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Preface

Statistical thermodynamics aims at describing the macroscopic properties of systems that consist
of many individual entities (e.g. particles, molecules, atoms). Nevertheless, the properties of
the system are related to the microscopic properties and interactions of the individual entities.
Therefore, statistical thermodynamics bridges a gap between descriptions at two distinct length
scales (microscopic and macroscopic).

In statistical thermodynamics systems consist of a large number of entities that can exchange
energy with each other. The entities are often atoms, molecules or ions. The theory however
is not restricted to these everyday ingredients for materials scientists. In colloid science the
entities may be colloidal particles that consist millions of atoms. In fusion or fission reactors,
the entities are photons, protons, neutrons and other elementary particles. At the other extreme,
in astronomy some of the properties of galaxies and galaxy clusters are described using stars as
entities.

The aim of statistical thermodynamics is to derive macroscopic properties of systems from
the microscopic properties of the particles that constitute the system. The macroscopic proper-
ties of a system consisting of many particles is based on probability distributions. Two types of
distributions form the basis of the theory of statistical thermodynamics:

1. The Gaussian or normal distribution;

2. The Boltzmann distribution.

In order to get a feeling for the significance of these distributions we illustrate them with an
all-day-live system.

Imagine that we are in a kindergarten in Vienna, February 20, 1849. As always, the child
that has its birthday chooses a game to play together. Today, at his fifth anniversary, Ludwig
Boltzmann chooses to play Balls & Bucket. A number of, say M, children of the kindergarten are
sitting in a circle. Each child has a bucket in front of him or her. Initially the teacher randomly
distributes n balls over the buckets. The teacher selects one of the children at random. Unless the
child’s bucket is empty, the child gives at random one ball to his/her left or right neighbor. The
teacher randomly selects another child and this child also gives at random one ball to his/her
left or right neighbor (unless the child’s bucket is empty). This process is continued and after
t selections the teacher decides that the play is over. At this point, the total number of balls
g collected by all girls is counted, as well as the number of balls collected by the child having
his/her birthday (here denoted as B).

Ludwig, being fond of numbers, has remembered all results of today’s and earlier Balls &
Bucket plays. It was easy enough for him to calculate some averages. It seemed natural to him
that the average number of balls 〈B〉 collected by the child having his/her birthday was close
to n/M. He was not surprised either by his observation that the average number of balls 〈g〉
collected by the girls was close to n/3, since his class had twice as many boys as girls.
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Figure 1: Example of the Balls & Bucket game for M = 20 children (10 girls and 10 boys) and
n = 20 balls. Left: Probability P(g) that the girls collected g balls. Right: Probability N(B) that
Ludwig collected B balls.

Ludwig noticed also that a play in which g = 0 was very rare. The number of times that the
child having its birthday collected no balls, B = 0, was larger than the number of times that this
child collected the average number of balls 〈B〉 = n/M. Ludwig understood that such general
results would become more predictable if the number of selections t and the number of children
M are very large. He supposed that in that case the probability distribution of g is sharply
peaked around g = 〈g〉, whereas the probability distribution of B would have its maximum at
B = 0 and would decay monotonously with B, see Fig. 1.

In chapters 1 and 2 we shall investigate in more detail the results we can expect for this game.
These results are at the heart of statistical thermodynamics. Therefore we take the opportunity to
introduce some of the central formulas and concepts already here. In statistical thermodynamics
we refer to the limit of many children in a class (M → ∞) as the thermodynamic limit. Let us
assume that the initial distribution of the balls over the buckets and the selection of the children
are perfectly random. Then the number of balls g collected by the girls after t = 1 selection is
Gaussian distributed around the average 〈g〉 = xn with x being the fraction of girls in the class:

P(g) = C× exp
[
−

(g − 〈g〉)2

2σ2

]
(1)

Here P(g) is the probability that the girls collected g balls and C is a normalization constant and
σ =

√
xn is the standard deviation for this Balls & Bucket game. If the number of selections t is

large enough, i.e. in the limit t → ∞, then the number of balls in Ludwigs bucket is Boltzmann
distributed:

N(B) = C ′ × exp
[
−

B

〈B〉

]
(2)

in which C ′ is a normalization constant.
If the teacher is not ideal, the initial distribution of balls is biased. E.g. the teacher may give

more balls to the boys than to the girls. The effect of this unbalanced initialization will die out
after a certain number of selections. In statistical thermodynamics this means that sometimes a
transient time t � 1 is necessary before relevant averages can be taken. With a little reflection
the reader will convince him/herself that the Boltzmann distribution of balls in Ludwigs bucket



ix

after many selections t (Eq. 2), also applies to the distribution of balls over the buckets of all M

children in his class at a given moment of time. More explicitly, let the number of selections t be
equal to the number of children M in the class. Then the number of times that Ludwig finds B

balls in his bucket after t = M selections, is the same as the number of children finding B balls
in their buckets after t = 1 selections (provided that the initial distribution is unbiased). This
illustrates the equivalence of studying one particle for a long time and many particles for a short
time. In statistical mechanics this equivalence is referred to as the ergodicity principle.

Finally one might wonder how general the Boltzmann and Gaussian distributions are. Though
we can not investigate or prove this rigorously, some plausible deductions can be made from
the kindergarten example. The first key ingredient is that no balls disappear, they only are re-
distributed. This translates to the conservation of energy in an isolated system. The second is
that no ball can be removed from an empty bucket, corresponding to the fact that a molecule can
not have a lower energy than its (well-defined) ground state energy. Would the Boltzmann also
occur for poker players? The role of the balls is played by the value of the different coins that
they use. As long as there is no bank that absorbs some of the money, the total value in the play
is constant. Furthermore, the ground state of each player is well-defined (i.e. when the player
is broke). If all players are equally strong their personal capitals eventually will be Boltzmann
distributed. This property of the players translates to the equal a priori probability of states with
equal amount of money.

Chemists and physicists are often more interested in systems of interacting particles (atoms
or molecules) and how these microscopic interactions result in macroscopic (thermodynamic)
properties. We will show that we can calculate all thermodynamic properties of a system once
all possible states of the system and their energy are known. However, systems with more than
two interacting particles can usually not be solved analytically (i.e. finding all possible states
and energies using pen and paper only) as the number of states is too large. Often, drastic ap-
proximations have to be made for the model that describes our system of particles, as well as
severe approximations to solve the theory analytically. There are only a few systems that can
be solved exactly, e.g. the ideal gas, the harmonic oscillator (which closely resembles the Balls
& Bucket game), the Einstein crystal and the two-dimensional Ising system. To circumvent this
problem, one has to resort to other methods. This is the reason why computer simulations play
an important role in providing essentially “exact” results for problems in statistical thermody-
namics which are otherwise only solvable by approximate methods, or are unsolvable anyway.
The properties and structure of interacting systems can easily be obtained in molecular simula-
tions, and hence, simulations are ideal to study materials science. This tool to study many-body
systems became available in the early fifties of the twentieth century. In a computer simulation,
we mimic the real world. We define a model for the system we wish to study and we tell the
computer the physical laws that should be satisfied. Simulations can therefore act as a bridge
between experiments and theory.

There are three possible applications of simulations: (1) Simulations can be used to obtain
predictions of (bulk) properties of existing or new materials, when we feed in a guess for the in-
teractions between the atoms or molecules. These predictions are “exact” as no approximations
are made. Moreover, we can carry out experiments on the computer that are difficult, impos-
sible, or expensive in the laboratory (for example at extreme temperatures or pressures). (2)
Computer simulations can be used as a test of theories. A good theory gives us an explanation
at a fundamental level of the generic phenomena we observe in our experiments. However, to
make a theory that can be solved analytically, we have to make drastic assumptions. As a test of
our theory we can compare our theoretical results with experiments. However, when a disagree-
ment is found, it is often not clear what the reason is of this discrepancy. Is the model wrong,
are the input parameters wrong, or are the assumptions too drastic? Computer simulations can
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help us to discriminate between the good and bad assumptions in the theory. (3) Computer
simulations can also be used to predict new phenomena, which can stimulate new experiments
and the development of new theories. Examples of new phenomena found in simulations are,
for instance, the freezing transition of hard spheres [1–4], the liquid crystalline phase behavior
of hard rods [5, 6] and diffusion-limited aggregation [7].

This textbook consists of three parts. The aim of Part I is to familiarize the reader with the
basics of statistical thermodynamics with the help of computer simulations. The computer pro-
grams and detailed instructions on how to run them can be downloaded from our website. In
contrast to “traditional” textbooks on statistical thermodynamics, rigorous proofs have been
replaced by computer exercises from which many of the basics concepts follow directly. For ex-
ample, an important postulate of statistical thermodynamics is that an isolated system is equally
likely to be found in any of its eigenstates. It can be shown mathematically that this postulate
results in the second law of thermodynamics: an isolated system evolves in such a way that the
entropy is at a maximum. Furthermore, the Boltzmann distribution (Eq. 2) follows directly from
this. In this book, we will use the following alternative approach to illustrate the consequences
of this postulate. First, we introduce a system of harmonic oscillators that can exchange energy
packets as a model for an isolated system. A computer program will be used to simulate and to
visualize the time-evolution of this system. During this process, the number of visited states is
recorded, from which the entropy change is computed directly. Such a simulation shows that it
is extremely unlikely that the entropy of an isolated system decreases. In the same simulation,
the Boltzmann distribution for the energy of a single oscillator is found, but only when the num-
ber of oscillators is large enough to act as a “heat bath” at a fixed temperature. At the end of Part
I we will show that as the number of states of typical systems is extremely large, the Metropolis
Monte Carlo method will be required to compute thermodynamic averages.

In Part II a brief introduction to molecular simulations is presented. Simulation techniques
like Monte Carlo and Molecular Dynamics simulations are discussed. In particular, we focus
on simulations to study systems in various ensembles (canonical, isothermal-isobaric, grand-
canonical and the Gibbs ensemble) and we compute statistical properties of interacting Lennard-
Jones particles (equation of state, phase diagram, diffusion coefficient). In Part III some ad-
vanced assignments are presented, as well as appendices that describe the basics of classical
thermodynamics and the basics of mathematics.

We aim at undergraduate chemistry and physics students with some basic knowledge of
classical thermodynamics. No knowledge about computer programming is required. We feel
that this book will provide (1) the necessary background for more advanced courses in statistical
thermodynamics and/or molecular simulation (2) sufficient background for studying the book
“Understanding Molecular Simulations” by Daan Frenkel and Berend Smit [8]. For a more in-
depth discussion of molecular simulation techniques we also refer the reader to Refs. [9–11].
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Chapter 1

Probability of States in Isolated Systems

1.1 Isolated Systems

We first consider isolated systems that do not exchange energy with the environment. This
means that the system is perfectly isolated from the environment so that there is no heat transfer
with the environment and no radiation enters or escapes the system. Moreover, no work (either
mechanical or chemical) is performed on or by the system. Mechanical work can be achieved
by compressing or expanding the system while chemical work corresponds to a flux of particles
that go in or out of the system. Therefore, isolated systems have a constant volume V (and
shape), a constant number of particles N, and a constant energy E.

Although the total energy of an isolated system is constant, the individual atoms may have
different energies. E.g. in a gas the collisions between the particles will lead to energy exchanges
and to many different positions, velocities and energies of the individual atoms. If one could
make a high speed movie with atomic resolution, each of the images would be different (as all
atomic positions and velocities would be different). One might think that the distribution of
positions and velocities depends on the type of collisions in the gas. Many experimental and
theoretical investigations have made it plausible that this idea is incorrect. Instead, we have
the so-called hypothesis of equal a priori probability (also called the fundamental assumption): All
possible configurations of the system which have the same total energy are equally likely. Here a config-
uration means a complete description of all the degrees of freedom of all entities in the system.
In the case of a classical description of a mono-atomic gas this means that a configuration is
fully described by all positions and velocities of all atoms. For a quantum mechanical gas of
non-interacting molecules all quantum numbers for all atoms should be given.

Question 1 (Balls & Bucket)
Explain that the Balls & Bucket game of the preface can be considered as an isolated system.

Question 2 (Throwing a Die)
Throw three dice many times and look only at those throws where the total of the eyes (the “energy” of the
throw) is 12. The following throws are possible: (6 and 5 and 1), (6 and 4 and 2), (6 and 3 and 3), (5 and
5 and 2), (5 and 4 and 3) and (4 and 4 and 4). Does the hypothesis of equal a priori probability say that
these six throws are equally likely? If not, what is the probability for each of the throws?
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1 2 3 4 5 6 7 8 9 N

3ε
4ε
5ε

0

2ε
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6ε
7ε

Figure 1.1: Snapshot of a system of N harmonic oscillators, each with energy levels
0, ε, 2ε, 3ε · · · . The oscillators can exchange energy packets (of size ε = h̄ω) but the total en-
ergy remains constant.

1.2 Harmonic Oscillators

From elementary quantum mechanics, we know that a harmonic oscillator has equally spaced
energy levels:

Ek =

(
k +

1

2

)
h̄ω with k = 0, 1, .... (1.1)

where h̄ = h/ (2π) is Planck’s constant and ω is the eigenfrequency of the oscillator. Suppose
that we have a system of N independent harmonic oscillators. Each harmonic oscillator can emit
a photon that can be absorbed immediately by another oscillator. In this system the individual
oscillators may have different energies. A configuration of the system is given by (k1, k2, ..., kN),
where kn is the state of oscillator n. The energy of oscillator n is denoted by E (n) = Ekn . If the
system is isolated, the total energy E is constant and is given by

E = E (k1, k2, ..., kN) =

N∑
n=1

Ekn = E0 +

N∑
n=1

h̄ωkn = E0 + ε

N∑
n=1

kn (1.2)

Here E0 = Nh̄ω/2 is the energy of N oscillators in the ground state. The example above with the
three dice (question 2) corresponds to a system of N = 3 harmonic oscillators with h̄ω = ε = 1

and E0 = 0. In this example the individual energy levels are restricted to k = 1, 2 · · · 6 and
the total energy is E = 12. The probability for each of the six possible energy distributions
can be calculated explicitly. This is not possible in general. Using smart analytical approaches
one may derive the form of the most probable distribution (see section 1.4). Before following
this route we investigate the possible energy distributions “experimentally”, i.e. using a simple
computer simulation (question 4). The computer program simulates a system of N harmonic
oscillators, each of which may have an energy E (n) = 0,h̄ω, 2h̄ω, · · · (note that we did not lose
any information by choosing the ground state energy at E0 = 0), see Fig. 1.1. The total energy E

and the number of oscillators N are input for the program. One step in the simulation consists
of selecting two different oscillators A and B at random. Next, the program attempts to increase
the energy of oscillator A by h̄ω and at the same time decrease the energy of B by h̄ω. If the
energy of B becomes negative, the trial is rejected. Output of the program are “snapshots”, i.e.
the energies of all individual oscillators, after t simulation steps.

Question 3 (Statistical description of the Balls & Bucket game)
Explain why the Balls & Bucket game is equivalent to the computer simulation of harmonic oscillators
described above.
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Question 4 (Simulation of a System of Oscillators)
Consider a system of N harmonic oscillators at constant total energy E. The value of ε = h̄ω is set to 1.

1. Run the given computer program and produce “movies” of snapshots like in Fig. 1.1. Find out how
they can be influenced by changing N and E.

2. Make a “movie” of the energy of the first oscillator by showing a plot of the energy E1(t). Hint: do
not take too many or too few oscillators and take E/N not more than a few times ε.

3. Make a histogram of P (k), the probability that a given oscillator has an energy εk. Determine by
trial and error how many configurations must be taken in order to have a reasonable signal to noise
ratio in P (k). Is your result influenced by the value of N?

4. By plotting, verify that ln (P(k)) depends linearly on k and determine for a few choices of E/N the
fitting constants β and q in the equation ln (P(k)) = −βεk − ln (q). We shall see later why we
write the linear relationship in this particular form.

5. Make a histogram of P1+2(K), the probability that the sum of the energies of first two oscillators
is εK with K = k1 + k2. How does this quantity relate to the Balls & Bucket game? Explain the
differences with the result for a single oscillator. We will come back to this in question 17.

From our simulation experiment in question 4 it follows that the probability distribution for
a given state k of a single harmonic oscillator reads

P(k) =
exp[−βEk]

q
(1.3)

with constants β and q. In statistical thermodynamics the numerator exp[−βEk] is called the
Boltzmann factor. The constant q is called the molecular partition function or molecular partition
sum, defined as the sum of Boltzmann factors over all states of the oscillator

q =

∞∑
k=0

exp[−βEk] (1.4)

Substituting x = exp[−βh̄ω] one can rewrite the partition sum q of a harmonic oscillator as a
geometric series (section C.5). Using Eq. C.20 it can be shown that

q =
1

1 − exp[−βh̄ω]
(1.5)

The average energy 〈Ei〉 of a single oscillator can be related to β using the same substitution as
above and employing Eq. C.21:

〈Ei〉 =

∞∑
k=0

h̄ωkP(k) = h̄ω

∑∞
k=0 k exp[−βh̄ωk]∑∞
k=0 exp[−βh̄ωk]

=
h̄ω

exp[βh̄ω] − 1
(1.6)

In section 1.5 we show that the fitting constant β is related to the temperature T by

β =
1

kBT
(1.7)

This means that for a sufficiently large number of oscillators, a single oscillator i is surrounded
by a “heat bath” consisting of all other N − 1 oscillators, see Fig. 1.2. The temperature of this
heat bath follows from the total energy E, which in turn determines 〈Ei〉 and β.
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1 2 3 4 5 6 7 8 9 N

energy exchange

Figure 1.2: A single oscillator is surrounded by a heat bath consisting of all other oscillators. For
a large number of oscillators N the energy of this heat bath is approximately constant and equal
to E − Ek1

≈ E. The value of β follows directly from the average energy E/N.

Question 5 (Average Energy)
Explain that 〈Ei〉 = E/N.

Question 6 (Fitting Constant)
For a number of system energies E = E(k1, k2, · · · , kN), use simulation data to find 〈Ei〉 and β. Check
that your results are consistent with Eq. 1.6.

1.3 The Ideal Gas

A very important model system in the development of (statistical) thermodynamics is the ideal
gas. By definition an ideal gas is a system of non-interacting particles. More precisely, it is a sys-
tem of which the potential energy is independent of the positions of the particles. If the particles
are point particles (i.e. they are structureless, and without any internal energy eigenstates), then
the system is known in quantum mechanics as the “particles in a box” problem. For a cubic box
of volume V = L3 with N independent distinguishable point particles the quantum mechanical
problem is easily solved. The wave function of the system is a product of wave functions for the
individual particles and the system energy is the sum of the particle energies. For one particle
the possible energy levels are

Ek =
(
k2

x + k2
y + k2

z

) h2

8mL2
(1.8)

with ki = 1, 2, 3, · · · for i = x, y, z. Here k = (kx, ky, kz) comprises the three integer quantum
numbers that define the eigenstate of the particle. In an ideal gas the particles can exchange
energy by collisions. In real collisions both the total energy and the total momentum of the
particles is conserved. The ideal gas assumption however, does not take the precise motion and
position of the particles into account. Therefore, only energy conservation has to be considered.
The situation is very similar to the harmonic oscillators that exchange energy by radiation. A
subtle difference is that the energy levels of a particle in a box are not equidistant. This implies
that the energy loss of particle i during a binary collision with particle j can not always be exactly
compensated by an energy gain of particle j.

Question 7 (Ideal Gas)
Suppose that a certain particle (here denoted as i) is in state k = (2, 2, 3) and another particle (denoted
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by j) is in the ground state (1, 1, 1). Verify that when particle i changes to state (2, 2, 2) then the energy
loss ∆Ei = 5h2/8mL2 can not be compensated by an energy gain of particle j.

A method exists to deal with this problem, called the Maxwell demon method [12]. The
method will not be discussed here but it has been included in the enclosed computer program
for simulating a quantum mechanical ideal gas of distinguishable point particles.

Question 8 (Ideal Gas Energy)
Consider an ideal gas for which the particles can exchange energy. The energy of each particle is given by
Eq. 1.8 and the value of h2/8mL2 is set to 1.

1. Make “movies” of the energy of each particle, analogous to the movies for the system of harmonic
oscillators in question 4.

2. From the simulation output, measure P(k), the probability that a given particle is in state k, for
the states k that appear in the simulation.

3. Plot P(k) as a function of the energy Ek of state k. Note that sometimes different k have the same
Ek (e.g. E2,3,4 = E4,2,3 = 29h2/8mL2).

4. Verify that ln P(k) depends linearly on Ek and determine for a few choices of E/N the fitting
constants β and q in the equation ln P(k) = −βEk − ln q.

We reach the conclusion that the probability distribution for particle states and the molecular
partition function in an ideal gas have the same form (Eqs. 1.3 and 1.4) as for the system of
harmonic oscillators. We can write

q =
∑

k

exp[−βEk] =
∑

k

exp

[
−

βh2(k2
x + k2

y + k2
z)

8mL2

]
=

( ∞∑
k=1

exp
[
−

βh2k2

8mL2

])3

(1.9)

where the power of 3 is due to the fact that the summations over the three quantum numbers
kx, ky, kz are independent of eachother. For the average energy of one particle we find:

〈E〉 =
1

q

∑
k

Ek exp[−βEk] =
3

q1/3

∞∑
k=1

h2k2

8mL2
exp

[
−

βh2k2

8mL2

]
(1.10)

These expressions are exact. For the harmonic oscillator, we could do the summations analyt-
ically. Here, as for almost all physically relevant systems, this is not possible. An excellent
approximation for all circumstances can be found as follows.

Question 9 (Number of Terms in q for the Ideal Gas)
Take as an example hydrogen gas in a box of 1 cm3 at temperature 1K. Calculate the factor α = βh2/

(
8mL2

)
that appears in the exponents of Eq. 1.9 (note that β = 1/(kBT)). Estimate after how many terms the
last term is half the first term. At which temperature is the spacing between the first two energy levels
equal to kBT?

We see that for all practical circumstances, i.e. realistic system size and temperature, many
terms will contribute to the summations in Eqs. 1.9 and 1.10. We can then treat the energies
of ideal gas molecules as continuous variables. Hence, in these expressions for the partition
function and the energy we may replace summations by integrations. Indeed for α � 1 we may
use the approximations (see section C.8)

∞∑
k=1

exp[−αk2] ≈
∫∞
0

dk exp[−αk2] =
1

2

√
π

α
(1.11)
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∞∑
k=1

k2 exp[−αk2] ≈
∫∞
0

dkk2 exp[−αk2] =
1

4α

√
π

α
(1.12)

Substituting these approximations into Eq. 1.9 and Eq. 1.10 we find for the molecular partition
function

q =
( π

4α

)3/2
=

(
L

Λ

)3

=
V

Λ3
(1.13)

where
Λ ≡ h√

2πmkBT
=

h√
2πm/β

(1.14)

is often called the thermal wavelength, and

〈E〉 =
3

2β
=

3

2
kBT (1.15)

for the average molecular energy in which we used Eq. 1.7 for β. This remarkably simple
expression is in line with the classical thermodynamics result that the energy of an ideal gas
depends on temperature only, and not on volume or pressure (see Eq. B.2).

Another advantage of treating the energy as a continuous, rather than a discrete variable,
is that we can simulate an ideal gas at constant energy without having to invoke a Maxwell
demon. Indeed, whereas for discrete energy levels the energy loss and energy gain of two
colliding particles can not always be matched exactly, this poses no problem in the continuous
case. This simplifies the simulation of an ideal gas, which becomes essentially the same as for
the harmonic oscillators. In both systems a binary collision may lead to an exchange of particle
energies, the only difference being that for harmonic oscillators only discrete amounts of energy
can be exchanged, whereas for an ideal gas arbitrary energy exchange is possible.

1.4 Entropy and the Most Probable Distribution

In the previous section we have found “experimentally” that after some time the distribution of
states in an isolated system reaches a certain form, that does depend on the total energy of the
system. On the other hand according to the fundamental assumption all accessible states with
the same energy are equally likely. This may seem contradictory. The subtlety however is that
the distribution of states deals with particle states and the fundamental assumption with system
states.

Consider e.g. a system of N particles with three non-degenerate energy levels: E0 = 0,
E1 = ε and E2 = 3ε. A system state S = (k1, k2, · · ·kN) gives the state kn for each particle
n = 1, 2, · · · ,N in the system. A system distribution N = (N0,N1, · · ·Nk · · · ) is given by the
numbers Nk of particles that are found in each of the particle states k. As the total number of
particles is constant,

∑
k Nk = N. Fig. 1.3 shows an example of the system state and system

distribution for N = 4.
Next, we consider the situation of all possible system states at a fixed total energy E. If the

total energy is E = 3ε above the ground state, then one possibility is that the energy 3ε is
absorbed by one of the particles. It is also possible that the same energy is distributed over three
particles of the system, see table 1.1. In the first case the system distribution isN = (N − 1, 0, 1),
in the second case it is N = (N − 3, 3, 0).

We denote the number of system states corresponding to the system distributionN as W(N ).
There are W(N ) = N system states corresponding to N = (N − 1, 0, 1) and W(N ) = N(N −

1)(N − 2)/6 system states corresponding to N = (N − 3, 3, 0). Obviously, for large N the proba-
bility to find the system with the latter distribution is much larger than to find it with the first.
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1 2 3 4

3ε

0
ε

Figure 1.3: System of N = 4 particles with three non-degenerate energy levels: E0 = 0, E1 = ε

and E2 = 3ε. The system state S gives the state kn for each particle so here S = (2, 1, 1, 0). The
total energy of the system is therefore E =

∑
k EkNk = 2 × 3ε + 1 × ε + 1 × ε + 0 × ε = 8ε.

The system distributionN gives the number of particles in each of the states. As there is N0 = 1

particle in the ground state, N1 = 2 particles in the state with energy E1 and N2 = 1 particle in
state with energy E2, the the system distribution reads N = (N0,N1,N2) = (1, 2, 1).

S N
possibility k1 k2 k3 k4 N0 N1 N2

1 0 0 0 2 3 0 1
2 0 0 2 0 3 0 1
3 0 2 0 0 3 0 1
4 2 0 0 0 3 0 1
5 1 1 1 0 1 3 0
6 1 1 0 1 1 3 0
7 1 0 1 1 1 3 0
8 0 1 1 1 1 3 0

Table 1.1: All possible system states S for N = 4 particles that are distributed over 3 energy
levels with energies E0 = 0, E1 = ε and E2 = 3ε such that the total energy equals 3ε. The system
state S = (k1, k2, k3, k4) gives the state for each particle n = 1, 2, 3, 4 in the system. For example,
k3 = 2 means that particle 3 has an energy of Ek3

= E2 = 3ε. The system distribution N =

(N0,N1,N2) gives the number of particles in each of the particle states E0, E1, E2. For example,
N0=1 means that there is only a single particle in energy level E0 (there are 4 possibilities for
this).
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Question 10 (Number of states)
Explain without using formulas that for large N there are much more system states corresponding to
N = (N − 3, 3, 0) than to N = (N − 1, 0, 1).

For a given system distributionN , the probability distribution P(k|N ) to find a given particle
in state k equals

P (k|N ) ≡ Nk(N )

N
(1.16)

in which
∑

k Nk = N. For the example given above, we see that

N = (N − 1, 0, 1) → P(0|N ) =
N − 1

N
P(1|N ) = 0 P(2|N ) =

1

N

N = (N − 3, 3, 0) → P(0|N ) =
N − 3

N
P(1|N ) =

3

N
P(2|N ) = 0 (1.17)

It turns out that for a large number of particles, a single system distribution becomes dom-
inant which means that the majority of system states correspond to that system distribution.
Therefore, the probability distribution P(k) that we measured in questions 4 and 8 will be re-
lated to the most probable system distribution (denoted asN ?). The hypothesis of equal a priori
probabilities implies that the most probable system distribution for a given system energy E is
the one corresponding to the largest number of system states W(N ). An elementary combinatorial
formula (section C.6) learns that

W(N ) =
N!∏∞

k=0 Nk!
(1.18)

The discussion so far leads to the expectation that during each of the simulations above the
number W(N ) increases with “time”. As this number is very large it is more practical to follow
its logarithm in time. Using Stirling’s approximation, Eq. C.48 for ln N! we find that

ln W(N ) = ln N! − ln
∞∏

k=0

Nk!

= N ln N − N −

∞∑
k=0

[Nk ln Nk − Nk]

= N ln N −

∞∑
k=0

[Nk ln Nk]

= −

∞∑
k=0

[Nk (ln Nk − ln N)]

= −N

∞∑
k=0

Nk

N
ln

Nk

N

= −N

∞∑
k=0

P(k|N ) ln P(k|N ) (1.19)

Since the redistribution of states over the particles is a spontaneous process at constant volume,
number of particles and total energy, the second law of classical thermodynamics tells us that
the entropy should increase (see appendix B). Entropy is an extensive variable (proportional
to the system size, see section B.1). These properties are seen to be satisfied by ln W as well.
Therefore, we follow Boltzmann’s brilliant suggestion that the (statistical) entropy of a system
distribution N is given by

S(N ) = kB ln W(N ) (1.20)
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The thermodynamic (i.e. equilibrium) entropy S = S(U, V,N) corresponds to the most probable
system distribution, say N = N ?(U, V,N)

S(U, V,N) = kB ln W(N ?) = −NkB

∑
k

P(k) ln[P(k)] (1.21)

where the summation is over all possible system states that are present in N ?. The probabilities
that appear at the right hand side are the ensemble probabilities P(k) = P(k|N ?) = Nk(N ?)/N,
as given by Eq. 1.16.

