo et al. [95] considered the ABC sequence
in the solid phases of linear Lennard-Jones chains, while Polson et al. [204] suggested that
an AAA (body-centered cubic) stacking with a tilt angle of approximately 33◦ is the sta-
ble configuration for the crystal phase of a 6-mer Lennard-Jones fluid with finite bending
potential. Simulations showing crystal phases are considered only as an indication of the
formation of solid phases. This is because of large pressure differences observed between
both coexisting phases and the known difficulties in performing direct phase equilibrium
calculations of systems including solids [80, 204–206].
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Figure 5.4: Isotropic-nematic phase equilibria of the partially-flexible Lennard-Jones 10-9-mer compared to
the linear Lennard-Jones 10-mer chain fluid. Reduced temperature T ∗ vs. reduced monomer density ρ∗m.
Symbols and solid lines for the partially-flexible 10-9-mer fluid as in Fig. 5.1. Dashed lines are theoretical
results for the linear 10-mer fluid.

5.4 Partially-flexible Lennard-Jones chains
The effect of molecular flexibility on the isotropic-nematic phase equilibria of Lennard-
Jones chain fluids is studied for a partially-flexible 10-9-mer fluid. Table 5.3 reports the
simulation data and Fig. 5.4 compares the isotropic-nematic coexistence densities of the
partially-flexible 10-9-mer to those of the linear 10-mer fluid. It can be observed that the
effect of flexibility is twofold: (1) it increments the densities at which the phase transition
takes place, and (2) it reduces the density difference between both phases. These obser-
vations can be explained from the fact that the pair-excluded volume of partially flexible
chains is less anisotropic than that of linear chains [157], thereby constituting a smaller
driving force for the isotropic to nematic phase transition.

Another effect of flexibility is the appearance of smectic phases at a temperature lower
than the one observed for the linear chain fluid. At T ∗=5, isotropic-nematic equilibrium is
observed for the 10-9-mer fluid while isotropic-smectic coexistence was found for the lin-
ear 10-mer fluid at the same temperature. Our observations suggest that the temperature of
the isotropic-nematic-smectic triple point of Lennard-Jones chain fluids decreases with in-
creasing flexibility, i.e. decreasing molecular anisotropy. A similar behavior was observed
in the case of Gay-Berne fluids with different shape anisotropy [56, 207, 208]. At reduced
temperatures lower than the ones reported in Fig. 5.4 and Table 5.3, smectic and crystal
phases were observed, similarly as described in the previous section.

5.5 Binary mixture of linear Lennard-Jones chains
Constant pressure expanded Gibbs-ensemble simulations are performed for determining the
isotropic-nematic phase equilibria of a binary mixture of linear Lennard-Jones 7-mer and
12-mer chains (7-mer+12-mer). Table 5.4 reports numerical results and Fig. 5.5 shows a
comparison between simulation results and theoretical predictions obtained from the ana-
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Figure 5.5: Isotropic-nematic phase equilibria for a binary mixture of linear Lennard-Jones 7-mer and 12-mer
chains at a reduced pressure of P∗ = 2.535. (a) Reduced temperature T ∗ and (b) reduced monomer density
ρ∗m vs. mole fraction of the largest component x2. Symbols and solid lines as in Fig. 5.1. Dashed lines
are constant temperature tie-lines as reported in Table 5.4. Pure component simulation data for the 7-mer
fluid are calculated from constant volume expanded Gibbs-ensemble simulations at temperatures close to the
equilibrium temperature. Equilibrium temperature and isotropic-nematic coexisting densities at the specified
pressure of the mixture are determined by interpolation from the closest calculated equilibrium pressures.