Question 11 (ln W(N ) Increases with Time)
In this question, we will consider a system of N harmonic oscillators with total energy E. At time zero,
all energy is inside the first oscillator so N = (N − 1, 0, 0, · · · , 0, 1). At each timestep, a single unit of
energy is exchanged between two oscillators. This process (starting fromN = (N−1, 0, 0, · · · , 0, 1) and
exchanging energy packets) is repeated a large number of times. The program calculates ln W(N ) as a
function of time, as well as the system distribution N at the end of the simulation.

1. Run the simulation for N = 5000 and E = 5000 and verify that for very short simulations, the
final system distribution N is not Boltzmann distributed (Nk 6= exp[−βEk]).

2. Show that for a large number of cycles ln W(N ) is going to a maximum and that at this point, the
system distribution N approaches a Boltzmann distribution (Nk ∝ exp[−βEk]). Verify that for
different simulations, the final system distributions N do not differ much.

3. Verify that ln W(N ) (and therefore S) is an extensive quantity (section B.1) by running a simula-
tion for N = 2500 and E = 2500.

It is important to realize that the result that we found in question 11 is a direct demonstra-
tion of the second law of thermodynamics; only a single system distribution N ? (here: the Boltzmann
distribution) corresponding to a maximum entropy is important. It also gives a statistical interpreta-
tion of this macroscopic law. The increase of entropy of an isolated system during irreversible
processes, is nothing else than the approach to the most probable system distribution N ?.

1.4.1 Boltzmann Distribution corresponds to a Maximum in ln W(N )

We have measured in our simulations, that the probability of a particle state is proportional to its
Boltzmann factor, Eq. 1.3, with β is a fitting parameter for given U, V and N. It is also possible
to proof mathematically that Eq. 1.3 corresponds to the system distribution N = N ?(U, V,N) for
which the number of system states W(N ) is maximal. The proof is as follows. We maximize
ln W rather than W itself. On the outset all non-negative integer values for any of the Nk are
possible, but there are two restrictions:

N −
∑

k

Nk = 0 (1.22)

E −
∑

k

NkEk = 0 (1.23)

Introducing two Lagrange multipliers α and β (see section C.10), we maximize

Φ(N ) = ln W(N ) − α

(
N −

∑
k

Nk

)
+ β

(
E −

∑
k

NkEk

)

= −
∑

k

Nk ln
Nk

N
− α

(
N −

∑
k

Nk

)
+ β

(
E −

∑
k

NkEk

)
(1.24)
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Figure 1.4: Entropy as a function of N0 (question 12).

without taking the restrictions into account. Taking the derivative with respect to a single Nk

leads to
∂Φ

∂Nk
= − ln

Nk

N
− 1 + α − βEk = 0 (1.25)

This relation shows that P(k) = Nk/N is proportional to exp[−βEk]. The constant energy condi-
tion Eq. 1.23 relates β to the system energy E. In the next section the physical interpretation of
β as the inverse temperature will be developed.

Question 12 (Entropy of an Isolated System)
Consider a system of N molecules. The total energy U of the system is constant. Each of the molecules
can be in one of the following states: k = 0, k = 1 and k = 2 with energies E0 = 0, E1 = ε and E2 = 2ε

respectively. The number of molecules in state k is denoted as Nk.

1. Show that for this system

N0 + N1 + N2 = N (1.26)
N1ε + 2N2ε = U (1.27)

2. Show that the system distribution N only depends on N0 according to

N =

(
N0, 2N − 2N0 −

U

ε
,N0 − N +

U

ε

)
(1.28)

3. Show that the entropy of the system is given by

S = kB ln

[
N!

N0!
(
2N − 2N0 − U

ε

)
!
(
N0 − N + U

ε

)
!

]
(1.29)



1.5 The Temperature of a Distribution 13

Fig. 1.4 shows the entropy S as a function of N0 for several values of N and U.

5. For U/ε = 0 and N = 300, this figure consists only of a single point. Explain why.

6. For U/ε = 300 and N = 300, the entropy is at a maximum for N0 = 100. What is the most
probable system distribution N ? in this case? To which temperature does this system distribution
correspond?

7. Consider the systems with U/ε = 150 and a different number of molecules, N = 300 and N = 200

respectively. For both systems, estimate the probability that a molecule is in the ground state.
Explain why this probability is larger for N = 300.

1.5 The Temperature of a Distribution

In sections 1.2 and 1.3 we have presented expressions for the average energy of particles in a
system and in section 1.4 for the entropy. Energy differences, volume and number of molecules
are well-defined and, at least in principle, accurately measurable both in experiments and in
numerical simulations. In experiments one can also measure temperature, and using these mea-
surements one can determine the entropy of a system. In numerical simulations temperature is
not an a priori defined object, and it has to be defined in accordance with the entropy, which we
defined in Eq. 1.21. At constant system volume V and number of particles N we can use the
thermodynamic definition of temperature (section B.6)

T =

(
∂U

∂S

)
V,N

=

(
∂U
∂β

)
V,N(

∂S
∂β

)
V,N

(1.30)

in which U is the macroscopic internal energy. If the system is sufficiently large, the average energy
〈E〉will be equal to the macroscopic internal energy U. This means that for the calculation of the
numerator of Eq. 1.30 we can use

U ≈ N
∑

k

EkP(k) (1.31)

to get (
∂U

∂β

)
V,N

= N
∑

k

Ek
∂P(k)

∂β
(1.32)

whereas for the denominator it follows from Eq. 1.21 that(
∂S

∂β

)
V,N

= −NkB

∑
k

(ln P(k) + 1)× ∂P(k)

∂β
(1.33)

With
∑

k ∂P(k)/∂β = 0, which follows from the normalization
∑

k P(k) = 1 of the probability
distribution, this can be simplified to(

∂S

∂β

)
V,N

= −NkB

∑
k

ln P(k)
∂P(k)

∂β
(1.34)

The next step is to substitute the explicit form of Eq. 1.3 for the probability P(k) and to use once
more that

∑
k ∂P(k)/∂β = 0:(

∂S

∂β

)
V,N

= −NkB

∑
k

(−βEk − ln q)
∂P(K)

∂β
= NkBβ

∑
k

Ek
∂P(K)

∂β
(1.35)
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which can be used directly in Eq. 1.30 leading to

T =

(
∂U

∂S

)
V,N

=
(∂U/∂β)V,N

(∂S/∂β)V,N

=
N

∑
k Ek

∂P(K)
∂β

NkBβ
∑

k Ek
∂P(K)

∂β

=
1

kBβ
(1.36)

Thus we obtain the following simple relation between β and T :

β =
1

kBT
(1.37)

Question 13 (Temperature of a Distribution)
Consider the simulation of question 11 with N = 5000 and E = 5000.

1. Determine the value of ln W(N ) and the fitting constant β from a fit of the final system distribution
to Nk ∝ exp[−βEk]. Make sure that the simulation has enough cycles so W(N ) is at a maximum.

2. Repeat the simulation for N = 5000 and E = 5500 and measure the final entropy. Check whether
the value of β that you found in the previous subquestion is consistent with the thermodynamic
definition of the temperature (Eq. 1.36):

β =

(
∂S/kB

∂E

)
N

=

(
∂ ln W(N )

∂E

)
N

≈
(

∆(ln W(N ))

∆E

)
N

(1.38)

Question 14 (Entropy for an Ideal Gas)
Boltzmann’s formula for the entropy (Eq. 1.20) is in line with classical thermodynamics. To show this,
consider the compression of an ideal gas at constant temperature from volume V1 to volume V2.

1. Show that the entropy change for this process equals

∆S =

∫V2

V1

dV

(
∂S

∂V

)
T,N

=

∫V2

V1

dV

(
∂P

∂T

)
V,N

=

∫V2

V1

dV
NkB

V
= NkB ln

V2

V1
(1.39)

Hint: have a look at sections B.5, B.6 and B.7.

2. Explain that for N point particles in volume V , W(N ) ∝ VN.

3. Show that the result from classical thermodynamics (Eq. 1.39) is in agreement with Eq. 1.20.

In retrospect, we have shown that for an isolated system (which has a constant volume V

and number of particles N), the system energy E determines the temperature T via the fitting
parameter β. Then the probability distribution P(k) of the system states and all thermodynamic
variables are determined as well. This result can also be used the other way around. The temper-
ature of a system at given volume V and number of particles N determines the whole probability
distribution P(k) and from this distribution the system energy E and all other thermodynamic
variables can be derived. In this way the temperature controls the energy of the system, in the
same way as the energy of an isolated system controls the temperature of that system.



Chapter 2

Systems at Constant Temperature

In the previous chapter we have investigated the probability distribution for the states of non-
interacting harmonic oscillators or molecules in a system containing many of them. This result
can be generalized in order to describe systems whose particles do interact. First, each individual
particle is replaced by a molecular system with a fixed volume V and fixed number of (possibly
interacting) molecules N. Second, a large set of such molecular systems is considered. Such a set
is called an ensemble and averages calculated from these sets are often called ensemble averages. If
the systems in the ensemble can exchange energy, but no particles or volume, then the ensemble
is called the canonical ensemble. The energy E of each of the systems in the ensemble fluctuates
around the average system energy U in the ensemble. From the analogy of the canonical ensem-
ble of systems that only exchange energy with a system of particles that only exchange energy,
it is understood that the most probable distribution of energies over the system in the ensemble
is the Boltzmann distribution. From the perspective of one system in the ensemble the exchange
of energy with the other systems in the ensemble can be interpreted as heat exchange with a
thermostat bath at the temperature T that corresponds to U, V and N. Therefore, the average
system energy in the ensemble is the thermodynamic energy U = U(N,V, T) of the molecular
system.

2.1 Boltzmann Probability in the Canonical Ensemble

In quantum mechanics the state of a system is completely determined when all the quantum
numbers are given. In classical mechanics this is the case when all the positions and momenta
of all particles are known. For ease of notation we use one symbol k, which comprises all this
detailed information to label the state of a system. In chapter 1 we found Eq. 1.3 for the prob-
ability P(k) to find an individual harmonic oscillator or an individual ideal gas molecule in a
molecular state k. Analogously, the probability to find a system of a canonical ensemble in a
state k with energy Ek is given by

P(k) =
exp[−βEk]

Q
(2.1)

where β is a constant that is determined by the total energy of all systems in the ensemble, and
Q = Q(N,V, T) is a normalization constant, called the canonical partition function, which is given
by a sum over all possible (quantum) states k of a system in the ensemble

Q =
∑

k

exp[−βEk] (2.2)

Combining Eqs. 2.1 and 2.2 leads to
∑

k P(Ek) = 1, e.g. the probability distribution is normal-
ized. The probability distribution Eq. 2.1 is known as the Boltzmann distribution. Note that the
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summation in Eq. 2.2 is over the states of an individual system, but the value of β is related to
the total energy of the ensemble or, which amounts to the same, to the average energy of a system
in the ensemble.

2.2 Thermodynamic Variables Follow from Q

2.2.1 Energy can be Derived from the Partition Function

The thermodynamic energy, also called internal energy, of a system is the average energy that a
system has in the proper ensemble. This quantity is often called the ensemble average of the energy.
In the canonical ensemble the (ensemble) average energy of a system can be derived from the
canonical partition function by

U = 〈E〉 =
∑

k

EkP(Ek) =

∑
k Ek exp[−βEk]

Q
= −

1

Q

(
∂Q

∂β

)
V,N

= −

(
∂ ln Q

∂β

)
V,N

(2.3)

At this point we have given a statistical interpretation of the thermodynamic variables like en-
ergy, volume, number of particles and temperature. The summation includes the individual
quantum states of all the molecules in one system. Therefore, we obtain the average energy of
systems in the ensemble, which is proportional to N.

2.2.2 Entropy can be Derived from the Partition Function

In an isolated system we have argued that the entropy is given by Eq. 1.21. We can generalize
this relation for the canonical ensemble. If we substitute Eq. 2.1 directly in Eq. 1.21, we obtain
the total entropy Sens of the ensemble. If Nens is the number of systems in the ensemble we then
see that

Sens = −kBNens
∑

k

exp[−βEk]

Q
ln
[

exp[−βEk]

Q

]
(2.4)

In this expression k runs over all possible system states, Ek is the system energy of state k and
Q is the sum over all system states (Eq. 2.2). As all the systems in the ensemble are identical,
the entropy S of one system is obtained from S = Sens/Nens. The logarithm in Eq. 2.4 equals
−βEk − ln Q, so the resulting expression for S can be split into two terms:

S =
Sens

Nens
= kB

∑
k

(
exp[−βEk]

Q
βEk

)
+ kB

(∑
k exp[−βEk]

Q
ln Q

)
=

U

T
+ kB ln Q (2.5)

The factor N that appears in Eq. 1.21 is absent here. The reason is that the system entropy in
Eq. 2.5 is the entropy of one of the systems in a big ensemble, whereas S in Eq. 1.21 is the total
entropy of N individual particles. Since Eq. 2.3 relates the thermodynamic system energy U to
the canonical partition function Q, we have now an expression for the system entropy S in terms
of Q as well.

2.2.3 Free Energy is the Logarithm of the Partition Function

In classical thermodynamics one can derive the other thermodynamic variables from the de-
pendence of the free energy F on temperature T , volume V and number of particles N. In the
definition of F (Eq. B.15) we can substitute Eq. 2.3 for U and Eq. 2.5 for S to get a remarkably
simple expression for the free energy

F = U − TS = −kBT ln Q (2.6)
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In the canonical ensemble N, V and T are fixed. From classical thermodynamics we know that
for these variables the free energy F is the characteristic thermodynamic state function, see sec-
tion B.5, which forms the starting point of treating systems for which N, V and T are the control
variables.

2.2.4 Chemical Potential follows directly from the Free Energy

From the definition of the free energy (Eq. B.15) it follows directly that

dF = −SdT − PdV + µdN (2.7)

Therefore, the chemical potential µ follows from

µ =

(
∂F

∂N

)
T,V

(2.8)

Alternatively, consider the process in which the system is (mentally) built up by adding molecules,
meanwhile adjusting the volume and adding heat in such a way that P and T remain constant.
This results in the alternative expression

µ =
F + PV

N
=

F

N
+

P

ρ
(2.9)

which will be used extensively in chapter 9.

2.2.5 Other Thermodynamic Variables

Following standard routes in classical thermodynamics, expressions for many thermodynamic
variables, at given N, V and T , can be derived from F(N,V, T). Operating in the same way on the
statistical expression −kBT ln Q for F we obtain statistical expressions for all these thermody-
namic variables. We conclude that all thermodynamic functions and variables can be deduced
from the dependence on N, V and T of the canonical partition function Q.

A first example of a thermodynamic variable that can be derived from the canonical partition
function is the pressure P. Upon substituting the thermodynamic definition

P = −

(
∂F

∂V

)
T,N

(2.10)

in Eq. 2.6 we find

P = kBT

(
∂ ln Q

∂V

)
T,N

(2.11)

Once we have an expression for the dependence of Q on V , N and T we can derive how P

depends on these thermodynamic variables∗. This relation is the equation of state that we know
from thermodynamics, see section B.1. For an ideal gas Eq. 1.13 shows that the translational
part of the molecular partition function depends on V , but the internal part is independent of V .
Therefore the pressure of an ideal gas does not depend on the internal structure of the molecules.

∗In section 6.4 we will show that even for systems with interactions, the pressure can be written as an ensemble
average that can be easily computed in a simulation.
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Question 15 (The Pressure of a Gas)
In chapter 3 we will show how the canonical partition function Q of an ideal gas is related to the molecular
partition function q. Upon combining Eq. 1.13 with Eq. 3.6 it follows that

Q =
1

N!

(
V

Λ3

)N

(2.12)

is the partition function of an ideal gas of N point particles in volume V . The thermal wavelength Λ is
given by Eq. 1.14.

1. Show that the partition function of the ideal gas leads to the ideal gas law (P = ρkBT in which
ρ = N/V).

We can also calculate the equation of state for non-ideal gases, once Q is known. A simple example is a
(model) gas of hard spheres for which the canonical partition function is approximately given by

Q(N,V, T) =
1

N!

(
V − N · b

Λ3

)N

(2.13)

in which b is related to the (excluded) volume per particle.

2. Starting from the ideal gas expression for Q (Eq. 2.12), justify that taking into account the total
volume occupied by the hard sphere molecules leads to an expression of the form of Eq. 2.13.

3. Show that Eq. 2.13 results in the following equation of state, giving P as a function of N, V and T .

P =
NkBT

V − N · b
(2.14)

4. Is the pressure of a system of N hard spheres in volume V and temperature T larger, smaller or
equal to that of an ideal gas at the same density and temperature?

5. Show that the energy of this system is equal to the energy if the system would behave as an ideal
gas (Eq. 1.15).

A second example is the specific heat at constant volume. Its thermodynamic definition is

CV =

(
∂U

∂T

)
V,N

(2.15)

Using this in Eq. 2.3 we find

CV =
1

kBT2

∂2 ln Q

∂β2
(2.16)

Question 16 (Heat Capacity)
Simulate systems of harmonic oscillators at a number of different choices of the system energy U (see
question 4). Determine the temperature for each of these systems. Plot U versus T to calculate the molar
heat capacity CV = CV/N using the thermodynamic definition Eq. 2.15. Also use the molecular version
of Eq. 2.16, i.e. with Q replaced by q (Eq. 1.4) to deduce CV from a plot of ln q versus β and show that
the results are consistent.
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2.3 Fluctuations Disappear in the Thermodynamic Limit

In the system of harmonic oscillators and in the ideal gas we have seen that the probability
distribution over the states of individual oscillators or particles depends exponentially on the
energy of the state. Naively one might think that the probability to find a group of particles,
or even a system, with an energy E is proportional to exp[−βE]. However, as we already know
from the Balls & Bucket game, this is not correct.

Question 17 (Division into Subsystems)
Consider the system of question 4.

1. Divide a system of N = 100 oscillators with a total energy E = 200 in groups with m oscillators
within each group. Em is the energy in the first m oscillators. Make energy distribution histograms
P(Em) for m = 2, 5, 10, 20, 50. Explain the location of the maximum of this distribution.

2. From the histograms estimate the standard deviation σEm and average 〈Em〉 for each of the values
of m.

3. Make a double-logarithmic plot of σEm/ 〈Em〉 against m to find out whether the decay follows a
power law σEm/ 〈Em〉 ∝ m−α and, if yes, estimate the exponent α.

The reason that a peak appears in the distribution of the average particle energy in a group
of m particles, and that this peak increases in height and decreases in width with increasing m,
is a manifestation of a very general theorem in mathematics.

Question 18 (Central Limit Theorem)
Consider a large number of random numbers R that are drawn from a uniform distribution between 0 and
1.

1. Make a frequency histogram p(R) of these numbers and make sure that the shape of the histogram
is consistent with what one should expect.

2. Draw a large number of averages a ≡
(∑N

k=1 Rk

)
/N of N subsequent random numbers. Make a

frequency histogram p(a) of these averages and check that this histogram has a peak near a ≈ 1/2,
which becomes narrower with increasing N. Fit p(a) to a Gaussian shape, p(a) ∝ exp[−(a −

µ)2/(2σ2)], explain the meaning of µ and σ and discuss how they do or do not depend on N.

3. Answer the same questions for numbers R that can take the value 0 with probability p and the value
1 with probability 1 − p. First take p = 0.5 and next p = 0.1. Explain the difference.

What we have seen in questions 17 and 18 is the so-called Central Limit Theorem. Let x1, x2, · · · , xN

be N independent stochastic variables, drawn from a distribution p(x) with average µ and vari-
ance σ2. Then the distribution p(y) of the stochastic variable

y ≡
∑N

i=1 xi − Nµ

σ
√

N
(2.17)

will approach a standard normal distribution

p(y) =
1√
2π

exp[−y2/2] (2.18)

for N → ∞ for any p(x). In parallel to the mathematical argument, there is also a thermody-
namic argument to explain and interpret the decrease of the peak width with increasing number
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of particles m. The argument is based on a remarkable result, known as the fluctuation dissipa-
tion theorem. It states that the response of a variable to an external stimulus is proportional to the
variance, as caused by thermal fluctuations, of that variable. In the present case the stimulus is a
temperature variation and the energy change in response is proportional to the thermal energy
fluctuation.

Question 19 (Energy Fluctuations)
By definition the variance of the energy is

σ2
E ≡

〈
(E − 〈E〉)2

〉
(2.19)

were the brackets 〈· · · 〉 are used to denote an average.

1. Show that Eq. 2.19 can alternatively be written as

σ2
E =

〈
E2
〉

− 〈E〉2 (2.20)

for any probability distribution of the energy.

2. Write out Eq. 2.16 to the form

CV =
1

kBT2

[
1

Q

∂2Q

∂β2
−

(
1

Q

∂Q

∂β

)2
]

(2.21)

and derive from this result the following explicit expression for the heat capacity

CV =

〈
E2
〉

− 〈E〉2

kBT2
(2.22)

We see that the heat capacity measures not only the energy dissipation in a system but also
the energy fluctuation. This result can also be used the other way around, to get an expression
for the relative fluctuations of the system energy E around the average value U = 〈E〉

σE

U
=

√
CV/kB

βU
∝ 1√

N
(2.23)

From a thermodynamic point of view it is obvious that both U and CV are proportional to N

(although the leading terms in both
〈
E2
〉

and 〈E〉2 are of order N2, their difference in Eq. 2.22 is
proportional to N). Thus it follows from Eq. 2.23 that the energy fluctuations are proportional
with 1/

√
N, see Fig. 2.1. The effect that we find for the idealized systems of harmonic oscillators

and ideal gases is very general. For macroscopic systems (N → ∞) the energy fluctuations can
be neglected and the energy of the system can be considered as constant. The same holds for
pressure fluctuations in a system at constant volume, for volume fluctuations in a system at
constant pressure, and for temperature fluctuations in an adiabatic system.

2.4 The Third Law

In thermodynamics the physical basis for the third law, stating that the entropy of any system is
zero at zero temperature is difficult to understand. This is however straightforward in statistical
mechanics. At zero temperature, i.e. β → ∞, only the state or states with the lowest possible
energy will be occupied. This is by definition the ground state. From quantum mechanics we
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Figure 2.1: Relative energy fluctuations (Eq. 2.23) for a system of N harmonic oscillators with
U/N ≈ 2.

know that the ground state is non-degenerate. Therefore the only system distribution that has
to be considered is N = (N, 0, 0, · · · ). Since W(N ) = 1 for this system distribution, we get

S(T → 0) = kB ln 1 = 0 (2.24)

which is precisely the third law of thermodynamics. The same result can be derived from the
partition function. At zero temperature the system energy U is the ground state energy E0. The
Boltzmann factor for the ground state is exp[−βE0] and in the limit β → ∞ the Boltzmann factor
for all excited states is vanishingly small. Hence the partition function Q reduces to the first term
Q = exp[−βE0]. Substituting this in Eq. 2.5 we find

S(T → 0) = lim
T→0

(
E0

T
+ kB ln[exp[−βE0]]

)
= 0 (2.25)

which is equivalent with Eq. 2.24.

Question 20 (Examples of the Third Law)
Consider the partition function for an ideal gas and an harmonic oscillator.

1. Show that q(T → 0) = 1 for the molecular partition function q of a harmonic oscillator (Eq. 1.5).

2. Show that q(T → 0) = 1 for the molecular partition function q of an ideal gas (Eq. 1.9).

3. Show also that q(T → 0) = 0 for the molecular partition function q of an ideal gas when the
usually very accurate approximation Eq. 1.13 is used. This seems to imply S(T → 0) = −∞ for
an ideal gas, violating the third law. Use question 9 to explain that Eq. 1.13 is essentially a high
temperature approximation, even though it can be used at very low T . Argue that therefore the
approximate result q(T → 0) = 0 does not lead to the conclusion that the third law does not hold
for an ideal gas.





Chapter 3

Many Particle Systems

In general molecular systems may be very complicated. Each quantum state of the system may
involve a very large number of quantum numbers. If we know nothing about the set of pos-
sible quantum numbers and the energy levels associated with them it is hopeless to obtain a
reliable approximation for the partition function. Fortunately, there are often methods to reduce
the complexity of this problem to a large extent. The first case is when the degrees of freedom
influence each other hardly. In section 3.1 we shall discuss why and how the partition function
factorizes in such cases. Complications arising from the indistinguishability of identical parti-
cles in quantum mechanics will be discussed shortly. The second case is when interactions are
important, but they can be described by a relatively simple interaction model for the multiplicity
of energy states can be approximated. This will be the subject of section 3.3.

3.1 Factorization for Independent Degrees of Freedom

In many cases it is appropriate to assume that different degrees of freedom in a system are
independent. This means that the energy stored in one degree of freedom does not influence
the other degrees of freedom. Consider an ideal gas classically. The ideal gas assumption, that
molecules are not interacting, implies that the kinetic energy associated with the center of mass
motion is independent of the rotations and internal vibrations of the molecule. Therefore, the
energy of the system will be the sum of translational kinetic energy and internal (kinetic and
potential) energy of the molecules. According to quantum mechanics, the eigenfunctions will
factorize in center of mass coordinates and internal molecular coordinates, leading to the total
energy being the sum of translational and internal molecular contributions.

For the moment, we restrict ourselves to an ideal gas consisting of N molecules. Each
molecule is characterized by its own set of quantum numbers (the quantum mechanical indistin-
guishability of identical particles will be dealt with below). Let kn = (kn,x, kn,y, kn,z) denote the
translational quantum numbers of molecule n, corresponding to the particle in a box eigenfunc-
tion for that molecule (see Eq. 1.8). The translational state of the system is described by a set of
3N quantum numbers that we denote as k = (k1, k2, · · · , kN). For an ideal gas of point particles
these quantum numbers describe all possible system states. Real atoms and molecules how-
ever, have an internal structure. For atoms electronic excitations are possible and for molecules
in addition we have rotations and internal vibrations. We write ln for the quantum numbers
that describe the internal excitations of particle n. They describe the electronic, rotational and
vibrational eigenstates of molecule n. The internal states of the ideal gas system are described
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by the list l = (l1, l2, · · · lN) of all ln. For the energy we write

Ek,l =

N∑
n=1

E0,n +

N∑
n=1

Etrans
kn

+

N∑
n=1

Einternal
ln (3.1)

The first term sums the ground state energies E0,n of the molecules n. In many cases the molec-
ular ground state energy serves as an arbitrary zero of the energy scale, and can be omitted.
However, in the presence of chemical reactions, the relative position of the energy levels in the
reacting molecules is important as well (see section 4.2). Then the ground state energy can be
chosen as zero for each of the elements of the periodic system, and this choice fixes the value of
the ground state energy for molecules. Therefore, we can define the molecular partition function
here as

q =
∑
k,l

exp[−β(Ek,l − E0)] (3.2)

which means that ∑
k,l

exp[−βEk,l] = q× exp[−βE0] (3.3)

In the sequel, for ideal gases and ideal gas mixtures, we shall only write the ground state energy
explicitly when chemical reactions play a role (see chapter 4).

Question 21 (Factorization)
In general, if the energy of a system can be written as the sum of independent terms, the partition function
of this system can be written as the product of partition functions corresponding to each term of the total
energy. To illustrate this, show that

3∑
i=0

2∑
j=0

xiyj =

3∑
i=0

 2∑
j=0

xiyj

 =

(
3∑

i=0

xi

)
×

 2∑
j=0

yj

 (3.4)

The translational energy of molecule n is given by Eq. 1.10 and the internal energy Einternal
ln of

that molecule may, among others, include vibrational terms of the form of Eq. 1.6. If the quan-
tum numbers k and l could be summed independently, then we would find for the summation
in Eq. 3.1 ∑

k1,l1

· · ·
∑

kN,lN

exp

[
−β

N∑
n=1

EkN,lN

]
=

(∑
k,l

exp[−βEk,l]

)N

(3.5)

This factorization however, is in general not valid. It is based on the tacit assumption that
the particles are distinguishable. E.g. it is assumed that the system state with particle 1 in
the ground state and particle 2 in the first excited state is different from the system state in
which particle 2 is in the ground state and particle 1 is in the first excited state. From quantum
mechanics we learn that identical particles can not be distinguished and that these two situations
correspond to the same system state. Therefore, if we replace the summation in Eq. 2.2 by that
in Eq. 3.5, we introduce an enormous over-counting of states when the particles are identical.

Fortunately, in most many particle systems, the over-counting can be repaired relatively eas-
ily. As we have seen in question 9, many translational states contribute to the partition function.
Therefore, for almost all terms in the left hand side of Eq. 3.5 all N particles are in different
molecular states. Interchanging particles when the system is in one of the states (k, l) is possible
in N! ways. All of these interchanges leave the system state unchanged, though they correspond
to different terms in Eq. 3.5. Therefore we can correct for the over-counting by writing

Q =
qN

N!
(3.6)
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where q is the molecular partition function (Eq. 3.2) ∗. For an ideal gas of molecules this amounts
to

qN =

(∑
k

exp[−βEtrans
k ]

)N

×

(∑
l

exp[−βEinternal
l ]

)N

= (qtrans)N × (qinternal)N (3.7)

These expressions form the basis of the statistical thermodynamics of systems of non-interacting
particles. An ideal gas is an example of non-interacting molecules. Eq. 1.9 takes care of the
translational degrees of freedom of the gas molecules. Internal degrees of freedom like rotations,
other vibrational modes and electronic excitations can be treated in a similar way. As long as
these degrees of freedom are (approximately) independent, each will give rise to a factor in the
molecular partition function that is based on the eigenstates and energy levels of that degree of
freedom.

The factorization of the partition function leads to the conclusion that the free energy can be
written as a sum of contributions from different degrees of freedom. Indeed, combining Eq. 3.7
with the definition of the free energy (Eq. 2.6) gives

F = −NkBT

[
1 + ln

qtrans

N

]
− NkBT ln qinternal (3.8)

for a system of non-interacting particles. Here some elementary properties of the logarithm and
Stirling’s approximation ln N! ≈ N ln N − N (Eq. C.48) have been used. Note that the denom-
inator N which originates from the combinatorial factor N! appears only once in Eq. 3.6. This
is because the internal degrees of freedom belong to the molecules whose indistinguishability
was treated together with their translational motion. In systems of interacting particles the sim-
ple reduction in Eq. 3.8 of the canonical partition function Q to molecular partition functions q

can not be used any more, and we shall need more elaborate techniques to obtain the partition
function and the variables that can be derived from it. Also then the over counting of identical
states should be properly treated. E.g. in the Monte Carlo simulations that we shall treat later
in chapter 6, molecules are explicitly numbered, as otherwise they can not be addressed by the
computer program. The over-counting thus induced can be taken into account again by factors
1/N! for all particle types that are included in the simulation.

3.2 The Ideal Gas

In section 2.2 we have seen that all thermodynamic variables can be derived from the canonical
partition function. For an ideal gas we substitute Eq. 1.13 in Eq. 3.8 to find

ln Q(N,V, T) = N

[
1 + ln

V

NΛ3

]
+ N ln qinternal(T) (3.9)

where the thermal wavelength Λ is given by Eq. 1.14. The first term at the right hand side is
the translational contribution, which depends on N, V and T and is the same for all types of
molecules. The second term is due to the internal degrees of freedom of each molecule and
this term depends on the type of molecule. It is proportional to N, but further it only depends
on temperature. At very low temperature it may be that only the ground state of the molecule

∗In text books it is sometimes argued that in some systems the factor 1/N! in Eq. 3.6 should be omitted, notably
in crystals, where the individual particles can be distinguished by the lattice position where they are situated. This
argument however, can not be valid since even in crystals atoms and molecules may hop from one lattice site to
another, though much slower than in gases or liquids.
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is occupied and since qinternal(T → 0) = 1 the internal structure of the molecules does not
contribute to the partition function, neither to thermodynamic variables. To keep the expression
transparent we shall drop the argument (T) of the internal molecular partition function, writing
simply qinternal for qinternal(T). The link with thermodynamics is via Eq. 2.6 for the Helmholtz
free energy F(N,V, T), where substituting Eq. 3.9 leads to

F(N,V, T) = −NkBT

[
1 + ln

V

NΛ3

]
− NkBT ln qinternal (3.10)

In an analogous way the entropy can be found from S = − (∂F/∂T)N,V , leading to the so-called
Sackur-Tetrode equation for the entropy of a polyatomic ideal gas

S(N,V, T) = NkB

[
5

2
+ ln

V

NΛ3

]
+ NkB

[
ln qinternal + T

d ln qinternal

dT

]
(3.11)

The first term is the entropy of a mono-atomic ideal gas (with all atoms in their electronic ground
state), the second term comprises the entropy associated with the internal degrees of freedom
of a molecular ideal gas. This expression is very useful at all realistic temperatures, but it is
in conflict with the third law (see question 20). For very low temperature the term with the
thermal length Λ becomes dominating, leading to S ≈ NkB ln T3/2, where S(T → 0) = −∞. For
the energy we obtain

U(N,V, T) =
3

2
NkBT − N

d ln qinternal

dβ
(3.12)

Here the first term is the kinetic energy of the center of mass of the molecules, the second term
may comprise the kinetic energy of rotation, potential and kinetic vibrational energy and elec-
tronic energies. The specific heat is

CV(N,V, T) =
3

2
NkB −

N

kBT2

d2 ln qinternal

dβ2
(3.13)

Finally, we get the chemical potential from the definition µ = (∂F/∂N)T,V . As the chemical
potential is especially useful in the context of chemical reactions, we have to take the molecular
ground state energy E0 explicitly into account. This amounts to replacing q by q exp[−βE0] (Eq.
3.3). The final result is

µ = E0 − kBT ln
V

NΛ3
− kBT ln qinternal (3.14)

Question 22 (Chemical Potential of an Ideal Gas)
In thermodynamic applications the chemical potential of an ideal gas at temperature T and pressure P is
often written in the form

µ = µ(P, T) = µ0(T) + kBT ln [P/P0] (3.15)

in which P0 is an arbitrary reference pressure (usually P0 = 1 bar). Obviously an expression for µ0 can be
obtained by subtracting Eq. 3.15 from Eq. 3.14. Show that the resulting expression for µ0 only depends
on T and not on N and V .

3.3 Multiplicity of Energy Levels

In question 8 we have seen that for a system consisting of many non-interacting particles there
may be many different system (quantum-)states with the same energy. The number of system
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Figure 3.1: Multiplicity Ω(E) for N = 1 particle in a 3-dimensional box (question 8). The mul-
tiplicity Ω(E) is the number of system states with energy E. For the ground state Emin of this
system, kx = ky = kz = 1 so Emin = 3ε and Ω(Emin) = 1. Note that Ω(E) increases with E. For
systems of N � 1 particles the increase will be very sharp.
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Figure 3.2: The product Ω(E) exp[−βE] is often strongly peaked around the average energy 〈E〉.
The position of this peak strongly depends on the temperature, its width decreases with the
number of particles in the system.
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states corresponding to the same energy E is called the multiplicity Ω(E) of that energy, see
Fig. 3.1. Also for internal molecular degrees of freedom (e.g. rotations and vibrations) and for
interacting systems multiplicities exist. Using these, the canonical probability distribution of
states, Eq. 2.1, can be transformed into the canonical probability of energies

P(E) =
Ω(E) exp[−βE]

Q
(3.16)

Q =
∑
E

Ω(E) exp[−βE] (3.17)

in which the summation is over all possible energies of the system and not over all system states.
It is important to take into account the quantum mechanical indistinguishability of identical par-
ticles. One of the consequences is that the exact ground state (with energy Emin) of any physical
system is non-degenerate, Ω(Emin) = 1, whereas a classical description suggests that the system
ground state, where all N molecules are in their molecular ground state, has a multiplicity of N!.
For non-interacting molecules their indistinguishability is taken into account afterwords as in
Eq. 3.6. In a classical description of interacting particles, the same factor 1/N! has to be included
in Eq. 3.17.

Question 23 (Particle inside a Box)
For a particle in a 3-dimensional box most of the degeneracies are 1, 3 or 6. Let ε = h2/

(
8mL2

)
denote

the elementary energy scale for this particle. By finding out which combination(s) of kx, ky and kz

correspond to the requested particle energy, verify that Ω(3ε) = 1, Ω(9ε) = 3 and Ω(14ε) = 6. Also
explain the exceptional value Ω(38ε) = 9 (hint: look at question 8).

Usually Ω(E) strongly increases with energy (as suggested by Fig. 3.1) for large systems and
exp[−βE] strongly decreases with energy. Therefore, the function Ω(E) exp[−βE] is strongly
peaked around the average energy 〈E〉, see Fig. 3.2. The value of 〈E〉 will therefore depend on
the temperature. It depends on the temperature and on the location of the energy levels whether
only a few, or many levels contribute to the molecular partition function in Eq. 3.17. We will
come back to this in chapter 5.



Chapter 4

Mixtures of Ideal Gases

The applications of statistical thermodynamics that we have encountered so far were developed
for molecules that do not interact. In reality, molecules have both physical and chemical inter-
actions. With physical interactions we mean attraction and repulsion of molecules that do not
essentially change the individual molecular properties. Such interactions are responsible for the
phase behavior of systems. They will be the subject of the next chapters.

Chemical reactions are a form of interaction where molecules are formed or removed. Dur-
ing chemical reactions the number of molecules of one kind is not constant, but it approaches
an average value, given by the equilibrium constants of the reactions. The equilibrium constant
can, at least in principle, be calculated by statistical methods. The central problem in a statistical
analysis is to compute the partition function of the system, including the interactions. This is a
formidable task in general, and approximations have to be developed for almost all cases.

In the next chapter we shall develop the theory and the methods for treating systems of
physically interacting subsystems. Here we shall treat the case where chemical reactions con-
stitute the only molecular interactions, i.e. we restrict ourselves to chemically reactive ideal gas
mixtures. In these systems the canonical partition function for each composition of the mixture
can be computed directly from the molecular partition functions. Then the equilibrium situa-
tion can be analyzed by a proper averaging over the exact results for different compositions. In
this way we shall already develop a feeling for the approximation methods that will be used
later for physically interacting molecular systems. The essential point is that the distribution
of Ω(E) exp[−βE] (Eq. 3.17) is often sharply peaked around the average 〈E〉. Therefore, many
important thermodynamic variables can be obtained from an analysis of the states with an en-
ergy close to the peak value E ≈ 〈E〉. Methods that take into account only the states with the
most probable energy 〈E〉 are referred to in literature as mean field or random phase approxima-
tions. They are often reliable, as long as one is not too close to a critical point (see chapter 5 and
following). In general these methods reasonably estimate the system energy, but they underes-
timate the system entropy.

4.1 Non-Reactive Ideal Gas Mixtures

We start with an ideal gas mixture of gases A and B, first excluding chemical reactions. The
canonical partition function for an ideal gas mixture of NA molecules A and NB molecules B is

Q(NA,NB, V, T) =
q

NA
A exp[−βNAE0,A]

NA!
×

q
NB
B exp[−βNBE0,B]

NB!
(4.1)
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Note that we have explicitly written the ground state energy for both molecules according to
Eq. 3.2 so here qA and qB are defined according to

q =
∑

k

exp[−β(Ek − E0)] (4.2)

This is necessary because below we need to take into account the energy change during chemical
reactions. The free energy of the mixture is

F(NA,NB, V, T) = −kBT ln Q (4.3)

When we apply the thermodynamic definition (Eq. B.28) for the molar free energy we get

FA =

(
∂F

∂NA

)
P,T,NB

= −kBT ln
[

qA

NA

]
+ E0,A − kBT (4.4)

The molar free energy FB of molecules B is defined analogously. Using Eq. 3.14 we recover the
thermodynamic relation F = µ − kBT for an ideal gas. We also see that

F = NAFA + NBFB (4.5)

which is what one could expect for an ideal gas mixture.

Question 24 (Energy of an Ideal Gas Mixture)
Use the general relation between U and Q (Eq. 2.3) and Eq. 4.1 to show that the energy of this ideal gas
mixture is given by

U(NA,NB, V, T) = NAUA + NBUB (4.6)

where

UA =

(
∂U

∂NA

)
P,T,NB

= −

(
∂ ln qA

∂β

)
V

+ E0,A (4.7)

is the molar energy of A and the molar energy of B is defined analogously.

Question 25 (Probability Distribution of Energy in Mixtures)
Consider again an ideal gas for which the particles can exchange energy by collisions (see question 8).
Set up simulations of NA molecules A and NB molecules B. Take a few different values for the respective
ground state energies E0,A and E0,B and the total energy U. Measure the molecular energy distributions
for A and B separately and fit them with ln P(Ek) = −β(E − E0) − ln q. Investigate whether they can be
fitted with the same β and q for A and B. Explain your answer with physical arguments. Is your result
influenced by the total energies or by the ground state energies of A and B molecules?

4.2 Isomerization Reaction in an Ideal Gas Mixture

In this section we discuss a simple first order reaction. We assume that the density of the mixture
is sufficiently low that it can be treated as an ideal mixture. The reaction equation is

A � B (4.8)

Examples of such reactions are isomerization equilibria in organic chemistry, but also confor-
mational changes in biomolecules fall in this class. The numbers NA of isomers A and NB of
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isomers B are not constant, but their sum N = NA + NB is. The partition function of the reac-
tive mixture is obtained by summing Eq. 4.1 over all possible values of NA while substituting
NB = N − NA

Q =

N∑
NA=0

q
NA
A exp[−βNAE0,A]

NA!
×

q
N−NA
B exp[−β(N − NA)E0,B]

(N − NA)!
(4.9)

Note that Eq. 4.9 has a very similar structure as Eq. 3.17. To see this, we use Eq. C.24 for the
binomial coefficient

(
N

NA

)
to write Eq. 4.9 in the form

Q =
1

N!

N∑
NA=0

(
N

NA

)
exp [−β [NA(E0,A − kBT ln qA) + (N − NA)(E0,B − kBT ln qB)]] (4.10)

The summation over energy levels is replaced by a summation over NA, the binomial coeffi-
cient gives the multiplicity and the energy in the Boltzmann factor is the sum of the zero-point
energies and the internal free energy of the isomers. For the present isomerization reaction the
summation in Eq. 4.10 can be done exactly using the binomial summation formula Eq. C.25:

Q =
1

N!

N∑
NA=0

(
N

NA

)
(qA exp[−βE0,A])NA × (qB exp[−βE0,B])(N−NA)

=
(qA exp[−βE0,A] + qB exp[−βE0,B])N

N!

=
qN

N!
(4.11)

Here, we have introduced the average molecular partition function q

q = qA exp[−βE0,A] + qB exp[−βE0,B] (4.12)

From this relation, the system energy of the reactive mixture is found as

U = U(N,V, T) = −

(
∂ ln Q

∂β

)
V,N

= N× UAqA exp[−βE0,A] + UBqB exp[−βE0,B]

q
(4.13)

Applying the second binomial summation formula, Eq. C.26, we can calculate the average num-
ber of A isomers as well:

〈NA〉 =
1

Q

1

N!

N∑
NA=0

NA

(
N

NA

)
(qA exp[−βE0,A])NA × (qB exp[−βE0,B])(N−NA)

= N× qA exp[−βE0,A]

q
(4.14)

Question 26 (Exact Results for an Isomerization Reaction)
Consider the chemical reaction A � B.

1. Use Eq. 4.14 to obtain the following expression for the equilibrium constant of reaction Eq. 4.8:

K =
〈NB〉
〈NA〉

=
qB exp[−βE0,B]

qA exp[−βE0,A]
(4.15)
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2. Show that K depends only on temperature, as it should, and not on V or N, even though Q depends
on these parameters. Hint: use Eq. 3.7 and the dependence of qtrans and qinternal on N, V and T .

Question 27 (Simulation of an Isomerization Reaction)
Repeat the simulations that you carried out in question 25, but now with the additional possibility of the
reaction A � B.

1. Determine β by fitting the energy distributions of the A and B isotherms. Is the result different
from what you found in question 25?

2. Use the average numbers of A and B isomers in the simulation to measure the equilibrium constant
K and check the validity of Eq. 4.15.

3. Discuss whether the measured values for K have the dependence on the zero-point energies of both
isomers that one should expect.

4. Measure the instantaneous value of K(t) ≡ NB/NA as a function of time. Explain why K(t)

fluctuates around K.

5. Make a histogram of the measured values for K. Repeat the simulations for twice as many particles
and explain why the spread of K(t) decreases.

4.3 Mean Field Approximation

We can use the discussion in the previous section to illustrate the mean field or random phase
approximation and to judge its reliability. Indeed we will see that for the simple example of a
first order isomerization reaction Eq. 4.15 is also found by a mean field approximation.

Our starting point is the partition function Q (Eq. 4.9). Rather than taking all terms in the
summation into account, we look for the largest term. Consider the situation that qA = qB = q

and E0,A = E0,B = 0 which means that

Q = qN
N∑

NA=0

1

NA!(N − NA)!
(4.16)

Anticipating that the largest term in this equation will appear for NA = N/2, in Fig. 4.1 we have
plotted the ratio

R =

qN

NA!(N − NA)!

qN

(N/2)!(N/2)!

=
((N/2)!)2

NA!(N − NA)!
(4.17)

as a function of NA/N for various N. Clearly, for large N the terms with NA ≈ N/2 have the
largest contribution to the summand of Eq. 4.16. In the mean field approximation, we assume
that only a single value of NA will be dominant in Eq. 4.16. For the general case, the largest term
is easily found by differentiating the logarithm of the summand in Eq. 4.9 with respect to NA

and setting it to zero. The result is

ln[qA] − βE0,A − ln[NA] − ln[qB] + βE0,B + ln[N − NA] = 0 (4.18)

With a little rewriting it follows that Eq. 4.15 and Eq. 4.18 are equivalent. We thus conclude that
the average energy as well as the average composition of this isomeric system are the same as the
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energy and composition of the largest and therefore most important term of the canonical par-
tition function, even though on the outset all terms could have their influence. In other words,
here the mean field approximation leads to an exact result for the energy and the composition of
our isomer mixture for any value of N.

Naively one might think that also the free energy and the entropy could be derived from
the most important term only, i.e. that the mean field approximation is also exact for the free
energy. This is not the case. These thermodynamic variables involve not only the position but
also the width of the peak in the contributions to Q in Eq. 4.9. Consider again the situation that
qA = qB = q and E0,A = E0,B = 0. Eq. 4.16 can be rewritten as

Q = qN
N∑

NA=0

1

NA!(N − NA)!
=

qN

N!

N∑
NA=0

(
N

NA

)
=

qN

N!
× 2N (4.19)

where we have used Eq. C.25. This means that the free energy F equals

F = −kBT ln Q

= −NkBT [ln q + ln 2] + kBT ln N!

≈ −NkBT [ln q + ln 2] + kBT
[
N ln N − N + ln

√
2πN

]
(4.20)

where we have used Stirling’s approximation for ln N! (Eq. C.53). By using only the largest term
(NA = N/2) in Eq. 4.16 we find

Fmean field = −kBT ln Qmean field

= −kBT ln
[

qN

(N/2)!(N/2)!

]
= −NkBT ln q + 2kBT ln(N/2)!

≈ −NkBT ln q + NkBT ln N − NkBT ln 2 − NkBT + 2kBT ln
√

πN (4.21)

Clearly, the mean field result overestimates the free energy by

Fmean field − F = kBT ln
√

πN/2 (4.22)

4.4 Reactive Ideal Gas Mixtures

For the simple first order isomerization reaction discussed in the previous sections we have
shown that for the calculation of chemical equilibrium it was not necessary to evaluate the com-
plete sum that makes up the canonical partition function. Already from the largest and therefore
most important term we could calculate the equilibrium constant and the average energy. That
result could be proven exactly for any N, since analytical expressions existed for both the sum
and the most important term. For general chemical reactions this is not the case, and the mean
field approach, using the largest term only, may the only available route.

Question 28 (Equilibrium Constant of an Ideal Gas Reaction: Mean Field Approximation)
Consider a reaction of the form

A + B � 2C (4.23)
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Figure 4.1: The ratio R (Eq. 4.17) as a function of NA/N for various N.

1. If we start with an initial ideal gas mixture of N/2 molecules A and B respectively and zero
molecules C, explain why the partition function of the mixture equals

Q =

N/2∑
NA=0

q
NA
A exp[−βNAE0,A]

NA!
×

q
NA
B exp[−βNAE0,B]

NA!
×

q
N−2NA
C exp[−β(N − 2NA)E0,C]

(N − 2NA)!

(4.24)

2. Take the logarithm of one of the terms in Eq. 4.24 and differentiate it with respect to NA using Eq.
C.48. Show that the largest term in the sum corresponds to a value for NA which satisfies

ln[qA] − βE0,A + ln[qB] − βE0,B − 2 ln[NA] − 2 ln[qC] + 2βE0,C + 2 ln[N − 2NA] = 0 (4.25)

3. Rewrite this result in the following form for the equilibrium constant of reaction Eq. 4.23:

Kmeanfield =
〈NC〉2

〈NA〉 〈NB〉
=

q2
C exp[−2βE0,C]

qAqB exp[−β(E0,A + E0,B)]
(4.26)

4. Show that the same result can be obtained by setting µA + µB = 2µC. Hint: use Eq. 3.14 for the
chemical potential µA and replace N by NA and E0 by E0,A. Note that qx ∝ Λ−3

x . The chemical
potential for B and C can be derived in an analogous way.

Question 29 (Equilibrium Constant of an Ideal Gas Reaction: Simulations)
Repeat the simulations that you carried out in question 25, but now with the additional possibility of the
reaction A + B � 2C. Consider the situation that qA = qB = qC = q and E0,A = E0,B = E0,C = 0.
The simulation is started with N/2 molecules A and B respectively and zero molecules C. Compare
the computed value of K with the mean field result (Eq. 4.26) for a various total number of molecules
(N = NA + NB + NC). Make a plot of ln(|K − Kmeanfield|) versus N.
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In summary, we have seen that the statistical thermodynamics of ideal gas mixtures is a
straightforward generalization of a mono-component ideal gas. The equilibrium constant for
ideal gas reactions can be directly computed from the partition functions of the components in
the mixture. By definition, the equilibrium constant describes the average composition of the
mixture, but in practice for macroscopic systems it is perfectly reliable to consider only the most
probable composition. Therefore, for chemical equilibria in high temperature gases the mean
field approximation is usually valid.





Chapter 5

Using Monte Carlo Simulations to
Compute Ensemble Averages

5.1 Introduction

In the previous chapters, we have shown that once the partition function Q(N,V, T) of a sys-
tem is known, it is possible to compute all ensemble averages (e.g. the average energy 〈E〉 as
a function of temperature). This suggests a simple recipe for computing thermodynamic prop-
erties: compute the partition function Q and everything else will follow from it. For several
systems in the previous chapters this recipe works quite well. However, in this chapter we will
show that for systems with interactions (e.g. a system of atoms in which the atoms interact
with eachother), it is usually impossible to compute or approximate the partition function Q

and therefore we have to rely on other methods to compute thermodynamic averages like the
average energy 〈E〉. One of these methods is the so-called Monte Carlo method which will be
introduced in this chapter. We will explain the Monte Carlo method using one of the simplest
system with interactions, the Ising model. In the next chapters we will apply this method to
systems of interacting atoms or molecules. For more information about the methodology, we
refer the reader to more specialized textbooks [8–10].

5.2 The 1D Ising System

The 1D Ising system consists of N spins si arranged on a line, see Fig. 5.1. The value of each
spin si can be either +1 or −1. Only neighboring spins si and si+1 have an interaction energy
that is proportional to the product si ∗ si+1:

E(s1, s2, · · · , sN) = −ε

N−1∑
i=1

si ∗ si+1 (5.1)

The factor ε is a proportionality constant that describes the strength of the interaction.

Question 30 (Exact Partition Function for the 1D Ising Model)
Consider the 1D Ising model (Fig. 5.1). We write QN for the partition function of a system of N spins.

1. Show that the partition function for N = 2 can be written as

Q2 = 2 exp[−βε] + 2 exp[βε] = 4 cosh(βε) (5.2)
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Figure 5.1: The 1D Ising system (here: N = 7 and E = −2ε). The value of each spin si can be
either +1 (spin up) or −1 (spin down) and each spin interacts only with its 2 neighbors. The
interaction energy between two spins is proportional to the product of their spins.

in which

cosh(x) =
exp[−x] + exp[x]

2
(5.3)

2. Show that
Q3 = Q2 × 2 cosh(βε) (5.4)

3. Explain that the following recursive relation

QN = QN−1 × 2 cosh(βε) (5.5)

is valid for all N ≥ 2.

4. Show that for large N, the partition function QN of the 1D Ising model can be written as

QN = 2 ∗ (2 cosh(βε))N−1 (5.6)

5.3 The 2D Ising System

In the 2D Ising system, N×N spins sij are arranged on a two-dimensional lattice with periodic
boundary conditions. This means that the system is surrounded by copies of itself, see Fig. 5.2.
As the system is two-dimensional, we need in principle two indexes (i and j) for describing the
location of a spin. For convenience however, we will often use a single index only so we will
use si with i = 1, 2, · · · ,N2 instead of sij (with i = 1, 2, · · · ,N and j = 1, 2, · · · ,N) to identify a
certain spin. The value of each spin si can be either +1 or −1. Each spin si has 4 neighbors (with
n(i, j) being the j-th neighbor of spin i) which interact with si. The interaction energy of spin si

with neighbor sn(i,j) is proportional to the product si ∗ sn(i,j). To handle spins at the boundaries,
we apply the so-called periodic boundary conditions, see Fig. 5.2. The total energy of the system
equals

E = −
ε

2

N2∑
i=1

4∑
j=1

si ∗ sn(i,j) (5.7)

in which we have to consider the interactions of each spin i with each of its 4 neighbors n(i, j).
The factor 1/2 is present to ensure that interactions are not counted double (if i interacts with
n(i, j), then n(i, j) also interacts with i, this interaction is counted only once).

An important parameter of the Ising model is the magnetization M, which is equal to the
sum of all spins

M =

N2∑
i=1

si (5.8)
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Figure 5.2: The 2D Ising system (N2 = 4 × 4 = 16 spins) with periodic boundary conditions.
As the system is two-dimensional, we need two indexes (i and j) for the location of a spins, i.e.
s34 means the spin for which i = 3 and j = 4. The central system is surrounded by copies of
itself. The value of each spin sij can be either +1 or −1 and each spin only interacts with its
4 neighbors, the interaction energy between two spins is proportional to the product of their
spins. As periodic boundaries are applied, spins 11, 31, 42 and 44 are the neighbors of spin 41.
For convenience however, we often use a single index (i = 1, 2, · · · ,N2) to identify each spin.

The 2D Ising model is almost 100 years old and it is one of the simplest interacting systems. Dur-
ing the second world war the behavior of this system was solved analytically by Onsager (note
that his solution is highly non-trivial). It turns out that this system has a critical temperature at
kBTc/ε = 2/ ln(1+

√
2) ≈ 2.269 (so βcε = ε/(kBTc) ≈ 0.44). Below the critical temperature large

domains form in which nearly all spins have the same value (either +1 or −1) and there are
small domains with opposite spins (Fig. 5.3 (left)). This phase coexists with a phase of opposite
magnetization (all spins reversed). Above the critical point the system consists of a single phase
only (Fig. 5.3 (right)).

Question 31 (2D Ising model for N = 2)
Consider the 2D Ising model for N = 2.

1. Make a drawing similar to Fig. 5.2 and identify all neighbors of each spin.

2. Show that the total energy of the system (Eq. 5.7) equals

U = −2ε [s11s12 + s11s21 + s12s22 + s21s22] (5.9)

3. Show that each product of spins in Eq. 5.9 can be either +1 or −1.
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Figure 5.3: Typical snapshot of the 2D Ising model (N = 32) below the critical point (left) and
above the critical point (right).

4. How many system states are possible? Make a list of these system states and of their energy.

5. Show by evaluating all system states that the total energy E can be either 8ε, −8ε or 0. For each of
these values determine the multiplicity Ω(E), i.e. the number of system states with energy E.

6. Use Eq. 3.17 to show that the partition function of this system equals

Q = 2 exp[−8βε] + 2 exp[8βε] + 12 (5.10)

7. Derive the expression for the average system energy 〈E〉 by differentiation of Eq. 5.10.

8. Make a plot of the average energy of this system as a function of the temperature.

9. Explain why for this system, 〈M〉 = 0, independent of the temperature.

10. Explain why for this system,
〈
M2
〉
6= 0, independent of the temperature.

5.4 Computing the Partition Function of the 2D Ising Model

In question 31 we have seen that for a system of 2 × 2 spins, there are in principle 22×2 = 16

possible system states. Most of them (12) have energy 0, for 2 system states U = 8ε and for 2

system states U = −8ε. This makes it convenient to express the partition function in the same
way as in Eq. 3.17

Q =
∑
E

Ω(E) exp [−βE] (5.11)

in which the multiplicity Ω(E) counts how many system states have an energy equal to E (i.e.
for the 2 × 2, system, Ω(8ε) = Ω(−8ε) = 2, Ω(0) = 12 and Ω(E) = 0 for other values of E).
Note that the summation

∑
E is over all possible energies of the system, and not over all system

states.
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Figure 5.4: Left: Multiplicity Ω(E) for the 2D Ising model of various size (N). Note that the
vertical axis is logarithmic. Right: 10 log(Ω(E) exp[−βE]) for N = 5 at various temperatures.

Question 32 (Multiplicity)
Consider the 2D Ising model with N×N spins.

1. Show that the minimum energy of this system equals Emin = −2εN2 with Ω(Emin) = 2. Show
that the next state has an energy −2εN2 + 8ε and that there are 2×N2 realizations of this state.

2. Explain that the average energy of the system can be computed using

〈E〉 = −

(
∂ ln Q

∂β

)
=

∑
E Ω(E)E exp[−βE]∑
E Ω(E) exp[−βE]

=

∑
E Ω(E)E exp[−βE]

Q
(5.12)

3. How many system states exist for N = 3? And for N = 4 or N = 100?

4. Explain that the computational effort to find all system states and to compute their energy is pro-
portional to N2 × 2N×N.