lytical equation of state of van Westen et al. [79]. Phase split between an isotropic and a
nematic phase and fractionation of the fluid between both phases is observed. Fractionation
of the mixture into an isotropic phase richer in the short chains and a nematic phase richer
in the long chains is a consequence of the more anisotropic pair-excluded volume interac-
tions of the long chains. Fig. 5.5 (a) shows the mole fraction of the long chain x2 in the
isotropic and nematic phases at different equilibrium temperatures. An accurate description
of fractionation between both phases is obtained from theoretical calculations. Fig. 5.5 (b)
compares simulation results for the isotropic and nematic coexistence monomer densities
with theoretical results from the equation of state. At constant mole fraction, a maximum
in the density of the nematic phase and a maximum in the isotropic-nematic density differ-
ence is observed in the range x2=0.4−0.6 from simulation results and at x2=0.5 from the
theoretical results. Previously, a similar behavior was found for binary mixtures of linear
hard-sphere chains [78, 164]. With increasing mole fraction of the long component, the
driving force for the phase transition increases, which leads to lower coexistence densi-
ties. However, the addition of a small amount of the long component to a pure fluid of
the short component leads to a dramatic increase in the orientational order of the system
(due to induced order [78]). As a result, the density of the nematic phase increases. These
two competing effects lead to the observed maximum. Overall, comparison between theory
and simulations is accurate. A slight overestimation of the isotropic and nematic monomer
densities is observed, with larger deviations at lower temperatures corresponding to a larger
concentration of the short chains. This effect is expected since the description of the hard-
chain reference fluid that underlies the perturbation theory becomes less accurate for shorter
chain lengths [78].
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Figure 5.6: Infinite dilution solubility of a Lennard-Jones gas in the coexisting isotropic and nematic phases of
a linear Lennard-Jones 12-mer chain fluid. Symbols and solid lines as in Fig. 5.1. Dashed lines are constant
temperature tie-lines as reported in Table 5.1.

5.6 Solubility of gases in Lennard-Jones chains
In this section, the infinite dilution solubility of a Lennard-Jones gas in the coexisting iso-
tropic and nematic phases of Lennard-Jones chain fluids is studied. Solubility is described
by the dimensionless Henry coefficient as defined by Eq. 2.47.

In Fig. 5.6, simulation results for the solubility of a Lennard-Jones gas in the coexisting
isotropic and nematic phases of a linear Lennard-Jones 12-mer chain fluid are reported as
a function of monomer density. A decrease in solubility with density is observed in the
isotropic phase, while first an increasing and then a decreasing solubility is identified in
the nematic phase. As temperature increases (see Fig. 5.1 (c)), decreasing solubilities in
the isotropic phase are caused by both larger equilibrium temperatures and higher equilib-
rium densities, while the increasing/decreasing behavior in the nematic phase is the conse-
quence of a balance between larger temperatures accompanied by lower equilibrium den-
sities. Larger solubility differences between both coexisting phases are observed at lower
equilibrium temperatures.

Fig. 5.7 shows the infinite dilution solubility of a Lennard-Jones gas in the coexisting
isotropic and nematic phases of a binary mixture of linear 7- and 12-mer at constant pres-
sure. It can be identified that the solubility difference between both phases is always larger
in the mixture than in the pure components. A maximum in the isotropic-nematic solubility
difference is observed at a mole fraction in the range x2 = 0.4 − 0.6 from simulations and
x2 = 0.5 from theoretical results. This maximum is directly related to the maximum density
difference shown in the previous section, see Fig. 5.5 (b).

Fig. 5.8 shows the isotropic-nematic solubility difference as a function of the density
difference at coexistence for the linear Lennard-Jones chain fluids. A linear relationship
between solubility difference and density difference is identified in all cases. This result in-
dicates the central role that density has in solubility, which seems to be independent of the
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Figure 5.7: Infinite dilution solubility of a Lennard-Jones gas in the coexisting isotropic and nematic phases
of a binary mixture of linear Lennard-Jones 7-mer and 12-mer chains. Logarithm of dimensionless Henry’s
coefficient ln H∗k vs mole fraction of the long chain x2. Symbols and solid lines as in Fig. 5.1. Dashed lines
are constant temperature tie-lines as reported in Table 5.4.
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Figure 5.8: Solubility difference ∆ ln H∗k as a function of reduced monomer density difference ∆ρ∗m at the
isotropic-nematic phase transition for linear Lennard-Jones 8-mer (+), 10-mer (4) and 12-mer (×) chain fluids.
Solid lines are theoretical results obtained from the analytical equation of state of van Westen et al. [79].
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Figure 5.9: Infinite dilution solubility of a Lennard-Jones gas in a linear 12-mer fluid at the isotropic-nematic
phase transition as a function of nematic ordering. Logarithm of dimensionless Henry’s coefficient ln H∗k vs.
order parameter S 2. Results are obtained at constant temperature T ∗ = 10 and monomer density ρ∗m = 0.42.
Error bars represent one standard deviation.

nematic ordering of the fluid. To confirm this supposition, simulations at constant number
of molecules, volume, and temperature, in the NVT ensemble, but restricting the nematic
ordering of the system are performed, similarly as in section 3.5. Fig. 5.9 shows the solubil-
ity of gases in a 12-mer for different values of the order parameter at constant temperature
and density. From these results, it can be concluded that the solubility of a Lennard-Jones
gas molecule is independent of the nematic ordering of the fluid at constant density and
temperature conditions.

Figs. 5.6 and 5.7 include theoretical results obtained from the equation of state of
van Westen et al. for the same temperature range considered in the simulations (see Ta-
bles 5.1 and 5.4). These results indicate that the theory systematically underestimates the
Henry coefficient. In Fig. 5.8, we show the isotropic-nematic solubility difference as a func-
tion of density difference. It can be observed, that theory and simulations follow the same
linear relationship. This underlines the fact that the differences between simulations and
theory are systematic. Unfortunately, we have not found the underlying reason for these
systematic differences. In Fig. 5.8, it can be observed that density differences are overes-
timated by the theory, with the consequence of a higher solubility difference between the
isotropic and nematic phase. The overestimation of the density difference at the isotropic-
nematic transition is a common flaw of rescaled Onsager theories of the type examined in
the work of van Westen et al., and is expected to become less pronounced for longer chain
lengths.

5.7 Conclusions
The isotropic-nematic phase equilibria of Lennard-Jones chain fluids were determined from
direct phase equilibria calculations using an expanded version of the Gibbs ensemble. Re-
sults for linear Lennard-Jones chain fluids showed that increasing chain length leads to a
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decrease of the isotropic-nematic coexistence densities and an increase of the isotropic-
nematic density difference. These results are explained from a more anisotropic pair-
excluded volume of longer chains, which constitutes a larger driving force for the isotropic
to nematic transition. A linear relationship between coexistence pressure and temperature
was found, indicating a proportional relationship between energetic and volume effects at
the isotropic-nematic phase transition. We found evidence of the formation of smectic-
C and crystal phases. However, these results are not conclusive due to the difficulties of
the current simulation technique in representing the bulk behaviour of highly structured
phases. The effect of flexibility was studied by means of partially flexible chains, con-
sisting of a rigid linear part, and a freely-jointed part. It was found that flexibility shifts
the isotropic-nematic equilibrium to larger densities and pressures, reducing at the same
time the isotropic-nematic density difference. This can be explained from the fact that flex-
ibility reduces the anisotropy of molecules, and thereby lowers the driving force for the
isotropic-nematic transition. Results for the isotropic-nematic coexistence of a binary mix-
ture showed fractionation of the fluid into an isotropic phase richer in the short chains and
a nematic phase richer in the long chains. For this mixture, a maximum in the density of
the nematic phase and a maximum in the isotropic-nematic density difference at coexis-
tence were identified. This maximum appears as a balance between a larger potential for
the phase transition as the mole fraction of the long component increases (reducing the co-
existing isotropic density), and the order induced in the nematic phase by a larger presence
of the long component (increasing the coexisting nematic density).

Simulation results were extensively compared to theoretical results as obtained from
a recently developed equation of state of van Westen et al. [79]. It was found that the
equation of state provides an excellent description of phase equilibria. The equation of
state was developed based on the assumption that attractive dispersive interactions between
Lennard-Jones chains do not depend on their relative orientations. The good comparison to
simulation results therefore suggests that the effect of anisotropic dispersion interactions is
small, and that a faithful description of real nematic liquid crystals could well be developed
without it.

The infinite dilution solubility of a Lennard-Jones gas in Lennard-Jones chain fluids
was estimated by the Widom test-particle insertion method. Pure components showed an
increasing solubility difference between coexisting isotropic and nematic phases as temper-
ature decreases. A linear relationship between solubility difference and density difference
at coexistence was identified for all linear Lennard-Jones systems. In the binary mixture,
a maximum in the isotropic-nematic solubility difference as a function of mole fraction
was observed. This maximum is directly related to the observed maximum in the density
difference between both phases. Simulations at constant temperature and density but with
restricted values of the order parameter showed that the solubility of a Lennard-Jones gas
is independent of the nematic ordering of the fluid.
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Summary

The liquid crystal phase behavior of chain fluids and the solubility of gases in them was
determined using Monte Carlo simulations. The effect of molecular properties such as
elongation and flexibility was studied using linear and partially-flexible chain molecules.
Linear chain molecules are rigid molecules with all segments aligned on the same molec-
ular axis, while partially-flexible molecules are made of a linear and a freely-jointed part
that provide a certain degree of flexibility to the molecule. Volumetric and thermal effects
are studied independently by hard-sphere and Lennard-Jones potentials. Molecular sim-
ulations were performed for hard-sphere and Lennard-Jones chain fluids with a focus on
the isotropic-nematic phase transition. The solubility of gases in liquid crystal phases and
specially the solubility change at the isotropic-nematic transition is of interest for gas sep-
aration applications. This was studied using a single-segment gas molecule at the infinite
dilution limit.