5. On a somewhat older computer, it takes approximately 5 minutes to compute Ω(E) for N = 5 by
counting all possible system states. Estimate how long it takes to compute Ω(E) for N = 6 and
N = 10.

In Fig. 5.4 (left), we have plotted Ω(E) for various N. Starting from the minimum energy
Emin = −2εN2, Ω(E) increases quite rapidly with E. For larger N, the number of energy lev-
els “explodes” and it is no longer possible to evaluate all possible system states anymore, which
means that we are unable to compute the partition function Q by evaluating all system states.
This would suggest that it is no longer possible to evaluate thermodynamic properties like the
average energy of these systems. Fortunately, this is not the case, even though it is not possible
to compute Q.

5.5 The Monte Carlo Method

5.5.1 Random Sampling

In the previous section we have seen that we cannot compute Q exactly for large N as the total
number of states is too large. A possible way to compute thermodynamic averages such as 〈E〉
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would be to generate random system states and use the Boltzmann factor as the statistical weight
for these configurations. After all, the average energy 〈E〉 equals

〈E〉 =

∑
spins E(s1 · · · sN2) exp[−βE(s1 · · · sN2)]∑

spins exp[−βE(s1 · · · sN2)]
(5.13)

in which
∑

spins denotes a summation over all possible system states and E(s1 · · · sN2) is com-
puted using Eq. 5.7. As for large N it is not possible to generate all system states, we can simply
choose states at random. The relative “importance” or statistical weight of such a randomly cho-
sen configuration is the Boltzmann factor. Suppose that we generate K random system states
s1 · · · sK in which the vector s = {s1 · · · sN2} denotes the value of all spins in the system. The
ensemble average of the energy can be approximated using

〈E〉 ≈
∑K

j=1 E(sj) exp[−βE(sj)]∑K
j=1 exp[−βE(sj)]

(5.14)

For a sufficiently large number of samples (K) this expression will be a good approximation.
However, Fig. 5.4 (left) shows that although this approach is correct, it will be extremely ineffi-
cient. As Ω(E) has a maximum around E = 0, it will be most likely that a randomly generated
configuration has an energy close to 0 (i.e. a configuration like in Fig. 5.3 (right)). However,
at low temperatures those configurations have a very small statistical weight and do not con-
tribute much to the average energy. Fig. 5.4 (right) shows that at βε = 0.2, the difference in
Ω(E) exp[−βE] between E ≈ 0 and E ≈ Emin is already a factor 103 and at lower temperatures
(larger β) this factor is even much larger (e.g. this factor equals approximately 1014 for βε = 0.4).
In practice, this means that both the numerator and denominator of Eq. 5.14 will be zero and
therefore it is not possible to calculate ensemble averages accurately using random sampling.
Configurations with a larger statistical weight (energy around Emin, see Fig. 5.3 (left)) are never
generated as Ω(Emin) is extremely small compared to the maximum of Ω(E). However, usually
only those configurations have a significant contribution to the summations in Eq. 5.14. This
makes random sampling of most systems with interactions useless.

Question 33 (Random Sampling of the 2D Ising System)
Consider a series of simulations of the 2D Ising system at kBT/ε = 1 (βε = 1) in which the system states
are generated at random.

1. Assume that at this (low) temperature, only the ground state and the first excited state are occupied.
Show that in this case, the average energy can be computed using

〈E〉 =
Emin + N2 (Emin + 8ε) exp[−8βε]

1 + N2 exp[−8βε]
(5.15)

with Emin = −2εN2. See also question 32.

2. Compute the average energy 〈E〉 for different lattice sizes (N) using the given computer code and
compare your result with Eq. 5.15. Check how the estimate of 〈E〉 varies with the number of
generated system states. Use these results to explain why random sampling is extremely inefficient
for large N.

5.5.2 Importance Sampling

In the previous section, we introduced random sampling in which K random system states are
generated (s1 · · · sK). The statistical weight of a randomly generated system state is the Boltz-
mann factor, so that ensemble averages like the average energy should be computed using Eq.
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5.14. However, consider now the situation that the system states s1 · · · sK are not generated ran-
domly, but instead generated with a probability proportional to their Boltzmann factor exp[−βE(si)].
How this can be achieved is explained to the interested reader in section 5.5.3. For now, we just
assume that this is possible. In this particular case, the statistical weight of each system state is
already taken into account in the generation of a certain configuration and therefore ensemble
averages can be calculated as unweighted averages

〈E〉 =

∑K
j=1 E(sj)

K
(5.16)

This kind of sampling is called importance sampling; only system states that have a favorable
Boltzmann weight are generated and therefore this scheme does not suffer from the problems
of random sampling.

However, to use Eq. 5.16 we should be able to generate system states si with a probability
proportional to exp[−βE(si)]. This can be achieved using the following Monte Carlo scheme (see
also Fig. 5.5)

1. We start with an arbitrary system state s1. For example, we could choose all spins ran-
domly.

2. We then generate a new system state sn by flipping a single, randomly selected spin (+1 →
−1 or −1 → +1). The generation of a new system state is often called trial move.

3. Calculate the energy E(sn) of this new system state.

4. If E(sn) < E(s1), we choose s2 = sn. Otherwise, we draw a uniformly distributed ran-
dom number between 0 and 1 (this random number is denoted by ranf()). If ranf() <

exp[−β× (E(sn) − E(s1))] we choose s2 = sn and otherwise s2 = s1.

5. Update ensemble averages using Eq. 5.16.

6. Steps 2 till 5 are repeated K − 1 times until obtaining sK (i.e. starting from s2, a new
configuration is sn generated and s3 is chosen as either s2 or sn according to the rules
outlined in step 4).

Basically, our importance sampling Monte Carlo algorithm ensures that system states with a
very low Boltzmann factor are visited quite infrequently. There are many variations on this
algorithm. Consider for example the situation that one is interested in the average price of a
bottle of wine in a large shopping mall. Bottles of wine can only be found in one of the many
liquor stores in the shopping mall, which means that only in the liquor stores the Boltzmann
factor is non-zero. Outside the liquor stores (for example in shoe stores) the Boltzmann factor
is zero as bottles of wine are not sold in shoe stores. In our Monte Carlo scheme, trial moves
that take you to a place where there are no bottles of wine are therefore rejected, see Fig. 5.6. To
calculate the average price of a bottle of wine in a large shopping mall the Monte Carlo scheme
should be constructed in such a way that in principle it is possible to visit all bottles (or liquor
stores) inside this shopping mall. This condition is called ergodicity and we will come back to
this in chapter 10.

Note that it is not possible with this scheme to calculate the number of bottles of wine in the
shopping mall (which corresponds to the partition function), unless one is able to (1) label the
bottles of wine or (2) add a single bottle of wine with a known price to the shopping mall and
compute the average price again.
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flip random spin
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old new if rejected
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..............

Figure 5.5: Schematic representation of the Monte Carlo algorithm. Starting from an old system
state so, a randomly selected spin is flipped. The energy of this new system sn state is calculated.
The new system state is either accepted (e.q. the simulation is continued with the new system
state) or rejected (e.g. the simulation is continued with the old system state) depending on the
energy difference ∆E = E(sn) − E(so) and the temperature (Eq. 5.20).

Bottoms up

Liquor storeShoe shop

Figure 5.6: Only locations with a non-zero Boltzmann weight are visited.
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5.5.3 Detailed Balance

In this subsection we will shown that the Monte Carlo scheme of section 5.5.2 samples config-
urations si with a probability proportional to exp[−βE(si)]. Readers who are not interested in
this justification can safely skip this subsection.

To start, let us consider an old configuration so. A randomly selected spin of this configura-
tion is flipped leading to a new configuration sn. This process should not change the equilibrium
distribution of system states si. A sufficient condition for this is when during an infinitely long
simulation the number of moves from so to sn equals the number of moves from sn to so. This
condition is called detailed balance. For the number of moves from so to sn we can write

K(so → sn) = exp[−βE(so)]× α(so → sn)× acc(so → sn) (5.17)

in which exp[−βE(so)] is proportional to the probability to be in configuration so, α(so → sn)

is the probability to select a move in which configuration so changes into sn and acc(so → sn)

is the probability that we actually accept this move. Similarly, we can write for the number of
moves from sn to so

K(sn → so) = exp[−βE(sn)]× α(sn → so)× acc(sn → so) (5.18)

Detailed balance requires that K(so → sn) = K(sn → so). As α(so → sn) = α(sn → so) we end
up with

acc(so → sn)

acc(sn → so)
= exp[−β× (E(sn) − E(so))] = exp[−β∆E] (5.19)

Many choices for acc(so → sn) satisfy this condition, but a commonly used choice is that of
Metropolis [13]

acc(so → sn) =

{
exp[−β× (E(sn) − E(so))] if E(sn) > E(so)

1 if E(sn) < E(so)
(5.20)

More explicitly, to decide whether a trial move will be accepted or rejected we generate a ran-
dom number, denoted by ranf(), from a uniform distribution in the interval between 0 and 1.
If ranf()< acc(so → sn) we accept the trial move and we reject it otherwise. This rule satisfies
Eq. 5.19 and can be written as

acc(so → sn) = min(1, exp[−β× (E(sn) − E(so))]) = min(1, exp[−β∆E]) (5.21)

where ∆E = E(sn)−E(so) and min(a, b) = a when a < b, and b otherwise. This means that new
configurations that lower the energy are always accepted, and new configurations that increase
the total energy are accepted with a certain probability that depends on the energy difference
with the previous configuration and the temperature.

Question 34 (Generating the New Configuration)
Explain why α(so → sn) = α(sn → so).

Question 35 (Symmetric Condition)
Show that the following acceptance rule

acc(o → n) =
exp[−βE(sn)]

exp[−βE(sn)] + exp[−βE(so)]
(5.22)

also satisfies the condition for detailed balance K(so → sn) = K(sn → so).

Question 36 (Updating Ensemble Averages)
Explain why it is necessary to also count rejected moves in Eq. 5.16. Hint: consider a Monte Carlo
simulation of a quantum system with 2 energy levels with energy 0 and ε respectively. What will be the
value of 〈E〉 in this case?



46 Using Monte Carlo Simulations to Compute Ensemble Averages

0 50000 100000 150000
number of cycles

−2000

−1500

−1000

−500

0

E
/ε

Figure 5.7: Evolution of the instantaneous energy E in a Monte Carlo simulation of the 2D Ising
model at βε = 0.5 and N = 32. The initial configuration is chosen at random. In this simulation,
only after approximately 50000 Monte Carlo moves we can sample ensemble averages using Eq.
5.16.

E/ε Ω(E/ε)

-18 2
-10 18
-6 48
-2 198
2 144
6 102

Table 5.1: Multiplicity (Ω(E)) for the 2D Ising system for N = 3. The total number of states
equals 23×3 = 512.

5.5.4 Initialization and Length of the Simulation

In our simulation, we have to start with a certain initial configuration s. In principle, this could
be any configuration. However, if the Boltzmann weight of this configuration is very small, our
computed ensemble averages may be strongly influenced by our choice of initial configuration.
The reason for this it that we can not average over infinitely long sequences of configurations
(Eq. 5.16) so the number of elements in our sequence (K) is finite. Therefore, we should avoid
preparing our system in a very unfavorable initial configuration, i.e., a configuration with a
very low Boltzmann weight. It is therefore good practice to equilibrate the system first and
throw away the first part of the sequence of configurations in Eq. 5.16. This is illustrated in Fig.
5.7.

In practice, we choose a certain number of trial moves and estimate the ensemble average
〈A〉 of a certain quantity A. Then we repeat the simulation using the final configuration of the
previous simulation as our starting configuration. If 〈A〉 differs from the previous simulation,
we repeat this step and increase the number of trial moves. A quick and dirty way to estimate
the error in the computed ensemble averages is to perform the same simulation 5 times and to
compute the standard deviation.
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Question 37 (Monte Carlo Simulation of the 2D Ising Model)
Enclosed is a computer program to simulate the 2D Ising system with periodic boundary conditions. The
program computes 〈E〉,

〈
M2
〉
, Cv and the probability distribution of the magnetization (p(M)). The

simulation is performed in cycles, during each cycle an attempt is made to flip each of the spins in the
system. The first 33% of the simulation is not used to compute ensemble averages. The evolution of the
simulation can be followed by using display animation.gif.

1. Perform a simulation for N = 3 at different temperatures. For each simulation, you should check
carefully whether or not the number of cycles is sufficient (i.e. comparing the results with a two
times longer or shorter simulation). Compare the average energy 〈E〉 and heat capacity Cv with the
results of an exact calculation using the multiplicity of Table 5.1.

2. For N = 32, make a plot of the average probability that a trial move (spin flip) is successful for a
few temperatures. Explain your results.

3. In principle p(M)=p(−M). For large N (i.e. N = 32) however, at low temperatures the observed
values for M are either all positive or all negative. Confirm this with simulations. Explain why the
observed values for M are either all positive or all negative. Why is this effect less clear for smaller
N? What would you expect for very large N?

4. Perform simulations for N = 32 and investigate the effect of temperature on 〈E〉,
〈
M2
〉
, Cv, and

p(M). Explain your results. Estimate the critical temperature from your simulation results.

5. Investigate the effect of the system size N on 〈E〉 and Cv as a function of temperature. Explain your
results.





Part II

Molecular Simulation





Chapter 6

Monte Carlo Simulations of Interacting
Particles

6.1 Introduction

In the previous chapter, we have shown that for systems with interactions, we can not compute
the partition function Q exactly because the number of states is simply too large. Moreover,
most states correspond to high energies, while the number of states at a low energy is many
orders of magnitude smaller. This makes random sampling very inefficient at low temperature.
However, using importance sampling we are able to visit only the relevant realizations of the
system and in this way we are able to compute ensemble averages. In the previous chapter, this
was demonstrated for the 2D Ising model. In this chapter, we will apply the methods of the
previous chapter to a system of interacting atoms. Usually, those interactions strongly depend
on the distance between atoms. We will first explain how the particles in our system interact
and derive an expression for the partition function. This can be used to estimate deviations
from the ideal gas law at very low densities. At larger densities, such estimations are no longer
possible and we have to rely on Monte Carlo simulations. We will compare the results of these
simulations with several equations of state (e.g. the van der Waals equation).

6.2 Computer Model

6.2.1 Periodic Boundary Conditions

We will consider a system of N interacting particles in a volume V at temperature T . Similar to
the 2D Ising system, we will apply periodic boundary conditions which means that the system
is surrounded by copies of itself, see Fig. 6.1. For a system of particles this also means that
when a particle leaves the central box on one side, it enters the central box on the other side. In
Fig. 6.1, particle 1 in the central box could interact in principle with many copies of particle 3

in different copies of the central box. However, it is more convenient to consider only a single
interaction between particle 1 and 3, and the natural choice is to consider only the interaction
for which the interatomic distance is minimum. This is called the nearest image convention.

Question 38 (Effect of Walls)
An important advantage of using periodic boundary conditions is that there are no walls in the system. As
thermodynamic properties near walls usually differ from the corresponding bulk properties, it is important
to minimize any wall-effect. For a system consisting of a small number of particles without periodic
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Figure 6.1: Periodic boundary conditions. A central box is surrounded by copies of itself. The
arrows show the shortest distance between particles 1 and 3. This interaction is counted only
once in Eq. 6.2.

boundary conditions, the fraction of particles at the wall is quite large. Consider a system of n×n×n =

n3 particles arranged on a cubic lattice in 3 dimensions.

1. Explain that the number of “wall” particles equals n3 − (n − 2)3.

2. Show that the fraction of “wall” particles is approximately equal to 6/n.

3. How many particles are needed such that the fraction of “wall” particles is less than 0.001?

6.2.2 Lennard-Jones Pair Potential

The Lennard-Jones potential is a popular pair potential to describe the interactions between
atoms and molecules. In this model, the interaction energy of two atoms at distance rij = |rij| =

|ri − rj| equals

φLJ(rij) = 4ε

[(
σ

rij

)12

−

(
σ

rij

)6
]

(6.1)

where σ and ε are the so-called Lennard-Jones parameters, see Fig. 6.2. In this model two atoms
attract each other at large distances as a result of attractive van der Waals forces, but at short
distances two atoms repel each other. Reasonable values of the Lennard-Jones parameters are
known for various atoms/molecules, see table 6.1.
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compound σ/Å (ε/kB)/K

Ar 3.41 120
Ne 2.75 36
Kr 3.83 164
Xe 4.06 229
CH4 3.78 179
N2 3.70 95
O2 3.58 118

Table 6.1: Lennard-Jones parameters of various atoms/molecules.

Question 39 (Lennard-Jones Potential)
Answer the following questions:

1. Two atoms repel each other at very small distances. Explain why.

2. Show that the Lennard-Jones potential has a minimum for rmin = 21/6σ and that φ(rmin) = −ε.

3. Explain that the unit of ε/kB is temperature.

4. Convert ε of argon (table 6.1) into units of kJ/mol and kJ/molecule respectively.

As the Lennard-Jones pair potential describes the interaction energy between two particles,
the total energy of a Lennard-Jones fluid should be computed by summing over all possible
atom pairs, i.e.

E(rN) =

N−1∑
i=1

N∑
j=i+1

φ(rij) =
∑
i<j

φ(rij) (6.2)

in which the 3N dimensional vector rN = (x1, y1, z1, x2, y2, z2, · · · , xN, yN, zN) denotes all parti-
cle positions. For a system consisting of N atoms, there are in principle N(N − 1)/2 pairs which
means that the computational cost of computing the energy of a system is of order N2. The
number of interactions that needs to be computed can be reduced by neglecting all interactions
beyond a certain radius rcut, which should not be too small (in practice, rcut = 2.5σ is often
used). In any case, rcut should always be smaller than half the boxsize L.

Question 40 (Nearest Image Convention)
Consider a system of particles in a rectangular box of dimensions L× L× L. Show that the nearest image
convention (section 6.2.1) is automatically satisfied when rcut < L/2.

Truncating the Lennard-Jones potential at rcut results in the following potential

φ (r) =

{
4ε
[(

σ
r

)12
−
(

σ
r

)6]
r ≤ rcut

0 r > rcut
(6.3)

which is a discontinuous function for r = rcut. It is often convenient to remove this discontinuity.
This results in the so-called truncated and shifted Lennard-Jones potential:

φ (r) =

{
4ε
[(

σ
r

)12
−
(

σ
r

)6]
− φcut r ≤ rcut

0 r > rcut
(6.4)
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Figure 6.2: The Lennard-Jones potential. φ/ε is minimal (−1) for r = 21/6σ ≈ 1.12σ.

in which

φcut = 4ε

[(
σ

rcut

)12

−

(
σ

rcut

)6
]

(6.5)

It is important to note that the result of a computer simulation may depend on rcut and whether
a truncated or truncated and shifted potential is used. Note that other truncation methods that
remove discontinuities in higher order derivatives of φ(r) are also often used in simulations.
For Coulombic interactions (for which φ(r) ∝ r−1) simple truncation will result in artifacts and
therefore other techniques are needed [8, 14, 15].

6.2.3 Partition Function

To compute the partition function Q(N,V, T) of a system of N interacting particles in volume V

at temperature T we have to consider all possible states of the system. For systems with discrete
energy levels (e.g. harmonic oscillator, Ising model) we have to sum over the energy levels of
the system, taking the multiplicity into account. However, a state of a system with particles
consists of all possible positions and velocities of all particles in the system. It turns out that in
this case we have to replace the summation by an integration over all particle positions (rN) and
velocities (vN) in the system

Q(N,V, T) ∝
∫

dvN

∫
drN exp[−βEkin(vN) + E(rN)] (6.6)

in which Ekin is the total kinetic energy of all particles in the system. As the integration over
particle velocities appears to be exactly executable, the partition function is therefore

Q(N,V, T) = c×
∫

drN exp[−βE(rN)] (6.7)

in which E(rN) is given by Eq. 6.2. The prefactor c follows from the requirement that for an
ideal gas Eq. 6.7 should lead to the exact result (Eqs. 1.9 and 3.6). The result is

c =
1

N!Λ3N
(6.8)
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so

Q(N,V, T) =
1

N!Λ3N

∫
drN exp[−βE(rN)] (6.9)

The factor 1/N! is originating from the fact that particles are indistinguishable, which means
that we have to divide by the number of permutations of our N particles (see section C.6). The
thermal wavelength Λ depends on the temperature and the mass of the particle (Eq. 1.14).

Question 41 (Partition Function)

1. Show that
∫

drN = VN.

2. Show that Q(N,V, T) (Eq. 6.9) is dimensionless.

3. Explain that for an ideal gas ∫
drN exp[−βE(rN)] = VN (6.10)

For an ideal gas we are able to obtain an exact expression for Q(N,V, T). However, for sys-
tems with interactions (E(rN) 6= 0) this is in general not possible. One might think that Q(N,V, T)

can be evaluated by conventional numerical integration techniques such as numerical quadra-
ture. However, evaluating the integrand on a grid in the high-dimensional phase space is im-
possible as the number of gridpoints becomes more than astronomically large. For instance,
N = 100 particles in D = 3 dimensions using a very rough grid of only m = 5 gridpoints
already leads to mDN = 5300 gridpoints at which this integrand has to be evaluated. This is
impossible within the lifetime of our universe. In addition, suppose that we would somehow be
able to perform the integration of Eq. 6.9. Our claim is that the numerical error will then be so
large that the result is not meaningful anyway. The reason is that when two particles overlap the
potential energy is extremely large and therefore the Boltzmann factor equals almost zero. In
fact, it turns out that for a typical liquid this is the case for almost all configurations rN and only
an extremely small part of the phase space rN will have a significant contribution to Q(N,V, T).

6.3 Reduced Units

In physics and chemistry, it is common practice to use standard SI units (kilogram, meter, sec-
ond). However, on the scale of a single molecule, this results in very small numbers. For exam-
ple, the mass of a typical atom is of the order of 10−25kg. Therefore, for molecular systems, it
is more natural to use a single molecule as a unit. For example, consider a system consisting of
argon atoms that interact via a Lennard-Jones potential. A convenient set of units would be

• unit of energy: ε

• unit of length: σ

• unit of mass: m (the mass of a single argon atom)

All other units follow directly from these basic units. For example, a reduced distance l∗ equals
l/σ, in which l is the real distance and σ the basic unit of length. For the reduced energy,
temperature, pressure and number density we find respectively U? = U/ε, T? = kBT/ε, P? =

Pσ3/ε, ρ? = ρσ3. Using reduced units has several important advantages:
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• Very small and very large numbers are avoided. If the outcome of a computer simulation
is an extremely large number, it is quite likely that this is because of a programming error.
Also, we avoid a numerical underflow or overflow on the computer.

• For different systems characterized by the same functional form of the interaction poten-
tial, only a single calculation is required. For example, from the equation of state of a
Lennard-Jones potential in reduced units, we are able to calculate the equation of state for
argon and neon, provided that their Lennard-Jones parameters are available.

Question 42 (Reduced Units)
Show that the reduced unit of time equals σ

√
m/ε.

Question 43 (Conversion between simulations)
Suppose that we simulate argon at a temperature of 500 K and a pressure of 1 bar using a Lennard-Jones
potential. For which conditions of neon can we use the same simulation? The Lennard-Jones parameters
are: σAr = 3.41Å, σNe = 2.75Å, εAr/kB = 120K, εNe/kB = 36K.

6.4 Calculating the Pressure

It is possible to compute the ensemble average of the pressure in a Monte Carlo simulation. Our
starting point is Eq. 2.10,

P = −

(
∂F

∂V

)
T,N

(6.11)

that relates the pressure to a partial derivative of the free energy. Using Eq. 2.6 we find

P = kBT

(
∂ ln Q

∂V

)
T,N

=
kBT

Q

(
∂Q

∂V

)
T,N

=
kBT

VN
∫

dsN exp[−βE(rN)]

(
∂
(
VN

∫
dsN exp[−βE(rN)]

)
∂V

)
T,N

(6.12)

where we have assumed a rectangular box of dimension L = V1/3 and sN = L × rN. As we
are allowed to switch the differentiation of Q and the integration over sN, we can express the
pressure as an ensemble average

〈P〉 = ρkBT −
1

3V

〈∑
i<j

rij ×
(

dU

dr

)
rij

〉
(6.13)

that can be measured in a simulation. In chapter 9 we will show that all partial derivatives of
the free energy can be expressed as ensemble averages.

6.5 Radial Distribution Function

The radial distribution function g(r) measures the ratio between the average number density
ρ(r) at a distance r from any given particle and the density at a distance r from a particle in an
ideal gas at the same overall density (Fig. 6.3):

g(r) =
V

N

〈
N∑

i=1

δ(r − ri)×
N∑

j=1

δ(r − rj)

〉
(6.14)
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Figure 6.3: The radial distribution function g(r) describes the local density at distance r from a
central particle.

in which δ(x) is Dirac’s δ function (see section C.11). By definition, g(r) = 1 for an ideal gas.
The radial distribution function (or its Fourier transform) can be measured in (scattering) exper-
iments. Moreover, the g(r) plays a key role in many liquid state theories [16].

Question 44 (Radial Distribution Function)
Show that the average energy of a system can be computed using

〈E〉 = 2πρN

∫ rcut

0
drr2g(r)φ(r) (6.15)

6.6 Deviation from the Ideal Gas Law

6.6.1 Virial Expansion

Experimentally, we know that the pressure of a real gas does not satisfy the ideal-gas relation

PV

NkBT
= 1 (6.16)

Rather, we find that, as the number density ρ = N/V is increased, deviations from this relation
occur

PV

NkBT
= 1 + B2ρ + B3ρ

2 + · · · (6.17)

where B2, B3 etc. are called the second, third etc. virial coefficients. The virial coefficients depend
on the intermolecular interactions and are a function of temperature. Here we shall derive an
expression for B2. First, we can write the general expression for the partition function in the
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following way:

Q(N,V, T) =
1

N!Λ3N

∫
drN exp[−βE(rN)]

=
VN

N!Λ3N

∫
drN exp[−βE(rN)]

VN

=
VN

N!Λ3N

∫
drN exp[−βE(rN)]∫

drN

=
VN

N!Λ3N

〈
exp[−βE(rN)]

〉
(6.18)

where the angular brackets denote the average of the Boltzmann factor exp[−βE(rN)] over all
possible positions rN within the volume V . At extremely low densities, the molecules are al-
most always too far apart to interact and hence the average Boltzmann factor is simply equal
to one, resulting in the ideal gas law. At higher densities, we shall notice the effect of inter-
actions between molecules. Let us assume that the interactions between molecules are such
that a molecule must be within a certain distance rcut in order to experience the potential of
the other molecules. Or, phrased in another way, if there are no molecules within a volume
vcut = (4π/3)r3

cut of a given molecule, then that molecule does not contribute to the interaction
energy. Let us denote by P0 the probability that there are no two molecules within a distance
rcut. At very low densities, we can write the average of the Boltzmann factor as〈

exp[−βE(rN)]
〉

= P0 + P1

〈
exp[−βE(rN)]

〉
pair

(6.19)

where P1 denotes the probability that there is exactly one pair of molecules at a distance less than
rcut (see Fig. 6.4). Because the density is very low, we can ignore the probability that there will
be more than two molecules at a distance less than rcut. At higher density the probability to find
two or more particles within rcut becomes larger and then it will become extremely difficult to
find a good approximation for the average Boltzmann factor. In other words, we have either no
molecules that are interacting (probability P0) or just one pair (probability P1). Clearly, P0+P1 = 1

and hence P0 = 1 − P1. Now we should still compute the average Boltzmann factor for a pair of
molecules at a distance less than rcut. It is

〈exp[−βE]〉pair =

∫rcut
0 dr4πr2 exp[−βφ(r)]∫rcut

0 dr4πr2
(6.20)

where φ(r) is the potential energy of interaction of a pair of molecules at a distance r (i.e. Eq.
6.4). We can now write〈

exp[−βE(rN)]
〉

= P0 + P1

〈
exp[−βE(rN)]

〉
pair

= 1 + P1

[∫rcut
0 dr4πr2 exp[−βφ(r)]∫rcut

0 dr4πr2
− 1

]

= 1 + P1

[∫rcut
0 dr4πr2 exp[−βφ(r)]∫rcut

0 dr4πr2
−

∫rcut
0 dr4πr2∫rcut
0 dr4πr2

]

= 1 + P1

[∫rcut
0 dr4πr2 (exp[−βφ(r)] − 1)∫rcut

0 dr4πr2

]
(6.21)

Now we should still compute P1, the probability that there is a single pair of (randomly dis-
tributed) molecules within the same volume vcut. At low densities, the probability that there is
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another molecule in a volume around a given molecule is simply equal to ρvcut (where ρ = N/V

is the number density of the molecules). As there are N molecules in the system, and we could
have taken any of these molecules as our “central” molecules, the probability to find a pair is
N/2 times larger (the factor 1/2 comes in to avoid double counting). Hence, at low densities,
P1 = Nρvcut/2 and therefore〈

exp[−βE(rN)]
〉

= 1 +
Nρ

2

∫ rcut

o
dr4πr2 (exp[−βφ(r)] − 1) (6.22)

With this result, we can write

Q ≈ VN

N!Λ3N

(
1 +

Nρ

2

∫ rcut

o
dr4πr2 (exp[−βφ(r)] − 1)

)
(6.23)

The pressure P is given by

P = kBT

(
∂ ln Q

∂V

)
T,N

≈ NkBT

V
−

ρ2

2

∫rcut
0 dr4πr2 (exp[−βφ(r)] − 1)

1 + Nρ
2

∫rcut
0 dr4πr2 (exp[−βφ(r)] − 1)

≈ ρkBT +
ρ2

2

∫ rcut

0
dr4πr2 (1 − exp[−βφ(r)]) (6.24)

where, in the third line, we have used the fact that, at sufficiently low densities,

Nρ

2

∫ rcut

0
dr4πr2 exp[−βφ(r)] − 1] � 1 (6.25)

If we compare this expression with the virial series (Eq. 6.17), we find that the second virial
coefficient is equal to

B2 =
1

2

∫ rcut

0
dr4πr2 (1 − exp[−βφ(r)]) = 2π

∫ rcut

0
drr2 (1 − exp[−βφ(r)]) (6.26)

Again, this is a very important result because it shows that a measurement of the second virial
coefficient provides information about the intermolecular interactions. To give a specific exam-
ple: assume that molecules are hard spheres with a diameter σ. Hard spheres interact according
to

φ (r) =

{ ∞ r ≤ σ

0 r > σ
(6.27)

For r > σ, φ(r) = 0 and hence exp [−βφ(r)] = 1. For r < σ, φ(r) = ∞ and hence exp [−βφ(r)] =

0, see Fig. 6.5. Therefore,

BHS
2 =

1

2

∫σ

0
dr4πr2 =

2πσ3

3
(6.28)

Question 45 (Square-Well Potential)
Unlike hard spheres, real molecules do not only repel each other at short distances, they also attract at
larger distances. A very simple model potential that exhibits both features is the so-called square-well
potential. The square-well potential is equal to the hard-sphere potential for r < σ. But for σ < r < λσ

(with λ > 1), the square well potential is attractive:

φ (r) =


∞ r ≤ σ

−ε σ < r < λσ

0 r > λσ

(6.29)

see Fig. 6.5.
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Figure 6.4: At low densities, a non-ideal gas can be approximated by assuming that there is
either a single pair of interacting molecules or no interacting molecules at all. The dotted lines
show the interaction volumes around the particles. Here, there is only a single pair of interacting
molecules.

r

σ

r

σ

ε

λσ

(r)φ (r)φ

Figure 6.5: Left: the hard-sphere potential. Right: the square-well potential.
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1. Derive that the second virial coefficient of this interaction can be written as

BSW
2 =

2πσ3

3

(
1 + (1 − exp[βε])× (λ3 − 1)

)
(6.30)

2. Show that at very high temperatures (β → 0), BSW
2 is equal to the hard-sphere second virial

coefficient (Eq. 6.28).

At low temperatures, the term with exp[βε] dominates, and BSW
2 becomes large and negative. The point

where B2 changes sign is called the Boyle temperature. At that temperature B2 = 0 and the gas behaves
almost ideal.

3. Show that the Boyle temperature of the square-well potential follows from

kBT

ε
=

1

ln[λ3/(λ3 − 1)]
(6.31)

6.6.2 Equation of State

In the previous subsection, we described deviations from the ideal gas law with the virial expan-
sion. For sufficiently low densities, only the second virial coefficient B2(T) is needed to describe
the pressure as a function of the density. At higher densities, more terms are needed. An al-
ternative approach which requires less parameters is the use of an appropriate equation of state
such as the van der Waals equation. To see how this works, consider again the ideal gas law

PV = kBT (6.32)

in which we used V = V/N = 1/ρ for the volume per particle. The term V in the ideal gas law
reflects the volume that is available for a particle. For an ideal gas, particles do not interact so
the accessible volume for a particle is V . However, as real atoms and molecules have a certain
size and cannot overlap, the accessible volume is less then V , i.e. V − b. This would suggest the
following equation of state (P = P(ρ, T))

P
(
V − b

)
= kBT (6.33)

that we have already seen in Eq. 2.14 as an approximation for the equation of state of a system of
hard spheres. In this equation, the parameter b is related to the size of a molecule and therefore
it can be expected that b does not depend on the temperature. An effect that is not yet taken
into account in Eq. 6.33 is the attraction between molecules or atoms. As we have seen before,
the strength of these attractions depends on the average distance between particles, and this is
related to the density. In general, attractive interactions will lower the pressure and therefore it
seems logical to replace P in Eq. 6.33 by P + c(V), in which c is a positive function of the volume
per particle. It turns out that we can write c(V) ∝ ρ2 [17], leading to the following equation of
state (

P +
a

V
2

)
×
(
V − b

)
= kBT (6.34)

which is the famous van der Waals equation. The parameter a is a measure of the strength of
the interactions between molecules. In the van der Waals equation of state, a does not depend
on the temperature. Other equations of state in which the strength of the attractive interactions
does depend on the temperature (e.g. the Redlich-Kwong equation of state, Eq. 7.21) are usually
better in describing experimental and simulation data.
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Question 46 (van der Waals Equation of State)
Show that the van der Waals equation of state can be written as (see also section C.5)

P =
kBT

V − b
−

a

V
2

=
kBT

V
× 1

1 − b
V

−
a

V
2

=
kBT

V
×
[
1 +

b

V
+

b2

V
2

+
b3

V
3

+ · · ·
]

−
a

V
2

(6.35)

and that
B2 = b −

a

kBT
(6.36)

Question 47 (Energy as a Function of Volume)
For an ideal gas, the energy U is only a function of temperature (see Eq. B.2). However, for non-ideal
gasses this is often not the case.

1. Show that for any system we may write(
∂U

∂V

)
T,N

=

(
∂F

∂V

)
T,N

+ T

(
∂S

∂V

)
T,N

= −P + T

(
∂P

∂T

)
V,N

(6.37)

2. Calculate (∂U/∂V)T,N for an ideal gas and compare your result with Eq. B.2.

3. Calculate (∂U/∂V)T,N for a van der Waals gas and compare your result with Eq. B.2.

6.7 Simulation Technique

Essentially, the Monte Carlo technique to compute ensemble averages for a system of N inter-
acting particles in volume V at temperature T does not significantly differ from the scheme for
the Ising model described in the previous chapter (section 5.5). The main difference is the way
in which a trial move is performed; instead of flipping a randomly selected spin, a randomly
selected particle is given a random displacement. Basically, the scheme is as follows:

1. Generate an initial configuration.

2. Start with an old configuration o, and calculate its energy E(o).

3. Select a particle at random.

4. Give the selected particle a random displacement x(n) = x(o)+∆ in which ∆ is a uniformly
distributed random number from [−∆x, ∆x]. Periodic boundary conditions are used (Eq.
6.1), so if a particle moves out of the central box, it enters on the other side.

5. Calculate the energy E(n) of the new configuration n.

6. Accept the trial move with a probability

acc(o → n) = min(1, exp [−β× (E(n) − E(o))]) = min(1, exp [−β∆E]) (6.38)

7. Update ensemble averages, also after a rejected trial move.
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Question 48 (Trial Moves)
Show that for this scheme α(o → n) = α(n → o).

A pseudo computer code of this algorithm is listed in table 6.2. A few more subtle differences
between Monte Carlo simulation of the Ising model and a system of interacting atoms/molecules
are described below.

6.7.1 Initial Configuration

In principle, the initial configuration rN can be chosen by placing all particles at random po-
sitions in the simulation box. However, this leads to particle overlaps and therefore the initial
energy would be extremely large. A Monte Carlo algorithm can be used to remove these over-
laps. Alternatively, the particles could be placed initially on a lattice (i.e. a face centered cubic
lattice).

6.7.2 Trial Moves

In each trial move, a randomly selected particle is given a random displacement. This means
that the displacement of a particle is chosen randomly from the interval [−∆x, ∆x], in which ∆x

is the maximum particle displacement. In principle, our algorithm should work for any value
of ∆x. However, a very small or very large value of ∆x makes our simulation very inefficient. If
∆x ≈ 0, particles hardly move and as a consequence E(n) ≈ E(o) which means that nearly all
moves are accepted. However, these moves are meaningless since the system makes only very
small steps in phase space. On the other hand, a very large value of ∆x nearly always results
in an overlap with another particle, so β∆E � 1 and no trial moves are accepted. Therefore,
in practice we need to find an optimum and as a rule of thumb we should tune ∆x in such a
way that on average 50% of all trial moves are accepted. However, at very low densities usually
more than 50% of all trial moves are accepted, independent of the maximum displacement. In
this case, one should limit the maximum displacement to half the boxsize (L/2).

Question 49 (Maximum Displacement)
Explain why at very low densities the fraction of accepted displacements will always be close to 100%.

Question 50 (Hard-core potential)
Colloidal particles are often modeled as hard spheres (Eq. 6.27). For the same density, it is more efficient to
use a larger maximum displacement ∆x for the hard sphere potential than for the Lennard-Jones potential.
Explain why.

Question 51 (Equation of State of the Lennard-Jones System)
In this question, we will perform Monte Carlo simulations for N interacting particles in a volume V and
temperature T . The particles interact via a truncated and shifted Lennard-Jones potential with rcut =

2.5σ. During the simulation, the trajectory of all particle positions is saved (Traject.xyz). This
trajectory can be visualized using the vmd program.

1. At T? = 2.0, N = 256 and maximum particle displacement ∆x? = 1.0, make a plot of the fraction
of accepted trial moves as a function of the density. Explain your results.

2. Fit the simulation data for P(ρ) of Lennard-Jones particles at T? = 2.0 to a virial expansion

P(ρ) = ρkBT + B2ρ
2 + B3ρ

3 + B4ρ
4 + · · · (6.39)
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program mc basic Monte Carlo algorithm

do icycle=1,ncycle number of MC cycles
call move displace randomly selected particle
if(mod(icycle,nsample).eq.0) each nsample MC cycles

+ call sample sample the ensemble averages
enddo
end

subroutine move subroutine to displace a particle

i=int(ranf()*npart)+1 select particle i at random
call energy(x(i),eold,i) calculate energy of old configuration
xnew=x(i)+(2*ranf()-1)*∆x random displacement of particle i
call energy(xnew,enew,i) calculate energy of new configuration
if(ranf().lt.exp(-beta*(enew-eold)) acceptance rule
+ x(i)=xnew accept new position of particle i
return
end

subroutine energy(xi,e,i) subroutine to calculate the energy

e=0.0
do j=1,npart loop over all particles

if(j.ne.i) then if particle j is not i
dx=x(j)-xi calculate distance between particle i and j
dx=dx-box*nint(dx/box) apply periodic boundary conditions
eij=4*(1.0/(dx**12)-1.0/(dx**6)) calculate Lennard-Jones potential energy
e=e+eij

endif
enddo
return
end

Table 6.2: Pseudo-computer code of the Monte Carlo algorithm described in the text. The pro-
gram consists of three parts. The main program mc controls the simulation. The subroutine
move displaces a randomly selected particle, and the subroutine energy computes the energy
of a particle. The function ranf() generates a uniformly distributed random number between
0 and 1. The function int truncates a real number to its integer value, while the function nint
converts a real number to its nearest integer value (i.e. int(5.9)=5 and nint(5.9)=6).
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Figure 6.6: Schematic representation of the phase diagram of the Lennard-Jones system. The
different phases are solid (S), liquid (L), and gas (G). Above the critical temperature (T?

c ≈ 1.1)
there is no gas/liquid coexistence possible anymore; the resulting phase is called a fluid (F). The
solid/liquid coexistence does not have a critical point. At the so-called triple point (T? ≈ 0.6),
three phases (gas, liquid, solid) coexist.

For each simulation, you should carefully check that the simulation is long enough and that the
maximum displacement is set correctly (i.e. according to the guidelines described in section 6.7.2).
Explain why B2 < 0 at this temperature. How many terms in the virial expansion (Eq. 6.17) are
needed to fit P(ρ) up to ρ? = 1.0 ?

3. At constant temperature and density, check how the heat capacity per particle (Cv/N) and the
average energy per particle (〈E〉 /N) scale with the number of particles N.

4. How does the radial distribution function g(r) change with the density?

5. Try to fit the pressure as a function of density at T? = 2.0 using the van der Waals equation of state
(Eq. 6.34).

Question 52 (Boyle Temperature of the Lennard-Jones Potential)
Calculate the second virial coefficient of the Lennard-Jones potential as a function of temperature using
Eq. 6.26 and estimate the Boyle temperature. Check your results with Monte Carlo simulations. Hint: in
general, the integral of a function f(x) can be approximated using [18]

∫b

a
dxf(x) ≈ h

[
1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]
(6.40)

in which h = (b − a)/n and xi = a + h× i. Note that n should be chosen sufficiently large.
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6.8 Gas/Liquid Equilibrium

In this chapter, we introduced Monte Carlo simulations of a system of interacting atoms or
molecules. One of the most important results was that these simulations can be used to study
deviations from the ideal gas law and that the simulation data of the Lennard-Jones system can
be well described with an appropriate equation of state (i.e. the van der Waals equation). It is
well known that this equation of state is not only used for gases, but also predicts the existence
of a liquid phase. This suggests that at a certain density and temperature, a system of Lennard-
Jones particles should separate into a liquid phase in coexistence with a gas. It turns out that this
suggestion is indeed correct. Fig. 6.6 shows a schematic representation of the phase diagram of
the Lennard-Jones system. At temperatures below the critical point (T?

c ≈ 1.1), there is a stable
region in which the gas and liquid phase can coexist. The equilibrium densities of the gas and
liquid phase as a function of temperature are drawn by solid lines that end in the critical point
(T?

c ≈ 1.1, ρ?
c ≈ 0.3). Note that the critical temperature strongly depends on the details of the

truncation scheme of the pair potential [19].
The most obvious approach to calculate coexistence densities would be to simulate a system

with a density ρs, somewhere in between the gas (ρg) and liquid density (ρl). If simulated long
enough, the system will separate into a gas phase and a liquid phase.

Question 53 (Direct Estimation of Coexistence Densities)
In this question we will simulate a system at a density in between the gas (ρg) and liquid density (ρl).

1. Using the given simulation code, perform a long simulation for N = 256 particles at density
ρ? = 0.3 at temperature T? = 0.65. Investigate the trajectory using the vmd program. Is it
possible to estimate the coexistence densities?

2. Using the final configuration (Coordnew) of the previous simulation at T? = 0.65 as starting
configuration (Coordold), perform various short simulations at increasing temperatures (up to
T? = 1.5) and analyze the trajectories. Up to which temperature seems the gas/liquid interface
stable?

In chapter 8 we will describe a more suitable method to compute coexistence densities of the
gas and the liquid.



Chapter 7

Monte Carlo Simulations in the NPT

and µVT Ensemble

7.1 Introduction

In the previous chapter, we have described the Metropolis Monte Carlo algorithm in the canon-
ical (NVT ) ensemble and calculated the average pressure P. In the canonical ensemble the num-
ber of particles (N), the volume (V) and the temperature (T ) are fixed. However, this is not the
only ensemble used in molecular simulations. Often, we would like to specify the pressure P

instead of the volume V . The reason is that in experiments it is usually much easier to specify
a pressure than to specify a density. Therefore, most experiments in a laboratory are performed
at a constant pressure of 1 bar rather than at a certain (constant) volume. The ensemble of sys-
tems at a given temperature, pressure an number of particles is called the isothermal-isobaric
(or NPT ) ensemble.

Another important ensemble is the so-called grand-canonical (µVT ) ensemble in which the
number of particles in the system (N) is fluctuating and the chemical potential of the particles
(µ) is specified instead. This corresponds for example to the experimental situation where a gas
is in contact with a porous medium. The pressure of the gas is directly related to the chemical
potential, which controls the amount of gas adsorbed in the pores of the porous medium, see
for example Ref. [20–22].

Question 54 (µPT ensemble)
Is the µPT ensemble useful? Explain your answer.

To derive Monte Carlo schemes for the NPT and µVT ensembles, let us consider a system
(volume V , number of particles N, temperature T ) that is coupled to a reservoir at the same
temperature. This reservoir consists of M − N particles and has a volume V0 − V . See Fig. 7.1.
We consider the following cases in which the total number of particles (N + M − N = M) and
the total volume (V + V0 − V = V0) of the ensemble are fixed:

• The system and the reservoir can exchange volume, but no particles. This corresponds to
the Isobaric-Isothermal (NPT ) ensemble and it is discussed in section 7.2. In this ensemble,
the pressure P is specified and the volume V fluctuates. The number of particles (N) is
constant.

• The system and the reservoir can exchange particles, but no volume. This corresponds to
the grand-canonical (µVT ) ensemble and it is discussed in section 7.3. In this ensemble,
the chemical potential µ is specified and the number of particles N fluctuates. The volume
V is constant.
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V,N

V − V,M−N0

Figure 7.1: A system (N particles, volume V) in contact with a reservoir (M−N particles, volume
V0 − V).

• The system and the reservoir can exchange both particles and volume. This corresponds
to the so-called Gibbs ensemble and this ensemble will be discussed in chapter 8.

7.2 Isobaric-Isothermal (NPT ) Ensemble

Below we derive the acceptance rules of constant-pressure Monte Carlo simulations using the
classical ensemble theory. The canonical partition function for a system consisting of N particles,
in a volume V , and at a temperature T is given by

Q(N,V, T) =
1

N!Λ3N

∫
drN exp[−βE(rN)], (7.1)

As we did in section 6.4 we use scaled coordinates sN defined by

ri = Lsi i = 1, . . .N (7.2)

where we assume a cubic box of volume V = L3. The canonical partition function in scaled
coordinates equals

Q(N,V, T) =
VN

N!Λ3N

∫1

0
dsN exp[−βE(sN; V)] (7.3)

The next step is to couple our system of N particles and volume V to the reservoir (Fig. 7.1).
Assume that the two systems are separated by a piston from each other. Thus we allow fluctu-
ations in the system volume V (the total volume V0 is constant) at constant N. In addition, we
impose that the particles in the reservoir do not interact and therefore the reservoir is an ideal
gas. The total volume of the system and the reservoir is V0, while the total number of particles
is M. The total partition function of the coupled system is the product of the partition functions
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of the two subsystems:

Q(N,M,V, V0, T) =

[
(V0 − V)M−N

(M − N)!Λ3(M−N)

∫
dsM−N

]
×
[

VN

N!Λ3N

∫
dsN exp[−βE(sN; V)]

]
=

VN(V0 − V)M−N

N!(M − N)!Λ3M

∫
dsM−N

∫
dsN exp[−βE(sN; V)]

=
VN(V0 − V)M−N

N!(M − N)!Λ3M

∫
dsN exp[−βE(sN; V)] (7.4)

where we performed the integral over the sM−N scaled coordinates of the ideal gas reservoir.
The probability density W(V) that our system of N particles has a volume V is given by

W(V) =
VN(V0 − V)M−N

∫
dsN exp[−βE(sN; V)]∫V0

0 dV ′V ′N(V0 − V ′)M−N
∫

dsN exp[−βE(sN; V ′)]
(7.5)

We now consider the limit that the reservoir tends to infinity, i.e. V0 → ∞,M → ∞, while
(M − N)/(V0 − V) → M/V0 = ρ. In that limit, a small volume change of the small system does
not change the pressure P of the reservoir and the reservoir acts as a manostat for our system of
interest.

Question 55 (Infinite reservoir)
Show that in that limit, we can write

(V0 − V)M−N ≈ VM−N
0 exp[−ρV] = VM−N

0 exp[−βPV] (7.6)

in which P is the pressure of the ideal gas reservoir. Hint: use Eq. C.10 and the ideal gas law ρ = βP.

This results in the following expression for W(V):

W(V) =
VN exp[−βPV]

∫
dsN exp[−βE(sN; V)]∫V0

0 dV ′V ′N exp[−βPV ′]
∫

dsN exp[−βE(sN; V ′)]
(7.7)

where we used Eq. 7.6. The probability density to find our system in a configuration {sN} and
with a volume V is:

W(V ; sN) ∝ VN exp[−βPV] exp[−βE(sN; V)]

∝ exp[−β(E(sN; V) + PV − Nβ−1 ln V)] (7.8)

In constant-pressure Monte Carlo simulations, Metropolis sampling is performed on the re-
duced coordinates {sN} and on the volume V . The volume V is treated as an additional coor-
dinate for which we should perform trial moves which will be accepted according to the same
rules as trial moves in {sN}. To be more specific, we perform trial moves that consist of an at-
tempted change of the volume V to V ′ = V + ∆V , where ∆V is a random number uniformly
distributed over the interval [−∆Vmax, ∆Vmax]. This trial move in the volume will be accepted
with a probability ratio

acc(o → n)

acc(n → o)
=

exp[−β(E(sN; V ′) + PV ′ − Nβ−1 ln V ′)]

exp[−β(E(sN; V) + PV − Nβ−1 ln V)]

= exp[−β(E(sN; V ′) − E(sN; L) + P(V ′ − V) − Nβ−1 ln(V ′/V))] (7.9)
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so

acc(o → n) = min(1, exp[−β(E(sN; V ′) − E(sN; L) + P(V ′ − V) − Nβ−1 ln(V ′/V))]) (7.10)

It is important to note that in this trial move, the reduced coordinates of the particles do not
change. A schematic overview of the algorithm is presented in table 7.1. It can be shown that
the applied pressure P (in Eq. 7.10) is identical to the average pressure computed using Eq.
6.13 [8].

Question 56 (Random walk in ln V)
In the algorithm described in table 7.1, a random walk is performed in volume V . However, it is also
possible to perform a random walk in the logarithm of the volume by using

Vnew = exp [ln(Vold) + (2 ∗ ranf() − 1)× ∆V ] (7.11)

Derive the correct acceptance rule for this trial move.

Question 57 (Scaling)
Suppose that the cut-off radius rcut is always exactly equal to half the box length. Show that for particles
with an interaction potential of the form u(r) ∝ r−n, the total energy of the system after a change in
volume equals

Enew = Eold ×
(

Vnew

Vold

)−n/3

(7.12)

Question 58 (NPT simulation of an ideal gas)
Show using Eq. 7.7 that the ensemble average of the volume 〈V〉 in an NPT simulation of an ideal gas
equals n/(βP). Hint: see Eq. C.40.

7.3 Grand-Canonical (µVT ) Ensemble

Below we derive the acceptance rules of grand-canonical Monte Carlo simulations, i.e. the
chemical potential µ, the volume V , and the temperature T are fixed. To this end, we couple
our system of N particles and volume V to an ideal gas reservoir (Fig. 7.1). The two systems
can only exchange particles and thus, we allow for particle number fluctuations. The volume
of the reservoir (V0 − V) and our system (V) are fixed, while the total number of particles is M

(M − N in the reservoir). The total partition function of the coupled system is the product of the
partition functions of the two subsystems:

Q(M,V, V0, T) =

M∑
N=0

[
(V0 − V)M−N

(M − N)!Λ3(M−N)

∫
dsM−N

]
×
[

VN

N!Λ3N

∫
dsN exp[−βE(sN)]

]

=

M∑
N=0

VN(V0 − V)M−N

N!(M − N)!Λ3M

∫
dsM−N

∫
dsN exp[−βE(sN)]

=

M∑
N=0

VN(V0 − V)M−N

N!(M − N)!Λ3M

∫
dsN exp[−βE(sN)] (7.13)

where we performed the integral over the sM−N scaled coordinates of the ideal gas reservoir.
The probability density W(sM; N) that our system has N particles at coordinates sN in volume
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program npt-mc basic NPT Monte Carlo algorithm

do icycle=1,ncycle number of MC cycles
if(ranf().lt.pvol) then select trial move at random

call volumechange perform a volume change
else

call move move a particle
endif
if(mod(icycle,nsample).eq.0) sample the ensemble averages

+ call sample
enddo
end

subroutine volumechange perform a volume change

call energy(eold) compute the old energy
vold=box**3 compute old volume
vnew=vold+(2*ranf()-1)*∆V compute new volume
if(vnew.lt.0) return reject negative volume
boxn=vnew**(1/3) compute new boxsize
do i=1,npart scale all coordinates
x(i)=x(i)*boxn/box
y(i)=y(i)*boxn/box
z(i)=z(i)*boxn/box

enddo
call energy(enew) compute new energy
arg=-beta*(enew-eold + acceptance rule

+ p*(vnew-vold)-N×ln(vnew/vold)/beta
if(ranf().gt.exp(arg)) then accept or reject?
do i=1,npart reject, restore coordinates
x(i)=x(i)*box/boxn
y(i)=y(i)*box/boxn
z(i)=z(i)*box/boxn

enddo
else
box=boxn accept, update boxsize

endif
return
end

Table 7.1: Pseudo computer code of Metropolis Monte Carlo in the NPT ensemble. It is selected
at random with a fixed probability pvol to perform either a particle displacement or a volume
change. The subroutine energy computes the total energy of the system. a**b means ab. The
subroutine move is identical to the one in table 6.2.
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V and that the reservoir consists of M − N particles at coordinates sM−N in volume V0 − V is
given by

W(sM; N) ∝ VN(V0 − V)M−N exp[−βE(sN)]

Λ3MN!(M − N)!
(7.14)

The probability of acceptance of a trial move in which a particle is transferred from the ideal
reservoir to our system is given by the ratio of the probability densities

acc(N → N + 1)

acc(N + 1 → N)
=

VN+1(V0 − V)M−N−1 exp[−βE(sN+1)]

(N + 1)!(M − N − 1)!

× (N)!(M − N)!

VN(V0 − V)M−N exp[−βE(sN)]

=
V(M − N)

(V0 − V)(N + 1)
exp[−β(E(sN+1) − E(sN))]

=
V

Λ3(N + 1)
exp[β(µ − E(sN+1) + E(sN))] (7.15)

so

acc(N → N + 1) = min
(

1,
V

Λ3(N + 1)
exp[β(µ − E(sN+1) + E(sN))]

)
(7.16)

where we have used that the ideal gas reservoir is much larger than our system of interest, i.e.
M � N, V0 � V , and (M − N)/(V0 − V) ≈ M/V0 = ρ. In addition, we used ρ = exp [βµ] /Λ3

in which µ is the chemical potential of the ideal gas reservoir. Similarly, we can derive that the
removal of a particle is given by the ratio of the probability densities

acc(N → N − 1)

acc(N − 1 → N)
=

VN−1(V0 − V)M−N+1 exp[−βE(sN−1)]

(N − 1)!(M − N + 1)!

× (N)!(M − N)!

VN(V0 − V)M−N exp[−βE(sN)]

=
(V0 − V)N

V(M − N + 1)
exp[−β(E(sN−1) − E(sN))]

=
NΛ3

V
exp[−β(µ + E(sN−1) − E(sN))] (7.17)

so

acc(N → N − 1) = min
(

1,
NΛ3

V
exp[−β(µ + E(sN−1) − E(sN))]

)
(7.18)

Often, instead of the chemical potential µ the fugacity f is specified. The fucagity of a system
is defined as the pressure that the system would have if it would be an ideal gas, at exactly the
same chemical potential. As for an ideal gas µ = kBT ln ρΛ3 it follows directly that

f =
exp[βµ]

βΛ3
(7.19)

It can be shown that the pressure P and the fugacity f are related according to [23]

ln
f

P
=

∫P

0
dP ′Z(P ′) − 1

P ′ (7.20)

in which Z is the compressibility factor Z = PV/kBT and V = V/N is the volume per molecule.
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It is important to note that the grand-canonical ensemble replies on the insertion and re-
moval of molecules from/to the system. For molecules that consist of a single interaction site,
random insertion usually works quite well (unless the density is too high). For chain molecules,
random insertion will usually fail as this nearly always results in an overlap with another atom,
leading to an extremely low acceptance probability (Eqs. 7.16, 7.18). The solutions for this prob-
lem is to bias the insertion/removal of chain molecules [24, 25]. For more details, we refer the
reader to Refs. [26–32].

Question 59 (Fugacity)
Use Eq. 7.20 to show that for an ideal gas f = P. Derive an expression for the fugacity as a function of
pressure for a gas that obeys the equation of state of Eq. 2.14.

Question 60 (Grand-canonical ensemble)
Answer the following questions:

• Does the grand-canonical ensemble work well for solids?

• In principle, one could omit particle displacements in simulations in the µVT ensemble. Explain
why.

• Derive the correct acceptance rules for particle exchange if the probability to select a particle removal
is twice as large as selecting a particle addition.

Question 61 (Comparison between Different Ensembles)
In this question, we will compare Monte Carlo simulations in the NVT , NPT , and µVT ensemble. We

will use the Lennard-Jones potential which is truncated and shifted at rcut = 2.5σ (Eq. 6.4). For the µVT

ensemble, the fugacity (f) of the reservoir is needed as input for the program (Eq. 7.19).

1. Check whether NVT and NPT simulations result in the same equation of state (Eq. 6.39) at T? =

2.0.

2. In the NVT and NPT ensemble, the chemical potential is calculated using the method outlined in
section 9.4. Check that at the same value for µ, the average density of a µVT simulation is identical
to the density in an NVT or NPT simulation. Note that the program requires the fugacity and not
the chemical potential as input, see Eq. 7.19.

3. Try to fit the pressure as a function of density at T? = 2.0 using the Redlich-Kwong equation of
state in reduced units

P? =
T?

V
?
− b?

−
a?

V
?
(V

?
+ b?)

√
T?