Monte Carlo simulations were performed in the NPT ensemble and in an expanded ver-
sion of the Gibbs ensemble. The phase behavior of single-phase hard-sphere chain fluids
was determined using NPT ensemble simulations, while the isotropic-nematic phase equi-
librium of single-component and binary mixtures of hard-sphere and Lennard-Jones fluids
was calculated using expanded Gibbs ensemble simulations. Fluid properties such as pack-
ing fractions (hard-sphere fluids), densities and temperatures (Lennard-Jones fluids), order
parameters, pressures, and gas solubilities (Henry coefficients) were obtained for chain flu-
ids with different degrees of elongation and flexibility.

The study of single-component athermal (hard-sphere) systems showed that larger chain
lengths increase the potential for the formation of nematic phases, decreasing monoton-
ically the pressure and packing fractions at which the isotropic-nematic phase transition
takes place. However, a maximum in the isotropic-nematic packing fraction difference was
observed as a function of chain length. Flexibility reduces the anisotropy of the molecule,
which increases the isotropic-nematic transition pressure and decreases the packing frac-
tion difference between both phases. It was shown that the solubility of a single-segment
hard-sphere gas molecule does not depend on molecular order, being determined only by
the packing fraction of the system. The solubility difference at the isotropic-nematic phase
transition is therefore determined by the packing fraction difference at coexistence. The
effect of connectivity was studied by considering relative Henry coefficients, defined as the
Henry coefficient of the gas in the chain fluid divided by the Henry coefficient of the gas in
the monomer fluid at same density. A linear relationship between relative Henry coefficients
and packing fraction was obtained.

Binary mixtures of hard-sphere chain fluids showed a phase split and fractionation be-
tween a nematic phase concentrated in the longest component and an isotropic phase richer
in the shortest component. Fractionation is a consequence of the larger tendency to align
of the long chains compared to the short chains. This tendency increases with the differ-
ence in chain length between both components forming the mixture. A larger fractionation
leads to a larger isotropic-nematic packing fraction difference, which was found to be al-
ways larger for the mixture than for the constituting pure components. Flexibility of the
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longest component reduces fractionation, increasing the pressure and packing fraction at
which the isotropic-nematic transition takes place for a specific composition of the fluid.
As in the case of pure components, a linear relationship between relative Henry coefficients
and packing fraction independent of the molecular order was observed.

The isotropic-nematic phase equilibria of Lennard-Jones chains was determined for:
linear chain molecules with different lengths, a partially-flexible chain molecule, and a
binary mixture of linear chains. Increasing chain lengths displaces the isotropic-nematic
coexistence of linear Lennard-Jones chain fluids to larger equilibrium densities and lower
equilibrium pressures, increasing at the same time the isotropic-nematic density difference.
Flexibility reduces the anisotropy of the molecule shifting the isotropic-nematic equilib-
rium to larger pressures and densities, reducing at the same time the density difference
between both phases. In a binary mixture of linear Lennard-Jones chains, fractionation
between an isotropic phase richer in the short chains and a nematic phase richer in the
long chains was observed. The isotropic-nematic density difference was found to be al-
ways larger in the mixture than for pure components, with a maximum at a certain mole
fraction. The solubility of a single-segment Lennard-Jones gas molecule was calculated
for linear Lennard-Jones chain fluids and for a binary mixture of them. A linear relation-
ship between solubility difference and density difference at coexistence was identified for
all linear chain systems. Furthermore, it was shown that the solubility of a Lennard-Jones
gas in linear Lennard-Jones chain fluids is independent of the molecular order of the fluid at
coexistence. The isotropic-nematic solubility difference in the binary mixture was observed
to be always larger in the mixture than for the pure components, with an observed maxi-
mum at the mole fraction corresponding to the maximum in the isotropic-nematic density
difference.