(7.21)

in which a? and b? are positive constants and V
?

= 1/ρ? is the volume per particle. Use only
simulation data for ρ? < 0.5.

4. It can be shown that the critical temperature T?
c , the critical molar volume V

?
c and the critical

pressure P?
c of the Redlich-Kwong equation are related according to

V
?
c = 3.8473× b? (7.22)

P?
c = 0.02989

(a?)2/3

(b?)5/3
(7.23)

T?
c = 0.34504×

(
a?

b?

)2/3

(7.24)

in which a? and b? are the Redlich-Kwong parameters (Eq. 7.21). Calculate T?
c , V

?
c and P?

c from
the fitted parameters a? and b?.
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5. For argon, experiments show that Tc = 151 K and Pc = 4.9 × 106 Pa. Use the result from the
previous question to compute ε/kB (in units of K) and σ (in units of Å) for argon and compare
your result with table 6.1.
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program gcmc basic µVT Monte Carlo algorithm

do icycle=1,ncycle number of MC cycles
if(ranf().lt.pexch) then select trial move at random

call exchange perform a particle exchange
else

call move move a particle
endif
if(mod(icycle,nsample).eq.0) sample the ensemble averages

+ call sample
enddo
end

subroutine exchange exchange particle
with reservoir

if(ranf().lt.0.5) then
if(npart.eq.0) return remove a particle
i=1+int(npart*ranf()) select random particle
call ener(x(i),eold,i) compute the energy
arg=npart*exp(beta*eold)/(chem*vol) acceptance rule
if(ranf().lt.arg) then accept or reject
x(i)=x(npart) accept
npart=npart-1 remove the particle

endif
else insert new particle
xnew=ranf()*box at random position
call ener(xn,enew,0) compute energy
arg=chem*vol*exp(-beta*enew)/(npart+1) acceptance rule
if(ranf().lt.exp(arg)) then accept or reject
npart=npart+1 accept
x(npart)=xnew add the new particle

endif
endif
return
end

Table 7.2: Pseudo computer code of Metropolis Monte Carlo in the grand-canonical ensem-
ble. We have defined chem = exp [βµ] /(βΛ3). The subroutine move is defined in table 6.2.
The probability for a particle exchange trial move is constant during the simulation and equals
pexch. The probabilities of attempting a particle addition or removal are equal. If no particle is
present, a particle removal is always rejected.





Chapter 8

The Gibbs Ensemble

8.1 Phase Behavior

In simulations, we are often interested in predictions for the phase behavior of a substance.
Naively, one can study the phase behavior by performing a simulation at a given statepoint (a
given N, V and T or a given N, P and T ) and investigate what happens when one changes the
statepoint. For instance, one can perform canonical Monte Carlo simulations, i.e. fix N, V , and
T , and measure P or one can perform Isothermal-Isobaric Monte Carlo simulations, i.e. fix N, P,
T , and measure V . To be more specific, one can study a system consisting of hard sphere colloids
and compress the system until it freezes. However, this method is very inaccurate for precisely
determining the transition density as large hysteresis will be found when one compresses or
expands the system. The hysteresis found for first-order phase transitions is a result of the
presence of a large free energy barrier that separates the two coexisting phases. The height of
the free energy barrier is determined by the interfacial free energy and increases when the area
of the interface between the two coexisting phases increases. In chapter 6 it was shown that a
considerable fraction of the particles of typical systems belongs to the interface. It is therefore,
difficult to simulate two coexisting phases simultaneously in a single box as the interfacial free
energy is much too high. There are several solutions to this problem, which will be described in
the next section.

8.2 Gibbs Ensemble Monte Carlo Simulation

One way to determine phase coexistence is the Gibbs ensemble Monte Carlo method, which
was proposed by Panagiotopoulos in 1987 [33, 34]. He proposed a method in which the two
coexisting phases are simulated simultaneously in two separate boxes and hence, it avoids the
interface between the two phases. The thermodynamic conditions for phase equilibria are equal
chemical potential (µ), equal pressure (P), and equal temperature (T ), i.e. chemical, mechanical,
and thermal equilibrium. One might think that the µPT ensemble would be the ideal ensemble
to study phase coexistence. However, as already mentioned in question 54, such an ensemble
does not exist, as µ, P, and T are intensive variables, and the extensive variables are unbounded
in this ensemble. We have to fix at least one extensive variable to get a well-defined ensemble. It
may come therefore as a surprise that we can determine phase coexistence in the Gibbs ensemble
method. The reason why this method works is that we fix the difference in chemical potentials
between the two coexisting phases, i.e., ∆µ = µI − µII = 0, and the difference in pressure
∆P = PI − PII = 0, while the absolute values (PI, PII, µI, µII) are still undetermined. More
precisely, the temperature, the total number of particles in the two boxes, and the total volume
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of the two boxes are kept fixed. In addition, the two systems can exchange particles and volume
to ensure equal chemical potential and pressure between the two phases. A Gibbs ensemble
Monte Carlo simulation consists of three different trial moves (see table 8.1 and Fig. 8.1): (1)
a trial move to displace a randomly selected particle in one of the boxes, (2) a trial move to
exchange volume in such a way that the total volume of the two boxes remains fixed, (3) a trial
move to transfer a particle from one box to the other. The derivation of the acceptance rules for
the trial moves is similar to the ones described in chapter 7 for the various ensembles and will
be described below.

Figure 8.1: A Gibbs ensemble simulation consists of the following trial moves: (1) particle dis-
placement, (2) exchange of volume and (3) exchange of particles.

8.3 The Partition Function

Consider a system of N particles distributed over two volumes V1 (with N1 particles) and V2 =

V−V1 (with N2 = N−N1 particles), where the particles interact with each other in both volumes
with the same intermolecular interactions. The volumes V1 and V2 can change in such a way
that the total volume V = V1 + V2 remains fixed. The partition function for the total system
reads:

Q(N,V, T) =

N∑
N1=0

1

VΛ3NN1!(N − N1)!

∫V

0
dV1V

N1
1 (V − V1)

N−N1

×
∫

dsN1
1 exp

[
−βE(sN1

1 ; V1)
] ∫

dsN−N1
2 exp

[
−βE(sN−N1

2 ; V − V1)
]

(8.1)

The probability of finding a configuration with N1 particles in box 1 with volume V1 and po-
sitions sN1

1 and N − N1 particles in box 2 with volume V − V1 and positions sN−N1
2 is given
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by

W(N1, V1, sN1
1 , sN−N1

2 , T) ∝
V

N1
1 (V − V1)

N−N1

N1!(N − N1)!
exp

[
−βE(sN1

1 ) + E(sN−N1
2 )

]
(8.2)

Using this equation we can derive the acceptance rules for the trial moves in the Gibbs ensemble
Monte Carlo method.

8.3.1 Particle Displacement

One of the trial moves in Gibbs ensemble Monte Carlo simulations is particle displacement.
To be more specific, a new configuration is generated by selecting randomly one of the parti-
cles in box i = 1, 2 and by displacing it randomly. The probability of acceptance of a particle
displacement is given by the ratio of the statistical weights of the new and old configurations

W(n)

W(o)
=

exp
[
−βE(sNi

i (n))
]

exp
[
−βE(sNi

i (o))
] = exp[−β∆E] (8.3)

This acceptance rule is identical to the one used in a conventional NVT ensemble simulations
(Eq. 6.38).

Question 62 (Particle displacements)
Consider the following ways to select a particle displacement in the Gibbs ensemble:

• Pick a particle at random, irrespective of which box it is in.

• Pick a box at random, and then pick a particle at random in this box.

Are the acceptance rules identical?

8.3.2 Volume Exchange

In addition, we perform trial moves that consist of an attempted change of the old volume
V1(o) of box 1 to a new volume V1(n) = V1(o) + ∆V , while the volume of box 2 changes from
V2(o) to V2(n) = V2(o) − ∆V . ∆V is a random number uniformly distributed over the interval
[−∆Vmax, ∆Vmax]. This trial move will be accepted with a probability ratio equal to the ratio of
the statistical weights of the new and old configuration

W(n)

W(o)
=

(V1(n))N1(V − V1(n))N−N1

(V1(o))N1(V − V1(o))N−N1
exp

[
−β

(
E(sN(n)) − E(sN(o))

)]
(8.4)

resulting in

acc(o → n) = min

(
1,

(
V1(n)

V1(o)

)N1
(

V2(n)

V2(o)

)N2

exp
[
−β(E(sN(n)) − E(sN(o)))

])
(8.5)

A schematic overview of this trial move is presented in table 8.2.

Question 63 (Random walk in ln(V1/V2))
It is also possible to perform a random walk in ln [V1/V2] instead of in V1. Derive the correct acceptance
rule for this trial move.
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program Gibbs basic Gibbs ensemble Monte Carlo algorithm

do icycle=1,ncycle number of MC cycles
ran=ranf()*(npart+nvol+nswap) select trial move at random
if(ran.le.npart) then

call move move a particle
elseif(ran.le.(npart+nvol))

call volumechange perform a volume change
else

call swap swap a particle
endif
if(mod(icycle,nsample).eq.0) sample the ensemble averages

+ call sample
enddo
end

Table 8.1: Pseudo computer code of a Gibbs ensemble Monte Carlo simulation. Each cycle con-
sists of on average npart attempts to displace a particle, nvol attempts to change the volume
and nswap attempts to transfer a particle from one to the other box. The subroutine move is
identical to the one in table 6.2. See also tables 8.2 and 8.3.

8.3.3 Particle Exchange

The third trial move that is used in a Gibbs ensemble Monte Carlo simulation is the exchange of
particles. A new configuration is generated from the old configuration by removing a particle
from box 1 and inserting this particle in box 2 (50%) or by removing a particle from box 2 and
inserting this particle in box 1 (50%). For the transfer of a particle from box 1 to box 2, the ratio
of statistical weights of the new and old configuration is given by

W(n)

W(o)
=

N1!(N − N1)!V
N1−1
1 (V − V1)

N−(N1−1)

(N1 − 1)!(N − (N1 − 1))!VN1
1 (V − V1)N−N1

exp
[
−β(E(sN(n)) − E(sN(o)))

]
(8.6)

The acceptance rule is therefore

acc(o → n) = min
(

1,
N1V2

(N2 + 1)V1
exp

[
−β(E(sN(n)) − E(sN(o)))

])
(8.7)

In a similar way, it can be derived that the acceptance rule for the transfer of a particle from box
2 to box 1 is

acc(o → n) = min
(

1,
N2V1

(N1 + 1)V2
exp

[
−β(E(sN(n)) − E(sN(o)))

])
(8.8)

A schematic overview of this trial move is presented in table 8.3. For the efficient insertion/removal
of chain molecules, we refer the reader to Refs. [26–32].

Question 64 (Gibbs ensemble)
When one of the boxes in the Gibbs ensemble is infinitely large, the acceptance rules for particle swaps
become identical to the acceptance rules for particle swaps in a grand-canonical ensemble (Eqs. 7.15 and
7.17). Derive this result.
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subroutine volumechange perform a volume change

call energy tot(box(1),e1old) compute the old energy of box 1
call energy tot(box(2),e2old) compute the old energy of box 2
vo1=box(1)**3 compute old volume box 1
vo2=box(2)**3 compute old volume box 2
vn1=vo1+(2*ranf()-1)*∆V compute new volume box 1
if(vn1.lt.0) return reject negative volume
vn2=v-vn1 compute new volume box 2
boxn(1)=vn1**(1/3) compute new boxsize box 1
boxn(2)=vn2**(1/3) compute new boxsize box 2
do i=1,npart scale all coordinates

if(ibox(i).eq.1) then check in which box particle i is
fact=boxn(1)/box(1)

else
fact=boxn(2)/box(2)

endif
x(i)=x(i)*fact
y(i)=y(i)*fact
z(i)=z(i)*fact

enddo
call energy tot(boxn(1),e1new) compute new energy box 1
call energy tot(boxn(2),e2new) compute new energy box 2
arg=-beta*(e1new+e2new-e1old-e2old - acceptance rule

+ (npbox(1)*ln(vn1/vo1)+
+ npbox(2)*ln(vn2/vo2))/beta)
if(ranf().gt.exp(arg)) then accept or reject?
do i=1,npart reject, restore coordinates

if(ibox(i).eq.1) then check in which box particle i is
fact=box(1)/boxn(1)

else
fact=box(2)/boxn(2)

endif
x(i)=x(i)*fact
y(i)=y(i)*fact
z(i)=z(i)*fact

enddo
else
box(1)=boxn(1) accept, update boxsize
box(2)=boxn(2)

endif
return
end

Table 8.2: Pseudo computer code for a volume change in a Gibbs ensemble Monte Carlo sim-
ulation. The subroutine energy tot computes the total energy of the system. a**b means
ab.
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subroutine swap attempt to swap a particle

if (ranf().lt.0.5) then select boxes at random
in=1 transfer from box out to box in
out=2

else
in=2
out=1

endif
xn=box(in)*ranf() add a particle to box in
yn=box(in)*ranf() at a random position
zn=box(in)*ranf()
call ener(xn,yn,zn,enn,in) calculate energy of new particle in box in
if(npbox(out).eq.0) return delete particle from box out, if box empty return
ido=0 find a particle to be removed
do while (ido.ne.out)

ipart=int(npart*ranf())+1
ido=ibox(ipart)

enddo
xo=x(ipart) old configuration
yo=y(ipart)
zo=z(ipart)
call ener(xo,yo,zo,eno,out) calculate energy particle o in box out
arg=exp(-beta*(enn-eno +

+ log(vol(out)*npbox(in)+1)/ acceptance rule
+ (vol(in)*npbox(out)))/beta))
if(ranf().lt.arg) then
x(ipart)=xn
y(ipart)=yn add new particle to box in
z(ipart)=zn
ibox(ipart)=in
npbox(out)=npbox(out)-1
npbox(in)=npbox(in)+1

endif
return
end

Table 8.3: Pseudo computer code for an attempt to swap a particle between the two boxes in a
Gibbs ensemble Monte Carlo simulation. The subroutine ener computes the energy of a particle
at a given position in a certain box.
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8.4 Analyzing the Results

In a Gibbs ensemble simulation, the densities of the coexisting phases can be obtained simply
by sampling the densities of both boxes during the simulation. Of course, in estimating the
standard deviations of the results, one should be careful since the two coexisting densities are
not independent. Moreover, close to the critical point (see Fig. 9.3), it is possible that the systems
change identity during a simulation. Therefore, the measured density will tend to the overall
density N/V in both systems. In this case, it is more useful to determine the probability density
p(ρ) to observe a density ρ. The two maxima of p(ρ) correspond to the coexisting densities.
However, close to the critical point the Gibbs ensemble method will not work well as the free
energy associated with creating a phase separation will become very small. Instead, we can
estimate the location of the critical point by using the following scaling relations [8]

ρg + ρl

2
= ρc + A× (Tc − T) (8.9)

ρl − ρg = B× (Tc − T)α (8.10)

in which α ≈ 0.32 for three-dimensional systems, A and B are fit parameters and the subscripts
g, l, and c are used to denote the gas, liquid, and critical phases respectively.

Question 65 (Gibbs Ensemble Simulation)
Perform a Gibbs ensemble simulation of Lennard-Jones particles at T? = 0.8 using the given computer
program. Make sure that enough particle exchanges are accepted. In the Gibbs ensemble, the chemical
potential of box i is equal to

βµi = − ln Λ3 − ln
〈

Vi

Ni + 1
exp

[
−β∆E+

i

]〉
(8.11)

where Ni is the number of particles in box i, Vi is the volume of box i, and ∆E+
i is the energy change of

box i when a particle is transferred from the other box [35]. See also section 9.4. It is important to note
that this expression is only correct when the boxes do not change their identity.

1. Check that at coexistence ∆µ = µI − µII = 0 and ∆P = PI − PII = 0 in which µi is the chemical
potential of box i and Pi is the pressure of box i.

2. Check that at coexistence, the average densities are identical to the ones obtained in µVT and NPT

simulations (using the values of µ and P at coexistence, obtained from Gibbs ensemble simulations).

A zero pressure simulation is a quick and dirty way to obtain an estimate of the liquid coexistence density.
If we perform a NPT simulation at zero pressure and start with a density larger than the liquid density,
the averaged density obtained from a simulation will be close to the coexistence density of the liquid phase.

3. Perform NPT simulations at T? = 0.6, 0.7, 0.8 and 0.9 and zero pressure and compare the results
with Gibbs ensemble simulations.

4. Use the results from the Gibbs ensemble simulations to estimate the critical point using Eqs. 8.9
and 8.10. Compare your result with the result obtained from the Redlich-Kwong equation (question
61). The Lennard-Jones parameters of argon are σAr = 3.41Å, εAr/kB = 120K. Compare the
simulation results with the experimental critical temperature and density of argon (Tc = 151K,
ρc = 537.7kg/m3). The molar mass of argon is 39.95× 10−3kg/mol.





Chapter 9

Free Energy Calculations

In the previous chapter, we have used the Gibbs ensemble Monte Carlo method to calculate
the vapor-liquid coexistence of a Lennard-Jones system. It was verified numerically that the
pressure difference ∆P and chemical potential difference ∆µ between the coexisting phases was
zero. A disadvantage of the Gibbs ensemble Monte Carlo method is that it can only be used for
the determination of fluid equilibria as it involves the insertion and removal of particles, which
is impossible for solid phases and dense fluids. To determine phase equilibria for dense fluids
or solids, we have to compute chemical potentials and free energies and choose the conditions of
the phases such that ∆µ = 0 and ∆P = 0. Only in a few cases the free energy is known explicitly.
A method that can often be used to calculate free energies from simulations is a generalization of
what is done in real systems to obtain free energies. One starts with a system whose free energy
is known. Next one changes the system slowly, e.g. by heating it up, or by compressing it, until
the system is brought to the state where the free energy was not yet known. By taking properly
the exchange of heat, mass and work into account during the process one finds the new free
energy. This thermodynamic integration method does not work conveniently if phase transitions
are passed. To compute the free energy of a dense fluid, one can construct a reversible path to a
system for which the free energy is known, e.g. the ideal gas. However, for a solid, a direct path
to the ideal gas without crossing a phase transition is not possible as the solid-liquid coexistence
does not have a critical point (Fig. 6.6). Therefore, we will use another reference state, the so-
called Einstein crystal. The free energy difference of a real crystal and the Einstein crystal can
be computed using an auxiliary Hamiltonian, which depends on a coupling parameter λ. Note
that the thermodynamic integration from an ideal gas to a liquid has an equivalent in the real
world, but the integration from an Einstein crystal to a real crystal has not.

9.1 Free Energy and Partition Function

In principle, the free energy F (N,V, T) can be computed by integrating the Boltzmann factor
over the positions of all N particles in the system

F (N,V, T) = −kBT ln Q (N,V, T) = −kBT ln

(∫
drN exp

[
−βE

(
rN
)]

N!Λ3N

)
(9.1)

in which β = 1/kBT and rN is a 3N dimensional vector containing the positions of all particles.
In section 6.2.3 we have shown that for most systems we cannot compute this integral directly,
except for a few trivial cases such as the ideal gas. This suggests that we are not able to compute
the free energy of a system of interacting particles. However, it turns out that we are able to
compute free energy differences between systems by thermodynamic integration.
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Directly related to the free energy is the chemical potential of component i, which is defined
as the partial derivative of the free energy with respect to Ni while keeping V , T , and Nj (j 6= i)
fixed

µi =

(
∂F

∂Ni

)
T,V,Nj(j6=i)

(9.2)

If two phases are in thermodynamic equilibrium, the temperatures, pressures, and chemical
potentials of the coexisting phases must be equal. For a single component system (only one
type of particles), there is a direct relation between the free energy F and the chemical potential
µ:

F = −PV + µN (9.3)

in which V is the volume of the system and N is the number of particles. Alternatively, we can
examine the Gibbs free energy G

G = U − TS + PV = F + PV (9.4)

which for a single component is directly related to the chemical potential µ

G = µN (9.5)

As the chemical potentials of the coexisting phases are equal, the Gibbs free energy per particle

Ḡ =
G

N
= µ (9.6)

must be equal for both phases. The chemical potential can either be computed from the free
energy (Eq. 9.3), or by Widom test particle method (see section 9.4).

9.2 Derivatives of the Free Energy

In a computer simulation, one can measure derivatives of the free energy such as the derivatives
with respect to volume or temperature (

∂F

∂V

)
T,N

= −P (9.7)(
∂(F/T)

∂T

)
N,V

= −
U

T2
(9.8)

in which P is the pressure and U is the total energy of the system (see section B.6). If the free
energy is known for a given state, we can compute the free energy at another temperature or
volume by thermodynamic integration of Eqs. 9.7 and 9.8. For example, to compute the free
energy at temperature T2 when the free energy at temperature T1 is known, we can use:

F (V, T2)

T2
−

F (V, T1)

T1
=

∫T2

T1

dT

(
∂(F/T)

∂T

)
N,V

= −

∫T2

T1

dT
U (V, T)

T2
(9.9)

where U(V, T) can be obtained from simulations.

Question 66 (Free energy of an ideal gas)
Show that the free energy of an ideal gas equals (N particles in volume V , ρ = N/V)

FIG

NkBT
= ln Λ3ρ − 1 (9.10)

were we have used Eq. C.48 for ln N!.
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Question 67 (Maxwell relation)
Show that Eq. 9.7 can be rewritten as (

∂F/N

∂ρ

)
T

=
P(ρ)

ρ2
(9.11)

Question 68 (Excess free energy)
An important property is the so-called excess free energy Fex of a system, which equals the free energy of

the system F minus the free energy if the system would be an ideal gas FIG:

Fex = F − FIG (9.12)

Show that at constant temperature T we can write

Fex(ρ)

NkBT
=

F(ρ) − FIG(ρ)

NkBT
=

1

kBT

∫ρ

0
dρ ′P(ρ ′) − ρ ′kBT

ρ ′2 (9.13)

in which P(ρ) is the equation of state of the system. Show that for a gas with the following equation of
state

P(ρ) = ρkBT + B2ρ
2 + B3ρ

3 + B4ρ
4 + · · · (9.14)

the excess free energy equals

Fex(ρ) = N×
[
B2ρ +

B3ρ
2

2
+

B4ρ
3

3
+ · · ·

]
(9.15)

9.3 Using an Arbitrary Order Parameter

Not only are we able to compute changes in the free energy when T or ρ is changed, but we can
also compute the free energy change when an arbitrary coupling parameter λ in the potential
energy function is changed at constant N, V , and T . To this end, we consider a system of N

particles in a volume V interacting with a potential energy function E
(
rN, λ

)
that depends on a

coupling parameter λ in a way that we leave for this moment unspecified. The derivative of the
free energy with respect to λ reads(

∂F

∂λ

)
N,V,T

= −
1

β

∂

∂λ
ln Q (N,V, T, λ)

= −
1

βQ

∂Q (N,V, T, λ)

∂λ

=

∫
drN

(
∂E(rN,λ)

∂λ

)
exp

[
−βE

(
rN, λ

)]
∫

drN exp [−βE (rN, λ)]
=

〈
∂E
(
rN, λ

)
∂λ

〉
λ

(9.16)

The brackets 〈· · · 〉λ denote an ensemble average at a fixed value of λ. This ensemble average〈
∂E
(
rN, λ

)
∂λ

〉
λ

(9.17)

can be measured in a simulation. Therefore, the free energy difference between λ = 0 and λ = 1

equals

∆F = F(λ = 1) − F(λ = 0) =

∫1

0
dλ

(
∂F

∂λ

)
N,V,T

=

∫1

0
dλ

〈
∂E
(
rN, λ

)
∂λ

〉
λ

(9.18)

In practice, we need of the order of 10 simulations at different values of λ to evaluate this integral
numerically. In section 9.6, we will use this method to compute the free energy of a solid.
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Question 69 (Gibbs-Bogoliubov inequality)
Suppose that we would like to compute the free energy difference between a system for which λ = 0 and
a system for which λ = 1. In addition, it is chosen that the energy depends linearly on the coupling
parameter λ:

E(rN, λ) = (1 − λ)× EI(rN) + λ× EII(rN) (9.19)

Show that in this case (
∂2F

∂λ2

)
N,V,T

≤ 0 (9.20)

9.4 Widom test particle method

A simple method to compute the chemical potential is Widom test particle method [17], which
estimates the derivative of Eq. 9.2:

µ ≈ F(N + 1, V, T) − F(N,V, T)

N + 1 − N
= −kBT ln

Q(N + 1, V, T)

Q(N,V, T)
(9.21)

where Q(N,V, T) is the partition function of a system of N interacting particles in a volume V at
a temperature T . Using Eq. 6.9 and reduced coordinates (si = ri/L; V = L3) leads to

µ = −kBT ln
(

VΛ−3

N + 1

)
− kBT ln

(∫
dsN+1 exp

[
−βE(sN+1)

]∫
dsN exp [−βE(sN)]

)

= −kBT ln
(

VΛ−3

N + 1

)
− kBT ln

(∫
dsN+1 exp

[
−βE(sN)

]
exp [−β∆E+]∫

dsN exp [−βE(sN)]

)
≈ kBT ln(ρΛ3) − kBT ln

〈
exp

[
−β∆E+

]〉
N,V,T

= µIG + µex (9.22)

in which ∆E+ = E(sN+1)−E(sN) is the energy change when a test particle is inserted at a certain
position in the system and µIG = kBT ln(ρΛ3) is the chemical potential of an ideal gas. We
should keep in mind that the ensemble average〈

exp
[
−β∆E+

]〉
N,V,T

(9.23)

is an unbiased average over all possible positions of the test particle and a Boltzmann average for
our system of N particles at volume V = L3 and temperature T , see Fig. 9.1. In practice, we
simulate a system of N particles in volume V at temperature T using the conventional Monte
Carlo algorithm. During this simulation, we keep track of the ensemble average of exp [−β∆E+],
in which ∆E+ is the energy change when an additional particle is inserted into the system at a
random position (without ever accepting such an insertion).

Widom test particle method is not only possible in the NVT ensemble, but also in the Gibbs
ensemble (see Eq. 8.11) and the NPT ensemble. The resulting expression for the NPT ensemble
is [36, 37]

µ(P) = kBT ln(βPΛ3) − kBT ln
〈

PV

kBT(N + 1)
exp[−β∆E+]

〉
N,P,T

(9.24)

Question 70 (Widom Test Particle Method)
Consider a system of N Lennard-Jones particles in a volume V at T? = 2.0.

1. Explain why Widom test particle method does not work well at high densities.



9.5 Umbrella Sampling 89

Figure 9.1: Widom test particle method. A test particle is placed at a random position in the
system and the energy change ∆E+ is calculated. The excess chemical potential is related to the
average value of exp[−β∆E+].

2. Compute the chemical potential as a function of the density for ρ? ≤ 0.8 using Widom test particle
method in the NVT ensemble using the given computer program.

3. Check that a simulation in the grand-canonical ensemble at the chemical potential that you mea-
sured in the previous question results in the same density.

4. Compute the excess free energy as a function of the density ρ? by integrating P?(ρ?) (see questions
51 and 68). Use this result and Eqs. 9.12, 9.10 and 9.3 to calculate the chemical potential as a
function of the density. Compare this result with the chemical potential obtained using Widom test
particle method in the NVT ensemble.

Question 71 (Particle removal)
Instead of Eq. 9.21, we could also compute the chemical potential by computing the energy change when
a randomly selected particle is removed from the system

µ = kBT ln
Q(N,V, T)

Q(N + 1, V, T)
≈ µIG + kBT ln

〈
exp

[
β∆E+

]〉
N+1,V,T

(9.25)

in which ∆E+ = E(sN+1) − E(sN). This requires a simulation of a system of N + 1 particles. Explain
why this method is not practical to compute the chemical potential of a system consisting of Lennard-Jones
particles, although it is in principle correct.

9.5 Umbrella Sampling

In a Monte Carlo simulation in the canonical ensemble, we compute averages by sampling con-
figurations with a probability proportional to the Boltzmann factor

〈A〉 =

∫
drNA(rN) exp

[
−βE(rN)

]∫
drN exp [−βE(rN)]

(9.26)
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However, it is straightforward to perform a simulation in a slightly different ensemble π, in
which configurations are sampled with a probability proportional to

π(rN) = exp[−βE(rN) + W(rN)] (9.27)

in which W(rN) is a weight function (sometimes called biasing function) that only depends on
rN. The ensemble average 〈A〉 in the canonical ensemble can be computed using [38]

〈A〉 =

∫
drNA(rN) exp

[
−βE(rN)

]
∫

drN exp
[
−βE(rN)

]

=

∫
drNA(rN) exp

[
−W(rN)

]
exp

[
−βE(rN) + W(rN)

]
∫

drN exp
[
−W(rN)

]
exp

[
−βE(rN) + W(rN)

]

=

∫
drNA(rN) exp

[
−W(rN)

]
exp

[
−βE(rN) + W(rN)

]
∫

drN exp
[
−βE(rN) + W(rN)

]
∫

drN exp
[
−W(rN)

]
exp

[
−βE(rN) + W(rN)

]
∫

drN exp
[
−βE(rN) + W(rN)

]
=

〈A exp[−W]〉π
〈exp[−W]〉π

(9.28)

in which 〈· · · 〉π denotes an ensemble average in the ensemble π (Eq. 9.27). Applying a biasing
potential can be useful when we wish to confine our system into a certain region of the phase
space. Moreover, it is sometimes useful to split a simulation into a number of different simula-
tions, each with a slightly different window potential W(rN), and combine all the simulations
afterward using Eq. 9.28.