Simulation results for the isotropic-nematic transition were compared to theoretical pre-
dictions obtained from the analytical equation of state developed by van Westen et al.,
(Refs. 77–79, 83, 84). Excellent agreement between simulation and theoretical results were
observed. A rescaled Onsager theory was used in the description of hard-sphere systems
showing an accurate prediction compared to simulation results. A perturbed theory ap-
proach was used in the treatment of Lennard-Jones fluids, whereby orientation dependent
attractions were not considered explicitly in the development of the dispersion term. A re-
liable description of the isotropic-nematic phase equilibrium of Lennard-Jones fluids was
obtained using this approach.

The simulation data presented in this work represents a large contribution to the liquid
crystal phase behavior of chain fluids. The effect of molecular properties on the phase
behavior of liquid crystals was determined using linear and partially-flexible molecules with
different elongations and flexibility, for purely repulsive (hard-sphere) and soft-attractive
(Lennard-Jones) interactions. Predictions obtained from the equation of state of van Westen
et al. showed an excellent agreement with simulation data, validating the assumptions made
in the development of this theory.



Samenvatting

Het vloeibaar-kristallijne fasegedrag van ‘fluids’ bestaande uit ketenmoleculen, alsmede de
oplosbaarheid van gassen in deze ‘fluids’, is verkregen uit Monte Carlo simulaties. Het ef-
fect van moleculaire eigenschappen zoals elongatie en flexibiliteit is bestudeerd door mid-
del van lineaire en deels flexibele ketenmoleculen. Lineaire ketenmoleculen zijn rigide,
met alle segmenten uitgelijnd op dezelfde moleculaire as. Deels flexibele ketenmoleculen
zijn opgebouwd uit een lineair- en volledig flexibel deel. Het laatste deel verschaft een
zekere maat van flexibiliteit aan het molecuul. Volumetrische en thermische effecten zijn
onafhankelijk van elkaar bestudeerd door middel van respectievelijk, een ‘harde-bollen’ en
‘Lennard-Jones’ potentiaal. Monte Carlo simulaties zijn uitgevoerd voor zowel ketens van
harde segmenten als segmenten met Lennard-Jones interacties; de focus hierbij was op de
isotroop-nematische faseovergang. De oplosbaarheid van gassen in vloeibare kristallen -
vooral het oplosbaarheidsverschil tussen twee co-existerende isotrope en nematische fasen
- is van belang voor gasabsorptie. Deze oplosbaarheid is bestudeerd voor een oneindig
verdunde oplossing van gasmoleculen bestaande uit een enkel segment.

Monte Carlo simulaties zijn uitgevoerd in het NPT ensemble en in een ‘expanded’ ver-
sie van het Gibbs ensemble. De NPT simulaties zijn gebruikt om het één-fasegedrag van
harde ketens te bepalen. De simulaties in het Gibbs ensemble zijn gebruikt om de isotroop-
nematische faseovergang van zowel pure componenten als mengsels van harde ketens en
Lennard-Jones ketens te bepalen. Vloeistofeigenschappen zoals pakkingsfracties (harde
ketens), dichtheden en temperatuur (Lennard-Jones ketens), orde parameters, druk en op-
losbaarheden van gassen (Henry coëfficiënten), zijn verkregen voor ketenfluids van varië-
rende elongatie en flexibiliteit.

De studie van athermische (hardebollenpotentiaal) pure systemen, laat zien dat een toe-
nemende ketenlengte resulteert in een grotere drijvende kracht voor de isotroop-nematisch-
overgang, wat leidt tot een lagere druk en pakkingsfractie bij de faseovergang. Echter,
het dichtheidsverschil tussen beide fasen toont een maximum als functie van ketenlengte.
Flexibiliteit verkleint de anisotroopheid van een molecuul. Dit leidt tot een hogere over-
gangsdruk en een kleiner dichtheidsverschil tussen beide fasen. We tonen aan dat de op-
losbaarheid van een gasmolecuul bestaande uit een enkel segment volledig wordt bepaald
door pakkingsfractie van het systeem en dus niet afhangt van moleculaire ordening. Het op-
losbaarheidsverschil bij de isotroop-nematisch-overgang wordt daarom uitsluitend bepaald
door het dichtheidsverschil tussen beide fasen. Het effect van ketenconnectiviteit is bepaald
door relatieve Henrycoëfficiënten te beschouwen, gedefinieerd als de Henrycoëfficiënt van
het gas in de ketenfluid gedeeld door de Henrycoëfficiënt van het gas in een fluid van losse
segmenten bij dezelfde dichtheid. We vinden een lineaire verband tussen relatieve Henry
coëfficiënten en de pakkingsfractie.