Question 72 (Ensemble averages at different temperatures)
Suppose that we perform a Monte Carlo simulation at a certain temperature T . Using Eq. 9.28, we could
in principle compute ensemble averages at any other temperature T∗ different from T . Explain how this
can be done. However, it turns out that in practice, this method only works well when |T − T∗| is small.
Explain this.

Question 73 (Weight Function)
Explain why it usually not a good idea to set W(rN) = βE(rN).

Question 74 (Umbrella Sampling of a 2D Ising Model)
In this question we consider the Monte Carlo simulation of a 2D Ising model, see section 5.3.

1. Calculate the distribution of the magnetisation M for N = 32×32 and T? = 2 in the canonical en-
semble (W(M) = 0 in Eq. 9.27) using the given computer program. In principle, this distribution
should be symmetrical:

p (M) = p (−M) (9.29)

Why does this not seem to be the case?
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r

Figure 9.2: Schematic representation of an Einstein crystal. Atoms are bound to their lattice
positions by harmonic springs and do not interact.

Instead of a simulation in the canonical ensemble, one can perform the simulation in a different ensemble,
see Eq. 9.27.

2. Perform simulations with some given distributions W (M) (w.type1.dat, w.type2.dat,
and w.type3.dat). Explain your results.

9.6 Free energy of Solids: Einstein Integration

Rather than the ideal gas phase, a more useful reference system for a crystal is the so-called
Einstein lattice, for which there is an exact expression for the free energy. In this system, particles
are bound to grid positions by harmonic springs while the particles themselves do not interact
with each other (Fig. 9.2). Each particle has a different equilibrium position in such a way that
these grid positions resemble the real crystal as much as possible.

Consider a single particle that is bound with a spring to a grid position. The energy of this
particle equals

φ (r) =
α

2
× r2 (9.30)

in which r is the distance to the fixed grid position and α is a spring constant. In three dimen-
sions, we can compute the partition sum by using spherical coordinates

Q =

∫∞
0

dr4πr2 exp [−βφ (r)] =

∫∞
0

dr4πr2 exp
[
−

1

2
αβr2

]
. (9.31)

Using this so-called Einstein crystal as a reference state for the free energy, the next step in
computing the free energy of a real crystal is to construct a reversible path from the real crystal
to the Einstein crystal. This can be done by introducing an order parameter λ with 0 ≤ λ ≤ 1. In
a computer simulation, we can simulate a crystal with the following potential:

E(rN, λ) = λEein(rN) + (1 − λ)Ecr(rN) (9.32)
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Figure 9.3: Schematic representation of the phase diagram of the Lennard-Jones system. The
bold lines show the thermodynamic integration path to estimate the solid-liquid coexistence at
T? = 2. For the liquid, the ideal gas is used as a reference state for the free energy. For the solid,
the Einstein crystal is used instead.

in which Eein is the potential energy that the system would have if it would be an Einstein crystal
and Ecr is the potential energy if the system would be a real crystal. Thus, for λ = 0 we recover
the real system and for λ = 1 we have the Einstein crystal for which we have an exact expression
for the free energy. The free energy difference of the real crystal and the Einstein crystal is (Eq.
9.16)

∆F = Fein − Fcr =

∫1

0
dλ

(
∂F

∂λ

)
N,V,T,λ

=

∫1

0
dλ

〈
∂E

∂λ

〉
λ

=

∫1

0
dλ 〈Eein − Ecr〉λ . (9.33)

However, there is a subtle difficulty. The problem is that fluctuations in Eein become very large
when λ → 0. The reason for this is that for λ = 0 the particles are no longer bound to their lattice
position and can in principle move freely. Therefore,

〈
r2
〉

will be of the order of the square of
the system size which may be quite large. This problem is solved by performing the integration
of Eq. 9.33 using a fixed center of mass resulting in ∆FCM

∆FCM = FCM
ein − FCM

cr =

∫1

0
dλ 〈Eein − Ecr〉λ,CM (9.34)

in which the brackets 〈· · · 〉λ,CM denote an ensemble at a fixed value of λ and at a fixed center of
mass. It is important to note that ensemble averages with and without a fixed center of mass are
different, i.e. ∫1

0
dλ 〈Eein − Ecr〉λ,CM 6=

∫1

0
dλ 〈Eein − Ecr〉λ . (9.35)

However, we would like to compute the free energy of a system in which the center of mass is
not fixed because this corresponds to the “real” system. The resulting expression for the free
energy of the unconstrained system is derived in the paper by Polson et al. [39]. Most important
is Eq. 17 of this paper to compute the excess free energy Fex, which is the free energy of the
system (F) minus the free energy of the system if it would be an ideal gas (FIG),

Fex (N,V, T) = F (N,V, T) − FIG (N,V, T) (9.36)
βFex

N
= −

3

2
ln

2π

αβ
−

3

2N
ln

αβ

2π
+

ln ρ

N
−

2 ln N

N
− ln ρ + 1 −

ln 2π

2N
−

β

N
∆FCM(9.37)

in which ∆FCM is given by Eq. 9.34 and FIG by Eq. 9.10.
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Question 75 (Free energy of an Einstein crystal)
Derive that the free energy of a crystal containing N particles that are all bound to different lattice posi-
tions with equal spring constants α, equals

F = −kBT ln Q = −
3N

2β
ln

2π

αβ
. (9.38)

See also Eq. C.46. If α → 0, F diverges. Provide a physical explanation for this.

Question 76 (Mean-squared displacement)
Show that the mean-squared particle displacement of an Einstein crystal equals〈

r2
〉

=
3

αβ
(9.39)

See also Eq. C.47.

Question 77 (Hard sphere solid)
Suppose we would like to study the solid/liquid coexistence of particles interacting with a hard-core po-
tential (Eq. 6.27). Explain why the reversible path of Eq. 9.32 will not work in this case.

Question 78 (Melting of a Lennard-Jones Crystal)
We will compute a single point of the solid/liquid coexistence curve of a Lennard-Jones system at T? =

2.0. For this, we need to compute the free energy of the solid as well as the liquid. The free energy of the
liquid phase can be computed by constructing a path from the liquid density all the way up to the ideal
gas limit (see Fig. 9.3 and Eq. 9.13). For the solid phase, we use the Einstein integration method using a
fixed center of mass. The equilibrium crystal structure of the solid is fcc (face centered cubic). This means
that the equilibrium grid positions for the Einstein integration are also organized on an fcc lattice. Before
you start, answer the following questions:

1. What happens with the accuracy of the thermodynamic integration when α has a very low or very
high value?

2. We can compute the free energy of the liquid phase at T? = 2.0 by constructing a direct path to the
ideal gas, see Fig. 9.3. If we would like to compute the phase equilibrium at T? = 0.8, this direct
approach will not work. Explain why.

Use the following steps to compute the coexistence densities:

3. Compute the excess free energy of the liquid as a function of ρ? by thermodynamic integration to
the ideal gas limit, see also questions 68 and 70.

4. Compute the excess free energy of the solid by performing an Einstein integration for ρ? = 1.2.
You will have to play a little bit with α to get reasonable results. Hint: try α? = 100 and α? = 500

for λ = 0, λ = 0.5, and λ = 1 just to get a feeling which value of α is the best.

5. To compute the coexistence pressure, construct a plot of the chemical potential as a function of the
pressure for both the solid and liquid phase. You will have to use(

∂µ

∂P

)
T,N

=
1

ρ(P)
(9.40)

for both phases. For the solid phase at T? = 2.0, the following equation of state can be used:
P? (ρ?) = 276.47 − 554.051ρ? + 290.756(ρ?)2.

6. Use the coexistence pressure to compute the coexistence densities.

7. Estimate the coexistence density of the liquid and pressure at T? = 2.1 using Eq. B.46.





Chapter 10

Introduction to Molecular Dynamics

10.1 Molecular Dynamics

In Molecular Dynamics simulations, Newton’s equations of motion are integrated numerically
for typically N = 100 − 10000 particles, starting from an initial configuration Γ (representing
all particle positions and velocities in the system). After equilibration, we can measure time
averages A of a corresponding microscopic function A(Γ) over a certain time interval t0 ≤ t ≤
t0 + τ of a phase trajectory:

A = lim
τ→∞ 1

τ

∫ t0+τ

t0

dtA(Γ(t)) (10.1)

In contrast to Monte Carlo simulations, which only yield thermodynamic ensemble averages,
Molecular Dynamics simulations can provide us not only equilibrium properties, but also trans-
port properties of the system. A Molecular Dynamics simulation is performed as follows (see
table 10.1):

1. Start with a configuration Γo, i.e., select initial positions and velocities for all particles.

2. Calculate the forces on all particles. For a given pair of particles the α-component of the
force (α = x, y, z) is given by

fα(r) = −
∂φ(r)

∂rα
= −

rα

r
× ∂φ(r)

∂r
(10.2)

with φ(r) the pair potential and r = |r| =
√

r2
x + r2

y + r2
z is the distance between two

particles. The total force on a particle i can be calculated by considering interactions with
all particles j (j 6= i).

3. Integrate Newton’s equations of motion to obtain the new positions and velocities:

Fi = mi ×
dvi

dt

vi =
dri

dt
(10.3)

in which Fi, mi, vi are ri are the total force, mass, velocity and position of particle i respec-
tively.

4. Repeat step 2 and 3

Question 79 (Force for a Lennard-Jones system)
Derive an expression for the x-component of the force for a Lennard-Jones system.
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program md Molecular Dynamics algorithm

call init select initial positions and velocities
t=0.0 time t = 0
do while (t.lt.tmax) for t < tmax

call force(f,en) calculate the forces on all particles
call integrate(f,en) integrate equations of motion
t=t+deltat update the time
call sample sample the time averages

enddo
end

Table 10.1: Pseudo computer code for a Molecular Dynamics simulation.

10.2 Initialization

A Molecular Dynamics simulation is started from an initial configuration of N particles in a
fixed volume V . We select first initial positions and velocities for every particle in our system.
The positions of the particles are chosen such that the associated Boltzmann weight is non-zero,
i.e., no hard-core particle overlaps. For Lennard-Jones interactions, it is a good idea to ensure
that all particle-particle distances are at least equal to σ. The particles can be placed at random
in the simulation box, or they can be placed on lattice sites. Alternatively, particle positions
can be taken from an equilibrated Monte Carlo simulation. We then assign a velocity to each
particle, which can either be picked randomly in an interval [−1; 1] for each component vα,
where α denotes the x, y, and z-direction, or can be taken from a Maxwell-Boltzmann velocity
distribution (Eq. 10.41). Subsequently, the velocities are shifted such that the total momentum
of all the particles is zero and the velocities are scaled such that the mean kinetic energy Ekin
matches the desired temperature T :

Ekin =

N∑
i=1

mv2
i

2
=

3NkBT

2
(10.4)

where v2
i = v2

x,i +v2
y,i +v2

z,i. As T ∝
∑N

i=1 v2
i , the instantaneous temperature T(t) can be adjusted

to match the desired temperature T by scaling all velocities with a factor
√

T/T(t).

10.3 Force Calculation

In the next step of a Molecular Dynamics simulation, we determine the force acting on every
particle. If we assume a system interacting with pairwise additive interactions, we calculate the
contribution to the force on particle i due to the presence of all the other particles. If we consider
only the interaction between a particle and the nearest image of another particle (just as we did
for the Monte Carlo method in chapter 6), we must evaluate N(N − 1)/2 pairs of particles,
where N is the number of particles in our simulation box. Hence, we first compute the distance
between each pair of particles i and j. We use periodic boundary conditions and compute the
nearest image distance. Moreover, it is often convenient to use a cut-off at a distance rcut, where
rcut is less than half the diameter of the periodic box. We then calculate the force for a given pair
between particle i and j as a result of the corresponding pair interaction.
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subroutine init Initialization of MD program

sumv=0
sumv2=0
do i=1,npart

x(i)=latticepos(i) place the particle on a lattice position
v(i)=2×(ranf()-0.5) give random velocity
sumv=sumv+v(i) total momentum
sumv2=sumv2+v(i)**2 kinetic energy

enddo
sumv=sumv/npart
sumv2=sumv2/npart
fs=sqrt(3*temp/sumv2) we assume a three-dimensional system
do i=1,npart scale velocities to desired temperature

v(i)=(v(i)-sumv)*fs set total momentum to zero
enddo
return
end

Table 10.2: Pseudo computer code for an initialization of a Molecular Dynamics simulation.
Function latticepos gives the coordinates of lattice position i and ranf() gives a random
number uniformly distributed between [0 : 1]. We do not start with a Maxwell-Boltzmann
velocity distribution (Eq. 10.41), but after equilibration this distribution will be reached very
quickly.

10.4 Integration of the Equations of Motion

For the integration of Newton’s equations of motion (Eq. 10.3), we employ the Verlet algorithm,
which is based on a Taylor expansion (Eq. C.13) of the coordinate of a particle at time t+∆t and
t − ∆t about time t:

r(t + ∆t) = r(t) + v(t)∆t +
f(t)

2m
∆t2 +

∂3r

∂t3

∆t3

3!
+O(∆t4). (10.5)

and

r(t − ∆t) = r(t) − v(t)∆t +
f(t)

2m
∆t2 −

∂3r

∂t3

∆t3

3!
+O(∆t4). (10.6)

Adding these two equations and subtracting r(t − ∆t) on both sides gives us

r(t + ∆t) = 2r(t) − r(t − ∆t) +
f(t)

m
∆t2 +O(∆t4). (10.7)

Note that the new position is accurate to order ∆t4. The Verlet algorithm does not use the
velocity to compute the new position, but the velocity can be derived from the trajectory, which
is only accurate to order ∆t2:

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+O(∆t2) (10.8)

The velocities can be used to compute the kinetic energy and, thereby, the instantaneous tem-
perature calculated by Eq. 10.4. It is important to note that Eqs. 10.7 and 10.8 conserve:
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subroutine force(f,en) calculation of the forces

en=0 set total energy to zero
do i=1,npart

f(i)=0 set forces to zero
enddo
do i=1,npart-1 consider all particle pairs

do j=i+1,npart
xr=x(i)-x(j) distance between i and j

xr=xr-box*nint(xr/box) periodic boundary conditions
r2=xr**2
if(r2.lt.rc2) then rc2=rc*rc, where rc is the cut-off distance
r2i=1/r2
r6i=r2i**3
ff=48*r2i*r6i(r6i-0.5)
f(i)=f(i)+ff*xr update force for particle i
f(j)=f(j)-ff*xr update force for particle j
en=en+4*r6i*(r6i-1)-ecut update total potential energy

endif
enddo

enddo
return
end

Table 10.3: Pseudo computer code for the calculation of the forces in a Molecular Dynamics
simulation. ecut denotes the value of the potential at r = rcut. For the Lennard-Jones potential
ecut is given by Eq. 6.5.

• the total linear momentum of the system, i.e.

d

dt

N∑
i=1

mivi(t) = 0 (10.9)

• the total energy of the system, which is the sum of the potential energy

Epot =
∑
i<j

φij(rij) (10.10)

and the kinetic energy Ekin (Eq. 10.4).

If these quantities are not conserved in an actual simulation there must be an error in the simu-
lation program.

10.5 Other Integration Algorithms

In a Molecular Dynamics simulation it is essential to have a good algorithm to integrate New-
ton’s equation of motions. Different integration algorithms exist and a good algorithm should
satisfy several criteria. First, the algorithm should be fast, and require little memory. Second, it
should be sufficient accurate for large time steps as larger time steps results in fewer evaluations
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subroutine integrate(f,en) Integration of equations of motion

sumv=0
sumv2=0
do i=1,npart

xx=2*x(i)-xm(i)+delt**2*f(i) Verlet algorithm (Eq. 10.7)
vi=(xx-xm(i))/(2*delt)
sumv2=sumv2+vi**2
xm(i)=x(i) update positions
x(i)=xx

enddo
temp=sumv2/(3*npart) temperature
etot=(en+0.5*sumv2)/npart total energy per particle
return
end

Table 10.4: Pseudo computer code for the integration of the equations of motion in a Molecular
Dynamics simulation.

of the force and a speed up of the simulation. Third, it should satisfy energy and momentum
conservation, and it should be time reversible. It is important to note that time-reversibility is
much more important than accuracy (e.g. predicting positions and velocities as accurately as
possible) and therefore Molecular Dynamics of a system of interacting particles is fundamen-
tally different from predicting the trajectory of a satellite that is send into space. For a more
in-depth discussion about why this is we would like to refer the reader to Ref. [8].

The Verlet algorithm satisfies the criteria of a good integration algorithm. Below, we discuss
a few alternatives for this algorithm. The Euler algorithm is simply based on a Taylor expansion
of the particle coordinates truncated beyond the term in ∆t2 and reads

r(t + ∆t) = r(t) + v(t)∆t +
f(t)

2m
∆t2 (10.11)

v(t + ∆t) = v(t) +
f(t)

m
∆t (10.12)

However, it suffers from a tremendous energy drift and the Euler algorithm should be avoided
at any time. Another popular algorithm is the so-called Leap Frog algorithm. It evaluates the
velocities at half-integer time steps and uses these velocities to compute new positions. The
velocities at half-integer time steps are defined as follows

v(t − ∆t/2) =
r(t) − r(t − ∆t)

∆t
(10.13)

v(t + ∆t/2) =
r(t + ∆t) − r(t)

∆t
(10.14)

The latter equation yields an expression for the new positions, based on the old positions and
velocities

r(t + ∆t) = r(t) + v(t + ∆t/2)∆t (10.15)

Combining Eqs. 10.13 and 10.14 and the Verlet algorithm (10.7), we arrive at the following
update for the velocities

v(t + ∆t/2) = v(t − ∆t/2) + ∆t
f(t)

m
(10.16)



100 Introduction to Molecular Dynamics

It is important to note that the kinetic and potential energy are not defined at the same time,
and hence we cannot compute the total energy directly in the Leap Frog scheme. In the velocity
Verlet algorithm, the positions and velocities are computed at equal times. The update of the
coordinates in this algorithm is based on a Taylor expansion for the coordinates

r(t + ∆t) = r(t) + v(t)∆t +
f(t)

2m
∆t2 (10.17)

while the update of the velocities is

v(t + ∆t) = v(t) +
f(t + ∆t) + f(t)

2m
∆t (10.18)

In this algorithm, we can only compute the new velocities after we have computed the new
coordinates and from these the new forces. This scheme is, however, equivalent to the original
Verlet algorithm.

Question 80 (Verlet and velocity Verlet algorithm)
Show that the Verlet and velocity Verlet algorithm are equivalent. Hint: Rewrite Eq. 10.17 for r(t+2∆t)

and give an expression for r(t+∆t) using Eq. 10.17. Add the two expressions and substitute Eq. 10.18.

Question 81 (Verlet algorithm is time-reversible)
Show that the Verlet- and Leap-Frog algorithms are time-reversible and the Euler algorithm is not.

10.6 Computer Experiments

In a Molecular Dynamics simulation, thermodynamic properties, e.g., temperature, pressure,
radial distribution functions, etc., can be measured during the simulation. This is done in a
similar way as in Monte Carlo, see for example section 6.4. The temperature T can be measured
by computing the average kinetic energy 〈Ekin〉. For a three-dimensional Lennard-Jones system,
the temperature T is calculated by

kBT =
2× 〈Ekin〉

3
(10.19)

The pressure P can be measured using the usual virial equation (Eq. 6.13). In addition to the
static equilibrium properties, one can also measure dynamic equilibrium properties in a Molec-
ular Dynamics simulation. In the next section, we discuss some of the transport properties that
can be calculated.

Question 82 (Molecular Dynamics of a Lennard-Jones System)
Enclosed is a Molecular Dynamics (MD) program for a Lennard-Jones fluid in the NVE ensemble.

Unfortunately, the program does not conserve the total energy because it contains three errors.

1. Find the three errors in the code. Hint: there are two errors in integrate.f and one in
force.f. See the file system.inc for documentation about some of the variables used in this
code.

2. How is one able to control the temperature in this program? After all, the total energy of the system
should be constant (not the temperature).

3. To test the energy drift ∆E of the numerical integration algorithm for a given time step ∆t after
nmax integration steps, one usually computes [40]

∆E (nmax∆t) =
1

nmax

nmax∑
n=1

∣∣∣∣E (0) − E (n∆t)

E (0)

∣∣∣∣ (10.20)
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In this equation, E (x) is the total energy (kinetic+potential energy) of the system at time x. Make
a plot of ∆E as a function of the time step. Do you expect that this plot will be different at a higher
density or at a higher temperature?

4. In the current version of the code, the equation of motion are integrated by the velocity Verlet
algorithm. Make a plot of the energy drift ∆E for the following integration algorithms:

• Euler (never use this one except here !!!)
• Verlet
• velocity Verlet

10.7 Diffusion

Diffusion is the process whereby an initially nonuniform concentration profile (e.g. an ink drop
in water) evolves in time. Diffusion is caused by the thermal motion of the particles in the fluid.
The macroscopic law that describes diffusion is known as Fick’s law, which states that the flux
j of the diffusing species is proportional to the negative gradient in the concentration of that
species:

j = −D∇c (10.21)

where the constant of proportionality D is the diffusion coefficient. In this chapter, we limit
ourselves to self-diffusion. This means that we study diffusion of a labeled species among other
identical species. We now compute the concentration profile of the tagged species, under the
assumption that at time t = 0, the tagged species was concentrated at the origin. To compute
the time evolution of the concentration profile, we combine Fick’s law with conservation of the
total amount of labeled material:

∂c(r, t)

∂t
+∇ · j(r, t) = 0 (10.22)

Combining Eq. 10.22 with Fick’s law (Eq. 10.21), we arrive at

∂c(r, t)

∂t
− D∇2c(r, t) = 0 (10.23)

which can be solved with the initial condition

c(r, 0) = δ(r) (10.24)

to yield for a three-dimensional system

c(r, t) =
1

(4πDt)3/2
exp

(
−

r2

4Dt

)
(10.25)

We can rewrite this equation using the time dependence of the second moment of c(r, t) instead
of c(r, t) itself, which reads

〈r2(t)〉 ≡
∫

drc(r, t)r2 (10.26)

where we used the normalization ∫
drc(r, t) = 1 (10.27)

We obtain
∂

∂t

∫
drr2c(r, t) = D

∫
drr2∇2c(r, t) (10.28)
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The left-hand side of this equation is equal to

∂

∂t

∫
drr2c(r, t) =

∂〈r2(t)〉
∂t

(10.29)

and the right-hand side equals

D

∫
drr2∇2c(r, t) = 6D (10.30)

where we used partial integration. In conclusion, we find

∂〈r2(t)〉
∂t

= 6D (10.31)

This relation was first derived by Einstein around 1905. It relates the diffusion coefficient D to
the width of the concentration profile. We stress that D is a macroscopic transport coefficient,
whereas 〈r2(t)〉 is a microscopic property as it is the mean-squared distance over which the
tagged particles have moved in a time t. In a computer simulation, D can be measured by
measuring for every particle i the distance traveled in time t, ∆ri(t). To be more specific, we
plot the mean-squared displacement

〈∆r(t)2〉 =

∑N
i=1 ∆ri(t)

2

N
(10.32)

as a function of t. For long times, 〈∆r(t)2〉 varies linearly with t and the slope is given by 6D

(see Fig. 10.1). The displacement can be re-expressed simply as the time integral of the velocity
of the tagged particle:

∆r(t) =

∫ t

0
dt ′v(t ′) (10.33)

There is a relation between the diffusion coefficient and the particle velocities. If we consider
only one Cartesian component of the mean-squared displacement, the diffusion reads

2D = lim
t→∞ ∂〈x2(t)〉

∂t
(10.34)

We can now rewrite x(t) as the time integral of the x-component of the velocity of the tagged
particle

〈x2(t)〉 =

〈(∫ t

0
dt ′vx(t

′)

)2
〉

=

∫ t

0

∫ t

0
dt ′dt ′′〈vx(t

′)vx(t
′′)〉

= 2

∫ t

0

∫ t ′

0
dt ′dt ′′〈vx(t

′)vx(t
′′)〉 (10.35)

where 〈vx(t
′)vx(t

′′)〉 equals the velocity autocorrelation function (VACF). It describes the cor-
relations between velocities at different times along an equilibrium trajectory. Combining Eq.
10.34 with Eq. 10.35, we obtain

D = lim
t→∞

∫ t

0
dt ′′〈vx(t − t ′′)vx(0)〉

=

∫ t

0
dτ〈v(τ)v(0)〉 (10.36)
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Figure 10.1: (a) Mean-squared displacement (Eq. 10.32) and (b) the normalized velocity auto-
correlation function (〈v(0)v(t)〉 /

〈
v(0)2

〉
) for a Lennard-Jones system (T? = 1.5, ρ? = 0.88) as a

function of time.

where we changed the integration variable to τ = t−t
′′
, and we used that the VACF is invariant

under a change of the time origin and time inversion

〈vx(t
′)vx(t)〉 = 〈vx(t

′ − t)vx(0)〉 (10.37)

We now related the diffusion coefficient D to the integral of the velocity autocorrelation function.
Note that both methods for calculating the diffusivity D (Eqs. 10.31 and 10.36) result in exactly
the same value. More information on computing diffusivities can be found in Ref. [41].

Question 83 (Velocity autocorrelation function)
Why is the VACF in Fig. 10.1 negative for some t?

Question 84 (Self Diffusion)
An important quantity of a liquid or gas is the so called self diffusivity D. There are two methods to
calculate D:

1. by integrating the velocity autocorrelation function:

D =
1

3

∫∞
0

〈
v (t) · v

(
t + t

′
)〉

dt
′

(10.38)

2. by calculating the mean-squared displacement:

D = lim
t
′→∞

〈∣∣∣x(t + t
′
)

− x (t)
∣∣∣2〉

6t
′ (10.39)

Use the given computer program to answer the following questions (make sure that the errors of question
82 are corrected):

1. What is the unit of D in SI units? How can one transform D into dimensionless units?
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2. Why should we be very careful with calculating of the mean-squared displacement when particles
are transformed to the central box?

3. For Lennard-Jones liquids, Naghizadeh and Rice report the following equation for the self diffusivity
(T∗ < 1.0 and P∗ < 3.0) [42]

10log (D∗) = 0.05 + 0.07P∗ −
1.04 + 0.1P∗

T∗ (10.40)

Try to confirm this equation with simulations.

10.8 Molecular Dynamics at Constant Temperature

Molecular Dynamics studies the natural time evolution of a classical system of N particles in vol-
ume V , while the total energy E is a constant of motion. Therefore, the time averages obtained
in a conventional MD simulation are micro-canonical ensemble averages. However, it is often
more convenient to perform simulations in other ensembles. There are basically two possible
ways. One way is to combine MD simulations with Monte Carlo moves. The second approach is
completely dynamical in origin and is based on reformulating the Lagrangian equations of mo-
tion (see for example Ref. [8]). Here, we focus on constant temperature simulations. Below we
describe the simplest approach: The Andersen thermostat to simulate a constant temperature
ensemble [43].

We first specify what we mean by constant temperature. From a statistical physics point
of view, we can impose a temperature on a system by bringing it into thermal contact with
a heat bath. Under these conditions, the probability of finding the system in a given energy
state is given by the Boltzmann distribution and, for a classical system, the Maxwell-Boltzmann
velocity distribution follows:

P(p) =

(
1

2πmkBT

)3/2

exp[−βp2/(2m)] (10.41)

We then obtain a simple relation between the imposed temperature T and the kinetic energy per
particle

kBT = m〈v2
α〉 (10.42)

where vα is the α-th component of the velocity. However, the condition of constant temperature
is not equivalent to the condition that the kinetic energy per particle is constant. To show this,
we can determine the relative variance of the kinetic energy per particle in a canonical ensemble.
To this end we calculate the second and fourth moments of the Maxwell-Boltzmann distribution.

〈p2〉 =

∫
dpp2P(p) = 3mkBT

〈p4〉 =

∫
dpp4P(p) = 15(mkBT)2 (10.43)

The relative variance of the kinetic energy of a single particle is

〈p4〉− 〈p2〉2

〈p2〉2
=

2

3
(10.44)

Thus, in a canonical ensemble, the instantaneous kinetic temperature fluctuates. If we keep the
average kinetic energy per particle fixed, as in isokinetic MD simulations, then we do not sim-
ulate the true constant-temperature ensemble. In practice the differences between the isokinetic
schemes and the canonical schemes are often negligible.
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Question 85 (Temperature fluctuations)
Show that the relative variance of the temperature for a system of N particles in the canonical ensemble
equals

σ2
T

〈T2〉
=

2

3N
(10.45)

What is the meaning of this result in the thermodynamic limit?

In the canonical MD scheme of Andersen the system is coupled to a heat bath that imposes
the desired temperature. The coupling to a heat bath is represented by stochastic forces that act
occasionally on randomly selected particles. These stochastic collisions with the heat bath can
be considered as Monte Carlo moves that transport the system from one constant-energy shell
to another. Between stochastic collisions, the system evolves at constant energy according to
the normal Newton’s equations of motion. The stochastic collisions ensure that all accessible
constant-energy shells are visited according to their Boltzmann weight. A constant-temperature
simulation using the Andersen thermostat consists of the following steps:

1. Start with an initial set of positions and momenta {rN(0), pN(0)} and integrate the equa-
tions of motion for a time ∆t.