Binaire systemen van fluids bestaande uit harde ketenmoleculen tonen een faseschei-
ding en fractionering tussen een nematische fase geconcentreerd in de lange component en
een isotrope fase geconcentreerd in de korte component. Fractionering is een gevolg van het
feit dat langere moleculen een grotere neiging hebben tot ordenen van de moleculaire as.
Deze neiging wordt groter naarmate het verschil in ketenlengte groter wordt. Een grotere
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fractionering leidt tot een groter dichtheidsverschil bij de isotroop-nematisch-overgang. Dit
dichtheidsverschil is altijd groter dan dat voor de pure componenten. Flexibiliteit van de
langste component verkleint de fractionering, wat leidt tot een hogere druk en dichtheid bij
de faseovergang. Voor pure systemen vinden we een linear verband tussen relatieve Henry-
coëfficiënten en pakkingsfractie. Deze relatie is onafhankelijk van moleculaire ordening.

Het evenwicht tussen isotrope en nematische fasen van Lennard-Jones ketenmoleculen
is uitgerekend voor de volgende systemen: lineaire (rigide) ketens van verschillende lengte,
een deels flexibel ketenmolecuul, en een binair mengsel van lineaire ketens. Een grotere
ketenlengte leidt tot (1) een verschuiving van de isotroop-nematisch-overgang naar lagere
dichtheid en druk, en (2) een kleiner dichtheidsverschil tussen beide fasen. Een grotere
flexibiliteit resulteert in een kleinere anisotroopheid van de moleculen. Dit leidt tot (1)
een verschuiving van de isotroop-nematisch-overgang naar hogere druk en dichtheid, en
(2) een afname van het dichheidsverschil tussen de isotrope en nematische fase. In een
binair mengsel van lineaire Lennard-Jones ketens is een fractionering van de componenten
tussen beide fasen vastgesteld. Het dichtheidsverschil tussen de isotrope en nematische fa-
sen is altijd groter dan dat voor de pure componenten. Het oplosbaarheidsverschil van een
Lennard-Jones gasmolecuul is berekend voor een oplosmiddel van lineaire Lennard-Jones
ketenmoleculen en voor een binair mengsel van deze moleculen. Voor alle bestudeerde sys-
temen is een lineaire relatie tussen het oplosbaarheidsverschil en het dichtheidsverschil bij
de faseovergang verkregen. Het is aangetoond dat de oplosbaarheid onafhankelijk is van de
moleculaire ordening bij de faseovergang. Het isotroop-nematisch oplosbaarheidsverschil
in het binaire systeem is altijd groter dan dat voor de pure componenten.

Simulatieresultaten voor de isotroop-nematisch-overgang zijn vergeleken met theore-
tische voorspellingen verkregen uit de analytische toestandsvergelijking van van Westen
et al., (Refs. 77–79, 83, 84). We vinden een nauwkeurige overeenstemming tussen simu-
laties en theorie. De theorie is gebaseerd op een geschaalde Onsager theorie voor harde
ketens, uitgebreid met een perturbatieterm voor het beschrijven van Lennard-Jones ketens.
Orientatie-afhankelijke attractieve interacties tussen de moleculen zijn niet meegenomen in
de perturbatieterm. Zowel voor harde- als Lennard-Jones ketenmoleculen leidt deze aanpak
tot een goede beschrijving van het isotroop-nematische fasegedrag.

De simulatiedata zoals gepresenteerd in dit werk levert een grote bijdrage aan het begrip
van het vloeibaar-kristallijne fasegedrag van ketenmoleculen. Het effect van moleculaire ei-
genschappen op het fasegedrag van vloeibare kristallen is bepaald door gebruik te maken
van lineaire en deels flexibele moleculen van variërende lengte en flexibiliteit. Zowel ketens
met repulsieve- (gemaakt uit harde bollen) en zacht-attractieve (Lennard-Jones) interacties
tussen de segmenten zijn beschouwd. Voorspellingen verkregen uit de toestandsvergelij-
king van van Westen et al. komen uitstekend overeen met de resultaten uit de simulaties.
Deze goede overeenstemming valideert de benaderingen die gemaakt zijn in de ontwikke-
ling van de toestandsvergelijking.
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