2. A number of particles is selected to undergo a collision with the heat bath. The probability
that a particle is selected in a time step of length ∆t is ν∆t, where ν is the frequency of
stochastic collisions which determines the coupling strength to the heat bath.

3. If particle i has been selected to undergo a collision, its new velocity will be drawn from
a Maxwell-Boltzmann distribution corresponding to the desired temperature T . All other
particles are unaffected.

Question 86 (Andersen Thermostat)
In this question, we illustrate the strong and weak points of the Andersen thermostat. We first show that
the thermostat produces good results for time-independent canonical ensemble averages. Use the given
computer program and make sure that the errors of question 82 are corrected.

1. Calculate the velocity distribution of a Lennard-Jones fluid from a Molecular Dynamics simulation
using the Andersen thermostat for temperature T? = 2.0, density ρ? = 0.8442 and number of
particles N = 256. Employ two different collision rates ν? = 0.01 and ν? = 0.001. Compare the
distribution with the Maxwell-Boltzmann distribution (Eq. 10.41).

2. Determine the equation of state P(ρ) (Eq. 6.39) and the radial distribution function g(r) of the
Lennard-Jones fluid for T? = 2.0 and N = 256. Compare the results with Monte Carlo simulations.

3. Above we have shown that the Andersen thermostat yield good results for time-independent prop-
erties. However, as the method is based on a stochastic scheme, one may explore whether it can also
be used to determine dynamic properties, such as the mean-squared displacement. Determine the
mean-squared displacement as a function of time for various values of the collision frequency ν? of
the Lennard-Jones fluid at T? = 2.0 and N = 256. Does the mean-squared displacement depend on
the value of the collision rate?
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program mdAndersen MD at constant temperature

call init(temp) initialization
call force(f,en) determine the forces
t=0
do while (t.lt.tmax) MD loop

call integrate(1,f,en,temp) first part of the equations of motion
call force(f,en)
call integrate(2,f,en,temp) second part of the equations of motion
t=t+dt
call sample sample averages

enddo
end

subroutine integrate(switch,f,en,temp) integrate equations of motion
if(switch.eq.1) then first step velocity Verlet

do i=1,npart
x(i)=x(i)+dt*v(i)+dt*dt*f(i)/2 update positions
v(i)=v(i)+dt*f(i)/2 update velocity

enddo
elseif (switch.eq.2) then second step velocity Verlet

tempa=0
do i=1,npart

v(i)=v(i)+dt*f(i)/2 second update velocity
tempa=tempa+v(i)**2

enddo
tempa=tempa/(s*npart) instantaneous temperature
sigma=sqrt(temp) Andersen heat bath
do i=1,npart

if(ranf().lt.nu*dt) then test for collision with bath
v(i)=gauss(sigma) give particle Gaussian velocity

endif
enddo

endif
return
end

Table 10.5: Pseudo computer code for a Molecular Dynamics simulation using the velocity Verlet
algorithm with the Andersen thermostat.



Part III

Appendix





Appendix A

Assignments

A.1 Capillary Condensation between Two Flat Walls

If we immerse a slit-like pore in a big reservoir, the liquid phase can be stable between the
walls while the bulk reservoir is still in the vapor phase. This phenomenon is called capillary
condensation. The vapor/liquid transition is shifted by the confinement in comparison with the
bulk transition.

1. Modify the programs in LJ-DifferentEnsembles in such a way that it performs sim-
ulations between two planar walls in the xy direction. The walls are located at z = 0 and
z = H. Hence, the separation between the walls equals H. Apply periodic boundary con-
ditions in the x and y directions and employ the following interactions for the particles
with the wall:

φ(z) =

{
−ε
[(

σ
z

)5
+
(

σ
H−z

)5]
σ ≤ z ≤ H − σ∞ otherwise

(A.1)

in which σ and ε are the Lennard-Jones parameters for particle-particle interactions.

2. Perform a series of simulations at H/σ = 2, 3, 5 and H/σ = 10 in the grand-canonical en-
semble at fixed temperature T? = 0.5 and varying chemical potentials. Plot the adsorption
isotherms (average density 〈ρ〉 as a function of µ). Explain the trend of the adsorption
isotherms. Does the vapor/liquid transition shift to lower or higher chemical potential
upon decreasing the wall separation? Explain.

3. Perform Gibbs ensemble simulations for the bulk system and for a confined system with
H/σ = 2 and 5 for different temperatures. Estimate the critical temperature using the scal-
ing laws Eqs. 8.9 and 8.10. Does the critical temperature depend on the wall separation?
Explain.

A.2 Adsorption Inside a Pore

The behavior of liquids inside confined geometries (i.e. small pores) is in principle different from
the behavior of a bulk liquid. In this exercise, we will investigate the adsorption of Lennard-
Jones particles inside a small cylindrical pore of radius L. Particles have the following interaction
with the pore wall

φ (r) =

{
ε
(

σ
L−r

)10
r < L∞ r ≥ L

(A.2)
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in which ε and σ are the Lennard-Jones parameters for particle-particle interactions. The pore
is centered at r = 0.

1. Modify the program LJ-DifferentEnsembles to simulate this system in the grand-
canonical ensemble.

2. Modify the program in such a way that the radial density (e.g. the local density at distance
r from the center of the pore) is calculated.

3. At a fixed pore radius L and fixed temperature T? = 0.5, perform series simulations at dif-
ferent chemical potentials, starting either from a low chemical potential or a high chemical
potential. How can the hysteresis in the adsorption isotherm (average density 〈ρ〉 as a
function of µ) be explained? Hint: perform the simulation also at T? = 5. What is the
influence of the pore length on this transition?

4. Use the thermodynamic integration scheme of Ref. [44] to compute the coexistence den-
sities between the low and high density phase. Investigate the effect of confinement (dif-
ferent L) on this transition as a function of T?. How does the critical temperature of this
transition scale with the pore radius?

5. Construct a model to investigate the possible influence of corrugation of the pores wall on
the phase coexistence.

A.3 Gibbs Ensemble Simulation of Methane and Ethane

In chapter 8 we have introduced the Gibbs ensemble method to locate vapor/liquid coexistence.
In this exercise, the vapor/liquid phase diagram of the Lennard-Jones potential was computed.
The purpose of this assignment is to calculate the vapor/liquid phase diagram of methane (CH4)
and ethane (CH3-CH3) and to compare the simulation results with available experimental data.
A popular approach to simulate hydrocarbons is the so-called united atom model, in which a
carbon atom together with its attached hydrogen atoms are considered as a single interaction
site [45]. The united atom approach often works well to describe liquid alkanes, but it fails
for solids. We assume that the interactions between these “united atoms” can be described by a
Lennard-Jones potential. This means that the phase diagram of methane can be computed using
the given Gibbs ensemble simulation code (LJ-DifferentEnsembles).

1. According to Ref. [46], the Lennard-Jones parameters of methane are ε/kB = 158.8K and
σ = 3.72Å when the Lennard-Jones potential is truncated and shifted at rcut = 12Å (Eq.
6.4). What is the value of rcut in reduced units? Modify the cut-off radius in the given
simulation code and compute the vapor/liquid part of the phase diagram of methane.
Compare the computed critical temperature, critical pressure, and coexistence densities
with the available experimental data [47].

2. In the united atom model, ethane is described as a dumbbell in which the two CH3 united
atoms have a fixed bond length of 1.53 Å. The Lennard-Jones parameters of the CH3

groups are ε/kB = 108.0K and σ = 3.76Å (again for rcut = 12Å) [46]. Modify the
given Gibbs ensemble simulation code to simulate ethane. As ethane is a rigid, linear
molecule, it is necessary to include trial moves in which attempts are made to rotate an
ethane molecule around its center of mass. In addition, when an ethane molecule is in-
serted in one of the boxes, not only the position should be chosen at random but also the
orientation of the molecule.
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3. Compute the vapor/liquid part of the phase diagram of ethane and compare your results
with the available experimental data of Ref. [47].

4. Investigate how sensitive the computed phase diagrams for methane and ethane depend
on the Lennard-Jones parameters, i.e. changing ε and σ by 10% while keeping rcut = 12Å.

A.4 Free Energy Difference between fcc and hcp

The face-centered cubic (fcc) and the hexagonal-close-packed (hcp) phase are two different crys-
tal structures. Both close-packed structures consist of hexagonal close-packed two- dimensional
layers of particles that are stacked up in the vertical direction. We can now construct the crystal
by stacking layers. For each new layer there are two distinct possibilities to stack it on the pre-
vious layer in such a way that all the particles fit in the triangular holes between the particles
in the previous layer. We now denote the two positions of the new layer by B and C and the
position of the previous layer by A. Using this notation, the layers in the fcc phase are stacked in
a ABCABC sequence, while the hcp phase corresponds to an ABAB sequence. The free energy
difference for fcc and hcp is known to be very small at the melting density (with packing fraction
η = πσ3N/6V = 0.545) and at close packing η = π

√
2/6 for hard spheres with a diameter of σ.

See also Ref. [48].

1. Show that the packing fraction η at close packing is π
√

2/6.

2. Modify the program in EinsteinCrystal such that the simulation can also be started
with a hcp crystal.

3. Determine the free energy difference between fcc and hcp for Lennard-Jones particles at
fixed temperature T? = 0.5 and T? = 2 for ρ? = 1.2.

To compute the free energy for hard spheres, we have to modify our integration path. The
problem is that there is no linear coupling scheme that switches off the hard-core interactions
and switches on the Einstein spring constants simultaneously. We now switch on the spring
constants while leaving on the hard-core interactions:

E(λ) = EHS + λ

N∑
i=1

(ri − ri,0)
2 (A.3)

where N is the number of particles and ri,0 are the ideal lattice positions. The free energy dif-
ference between the system with coupling parameter λmax and the hard-sphere solid is given by
(see also Eq. 9.16)

FHS = F(λmax) −

∫λmax

0
dλ

〈
N∑

i=1

(ri − ri,0)
2

〉
λ

(A.4)

For sufficiently high λmax the hard spheres do not “feel” each other and the free energy reduces
to that of a non-interacting Einstein crystal.

4. The mean-squared displacement of a non-interacting Einstein crystal is given by〈
r2
〉

=
1

N

∂F(λ)

∂λ
(A.5)

For an Einstein crystal at a fixed center of mass, this leads to〈
r2
〉

=
3

2βλ
× N − 1

N
(A.6)



112 Assignments

Measure the mean-squared displacement as a function of λ in a simulation. For which λ

does the mean-squared displacement correspond with that of a non-interacting Einstein
crystal? Use this value of λ in the sequel.

5. Determine the free energy difference between the fcc and hcp crystal for hard spheres at
the melting density. Estimate the error in the free energy difference using 5 different runs.

A.5 Grand-Canonical MC; Umbrella Sampling in N

Vapor-liquid phase coexistence is usually determined using the Gibbs ensemble method. An-
other method to determine phase coexistence is using grand-canonical ensemble simulations
and by determining the probability distribution function for the density p(ρ) (i.e., the probabil-
ity to find a certain density ρ). The grand potential of the system Ω(µ, V, T) is a function of this
probability distribution function:

Ω(µ, V, T) = −kBT ln p(ρ) + constant (A.7)

Below the critical point, p(ρ) shows one peak at a density that corresponds to the gas phase at
low fugacity, but the peak moves to higher density for higher fugacities.

1. Modify the program in LJ-DifferentEnsembles in order to sample the probability
distribution function for the density. Run a simulation at T? = 0.95 at different values of
the fugacities. Plot p(ρ) for varying fugacities.

Close to the vapor/liquid transition p(ρ) is double-peaked, and the two peaks correspond to the
gas and liquid phase. Phase coexistence occurs when the area under the two peaks is equal [49].
In order to determine p(ρ) sufficiently accurate, one has to employ umbrella sampling (section
9.5). The most convenient biasing function is

W(N) = α(N − N0)
2 (A.8)

in which N is the number of particles in the system and α and N0 are constants. Using this
biasing function, we force our system to contain particle numbers in a window around N0. The
width of this window is determined by α.

2. Implement this biasing function in the program and calculate the unbiased distribution
p(ρ). Using different values for N0, we are able to obtain the whole distribution p(ρ)

and hence Ω(µ, V, T) up to a constant. The unknown constant can be obtained by shifting
−kBT ln p(ρ) for different N0 such that they fall on top of each other. Use this method to
determine the phase coexistence as a function of temperature.

A.6 Common Tangent Construction

In question 78 we used the functions µ(P) for the liquid- and solid phase to calculate the pressure
and densities at equilibrium. Another way to locate phase coexistence is the so-called common
tangent construction, for which we have to plot the free energy density f = F/V as a function of
the (particle number) density ρ = N/V .

1. Make such a plot for the system of question 78 and show that

µ =

(
∂f

∂ρ

)
T,V

(A.9)
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and

P = −f + ρ

(
∂f

∂ρ

)
T,V

(A.10)

2. Suppose that phase I and II are in equilibrium. Show that from ∆P = PI − PII = 0,
∆µ = µI − µII = 0 and Eqs. A.9 and A.10 follows that

µ =
f1 − f2

ρ1 − ρ2
(A.11)

3. Prove that the common tangent construction (i.e. the coexistence densities) is not affected
when the function X(ρ) = aρ + b (in which a and b are arbitrary constants) is subtracted
from f(ρ).

4. Perform the common tangent construction for the system of question 78 and compare the
result with thermodynamic integration. Hint: first fit the function X(ρ) = aρ + b to f(ρ)

and substract this function from f(ρ).





Appendix B

Essential Thermodynamics

B.1 Thermodynamic States

Thermodynamics gives a macroscopic description of systems. A system in equilibrium is said to
be in a thermodynamic state, which is characterized by state variables, e.g. volume V , temperature
T , pressure P and amount of material. Often the amount of material is expressed in terms of the
number of moles n. Throughout this work we shall use the number of particles N = Navn, in
which Nav is Avogadro’s number (Nav = 6.02214× 1023 particles per mol). Equations of state are
relations between state variables that express physical properties of the system. The ideal gas is
an idealized dilute gas that satisfies the equation of state

PV = nRT = NkBT (B.1)

where R = 8.3145 Jmol−1K−1 is the gas constant and kB = R/Nav = 1.38066 × 10−23 J/K is
Boltzmann’s constant. For a full thermodynamic description of a system a second equation of
state is necessary. Often an energy equation is chosen, which expresses the energy or a free energy
in terms of the state variables. For an ideal gas of point particles the energy equation is

U(V, T) = U(T) =
3

2
NkBT (B.2)

in which U(V, T) is the energy of the system as a function volume and temperature. Note that the
energy equation is not completely independent of the equation of state, e.g. using the general
relations Eq. B.10 and Eq. B.39 it follows from Eq. B.1 that for an ideal gas (∂U/∂V)T,N = 0,
which is consistent with Eq. B.2. On the other hand, Eq. B.2 cannot be derived from Eq. B.1
alone. The interdependence arises because both equations can be derived from the dependence
of the free energy F on N, V and T . Indeed, from Eq. B.16 we see that the pressure P for any
system is given by P = −(∂F/∂V)T,N. This is essentially the equation of state, resulting in Eq. B.1
for an ideal gas. The entropy in the form S = −(∂F/∂T)V,N can be used in Eq. B.15 to obtain the
energy from U = F + TS.

State variables are called extensive if they are proportional to the extent of the system, i.e.
if their values double when the volume, energy and number of particles are simultaneously
doubled and intensive if they are not affected by such a doubling. The molar value of an extensive
variable is an intensive variable obtained by dividing the extensive variable by N the number of
mols in the system ∗. It is denoted by an overline. For example, the molar volume V ≡ V/N. As
the intensive properties of a one-component material do not change when particles are added

∗In thermodynamics one often divides by n = N/Nav. This alternative definition of molar variables leads to
values that are Nav times larger.
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or removed in such a way that pressure and temperature remain constant, we may define molar
quantities as partial derivatives as well, e.g. for the molar volume

V =
V

N
=

(
∂V

∂N

)
P,T

(B.3)

This definition is easily generalized to define partial molar variables in multi-component systems,
e.g. the partial molar volume with respect to species i is defined as

Vi =

(
∂V

∂Ni

)
P,T,Nj6=i

(B.4)

Here the notation indicates that for all components j the number of particles Nj should be kept
constant, except for the component i with respect to which the partial molar volume is calcu-
lated.

B.2 Processes

The thermodynamic state of a system can change during processes. The process is described
by path variables, e.g. q, the heat added or w, the work done on the system. Contrary to state
variables, path variables are no system properties, they do not have a specific value for a system.
The the heat of a system or the work of a system does not exist, not even if the system is in thermody-
namical equilibrium. In thermodynamics one distinguishes two classes of processes: reversible
and irreversible processes. During a reversible process the system is in (or infinitesimally close
to) a thermodynamic state at all moments, implying that all thermodynamic state variables are
well-defined throughout the course of the process. During irreversible processes a system may
be far out of equilibrium and one or more state variables may be undefined (e.g. there may be
pressure waves or temperature gradients present in the system and the concept of the pressure
P or the temperature T of the system does not make sense). In practice, reversible processes are
idealized versions of real processes that proceed very slowly, while real spontaneous processes
are irreversible.

B.3 First Law of Thermodynamics

The internal energy U of a system is an extensive state function that can only change by heat q

that is added to the system or work w that is done on the system:

∆U = q + w (B.5)

Important forms of work are volume work (compression or expansion under external pressure
P), where dw = −PdV and addition or removal of particles from a reservoir with chemical
potential µ, where dw = µdN.

B.4 Second Law of Thermodynamics

There exists an extensive state function S, called entropy. When heat is reversibly added to the
system, the entropy changes according to:

dS =
dqrev

T
(B.6)
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in which T is the absolute temperature (in Kelvin). Note that during the process the temperature
T may change, but at any moment T is well-defined because the process is reversible. An isolated
system has constant energy U, constant volume V and constant number of particles N. During
irreversible processes in an isolated system the entropy of the system increases

(∆S)U,V,N,irr > 0 (B.7)

Note that since this process is irreversible Eq. B.6 needs not to hold and we can not conclude that
qirr > 0 from Eq. B.7. Using the entropy and the definition of heat capacity CV at constant V or
CP at constant P we may write

CV ≡
(

∂U

∂T

)
V,N

= T

(
∂S

∂T

)
V,N

(B.8)

CP ≡
(

∂H

∂T

)
P,N

= T

(
∂S

∂T

)
P,N

(B.9)

B.5 The Basic Machinery

The first and second law can be combined to give

dU = TdS − PdV + µdN (B.10)

From this formula it is seen that U is the characteristic state function for systems in which S, V and
N are constant or can be easily controlled. Irreversible processes at constant S, V and N lead to
a decrease of internal energy

(∆U)S,V,N,irr < 0 (B.11)

For systems with other control variables other characteristic state function are available.

• Enthalpy (H) for S, P and N

H = U + PV (B.12)
dH = TdS + VdP + µdN (B.13)

(∆H)S,P,N,irr < 0 (B.14)

• Free energy or Helmholtz free energy (F or A) for N, V and T

F = U − TS (B.15)
dF = −SdT − PdV + µdN (B.16)

(∆F)N,V,T,irr < 0 (B.17)

• Gibbs free energy (G) for N, P and T

G = U − TS + PV = F + PV = H − TS (B.18)
dG = −SdT + VdP + µdN (B.19)

(∆G)P,N,T,irr < 0 (B.20)

From Eq. B.19 it follows that G increases proportional to N if the system is (mentally) built up
by adding molecules, meanwhile adjusting the volume and adding heat in such a way that P

and T remain constant. This proofs that G = µN which expresses that the chemical potential is
the molar Gibbs free energy µ = G. From G = µN it follows directly that dG = µdN + Ndµ.
Upon combining with Eq. B.19 we find the Gibbs-Duhem relation

VdP − SdT − Ndµ = 0 (B.21)

This relation shows that the three intensive variables P, T and µ can not be varied independently.
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B.6 Definitions and Relations

For any state function f(x, y, z), we can write

df =

(
∂f

∂x

)
y,z

dx +

(
∂f

∂y

)
x,z

dy +

(
∂f

∂z

)
x,y

dz (B.22)

Therefore, the first derivatives of characteristic functions can be used as thermodynamic definition
for certain state variables, i.e. from

dF = −SdT − PdV + µdN (B.23)

follows immediately that

−S =

(
∂F

∂T

)
V,N

(B.24)

−P =

(
∂F

∂V

)
T,N

(B.25)

µ =

(
∂F

∂N

)
V,T

(B.26)

Differentiation of Eqs. B.10, B.13, B.16 and B.19 with respect to N leads to several equivalent
definitions of chemical potential

µ =

(
∂U

∂N

)
S,V

=

(
∂H

∂N

)
S,P

=

(
∂F

∂N

)
T,V

=

(
∂G

∂N

)
T,P

= G (B.27)

It depends on the control variables of the system which definition is preferred. These definitions
should be used carefully. E.g. note that the molar free energy F is not equal to µ, even though
the expressions look similar:

F =
F

N
=

(
∂F

∂N

)
P,T

= µ − P

(
∂V

∂N

)
P,T

(B.28)

For an ideal gas, this reduces to FIG = µ−kBT . If temperature is a control variable, then one gets
two definitions for the entropy:

S = −

(
∂F

∂T

)
V,N

= −

(
∂G

∂T

)
P,N

(B.29)

If entropy is a control variable, then one could define temperature by

T =

(
∂U

∂S

)
V,N

=

(
∂H

∂S

)
P,N

(B.30)

The thermodynamic definitions of pressure

P = −

(
∂U

∂V

)
S,V

= −

(
∂F

∂V

)
T,N

(B.31)

give experimental access to the volume dependence of U and F. Similarly, the thermodynamic
definitions of volume

V =

(
∂H

∂P

)
S,N

=

(
∂G

∂P

)
T,N

(B.32)
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give the pressure dependence of H and G. The temperature dependence of U and H is found
from heat capacity measurements as is seen in Eq. B.8 and Eq. B.9. The temperature dependence
of F and G is found from Gibbs-Helmholtz relations, which are derived by combining Eq. B.15 with
Eq. B.8, and Eq. B.18 with Eq. B.9 respectively:(

∂F/T

∂T

)
V,N

= −
U

T2
(B.33)(

∂G/T

∂T

)
P,N

= −
H

T2
(B.34)

Integrating experimental data properly thus forms the basis of tabulating the energy, enthalpy
and the (Gibbs) free energy as a function of T and P.

B.7 Maxwell Relations

Maxwell relations are relations between derivatives of state variables. These derivatives are
a twice differentiated state function. The relations are obtained by interchanging the order of
differentiation. Take e.g. the Gibbs free energy. From Eq. B.19 it follows that

S = −

(
∂G

∂T

)
P,N

(B.35)

and

V =

(
∂G

∂P

)
T,N

(B.36)

The identity (
∂2G

∂P∂T

)
N

=

(
∂2G

∂T∂P

)
N

(B.37)

leads to (
∂S

∂P

)
T,N

= −

(
∂V

∂T

)
P,N

(B.38)

Similarly, using Eq. B.16 leads to (
∂S

∂V

)
T,N

=

(
∂P

∂T

)
V,N

(B.39)

These relations could not easily be guessed from physical arguments alone. They show that, al-
though S can not be measured experimentally, its derivatives with respect to P, V and T (see Eqs.
B.8 and B.9) can be experimentally determined. Again, we find that integrating experimental
data forms the basis of tabulation of entropy as a function of T and P.

B.8 Phase Equilibrium

If a system at given P, T and N contains two or more phases of the same type of particles, then
the two phases will exchange volume, heat and particles until the minimum Gibbs free energy
is reached. At the moment that equilibrium has been reached one of the two phases may have
disappeared. If both phases are still present, then they are both at pressure P, temperature T and
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Figure B.1: Typical (T, P)-phase diagram indicating the regions where the solid (S), liquid (L)
and gas (G) are stable. The bold lines indicate phase coexistence. The vapor-liquid coexistence
ends at the critical point (Tc, Pc). At the triple point (T3, P3) there is a coexistence between three
phases (gas, liquid and solid). The solid/liquid coexistence does not have a critical point. See
also Fig. 6.6 for the corresponding (ρ, T)-diagram.

they have equal chemical potential µ. This follows directly from the Gibbs free energy which is
at a minimum

dG = 0 = −SdT + VdP + µIdnI + µIIdnII = µIdnI + µIIdnII (B.40)

in which µi is the chemical potential of phase i and dni is the change in molecules for phase i.
As dnI = −dnII 6= 0 it follows directly that ∆µ = µI − µII = 0.

A (T, P)-phase diagram displays the phase transition lines and points, where two or more
phases are in equilibrium with each other, i.e. where the chemical potential at the given P and
T are the same for these phases (see Fig. B.1). The points with two phases in equilibrium are
located on phase equilibrium lines, e.g. the melting and boiling lines. Where two of these lines
intersect three phase equilibrium is possible, and such a point is called triple point. If a line ends
in a point without intersection with other lines, this is called a critical point.

Along phase equilibrium lines in Fig. B.1 not only extensive variables, like S and V , are
different for both phases, but also the molar value for all components j, like the molar entropy
S = S/N and the molar volume V = V/N. Approaching a critical point the differences of such
molar quantities become smaller, at a critical point they become equal. Applying the Gibbs-
Duhem relation to two phases in equilibrium, the slope of phase equilibrium lines in Fig. B.1
can be expressed in terms of the differences ∆S and ∆V . Using the first law of thermodynamics,
we can write the differential of G as Eq. B.19

dG = −SdT + VdP + µdN (B.41)

On the other hand, the Gibbs free energy is an extensive quantity, and can hence be written as
G(N,P, T) = µN and we arrive at

dG = µdN + Ndµ (B.42)
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Subtracting the two equations for dG we find the Gibbs-Duhem equation

Ndµ = −SdT + VdP (B.43)

If we now consider two phases, say phase I and phase II, in coexistence, we can write

NIdµI = −SIdTI + VIdPI

NIIdµII = −SIIdTII + VIIdPII (B.44)

Using the conditions for phase equilibria: µI = µII = µ, TI = TII = T , and PI = PII = P, we
arrive at

0 = −(SI − SII)dT + (VI − VII)dP (B.45)

and the slope of the coexistence curve at µ is predicted by(
dP

dT

)
coex

=
∆S

∆V
=

∆S

∆V
=

∆H

T∆V
=

∆H

T∆V
(B.46)

where the enthalpy is defined as H = U + PV (so ∆H = HI − HII), while ∆G = GI = GII =

∆U− T∆S+P∆V = 0 at coexistence. For calculating the equilibrium vapor pressure of a solid or
a liquid, it is often justified to assume that the vapor is an ideal gas, i.e. Vvap = kBT/P and that
the liquid molar volume is negligibly small, ∆V ≈ Vvap. Then(

d ln P

dT

)
coex

≈
∆vapH

kBT2
(B.47)

which is known as the Clausius-Clapeyron equation.





Appendix C

Essential Mathematics

Elementary Statistical Thermodynamics does not make use of any sophisticated mathematics.
Here we briefly review the mathematics that is most frequently used. Below, we give neither a
proper derivation nor a proof of any of the results that we quote. However, in some cases we
do provide a non-rigorous ”justification”. We assume that the reader is familiar with the most
common functions and algebraic manipulations.

C.1 Properties of ln x and exp x

The essential properties of logarithms and exponentials are - of course - well known · · · but still
often forgotten. Often, we use exp(x) for ex.

ln(a× b) = ln a + ln b (C.1)
ln(a/b) = ln a − ln b (C.2)

ln(ab) = b× ln a (C.3)
g log(a) = ln(a)/ ln(g) (C.4)

exp(a + b) = (exp a)× (exp b) (C.5)
exp(ln(a)) = a (C.6)
(exp(a))x = exp(ax) (C.7)

C.2 Chain Rule

When differentiating a function F(u), where u(x) is a function of the independent variable x, we
can use the so-called chain rule

∂F(u(x))

∂x
=

∂F(u)

∂u
× ∂u(x)

∂x
(C.8)

More generally, if F(u) is a function of u and u is a function of v · · · and y is a function of z, then

∂F

∂z
=

∂F(u)

∂u
× ∂u(v)

∂v
× ∂v(w)

∂w
× · · · × ∂y(z)

∂z

C.3 Derivative of exp(ax) and ln(x)

The derivative of exp(ax):
∂ exp(ax)

∂x
= a exp(ax) (C.9)
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This result can easily be derived from the definition of exp(ax):

exp(ax) =

∞∑
n=0

(ax)n

n!
= lim

n→∞(1 +
ax

n
)n (C.10)

Conversely, the primitive function of exp(ax) is a−1 exp(ax). The derivative of ln x with respect
to x is

∂ ln x

∂x
=

1

x
(C.11)

This is easily derived from Eq. C.9. If y = ln x, then x = exp(y), hence

∂ ln x

∂x
=

∂y

∂ exp y
=

1

exp y
=

1

x
(C.12)

Conversely, the primitive function of 1/x is ln x.

C.4 Taylor Expansion

If f(x) and all its derivatives are smooth functions of x, then we can write:

f(x + a) = f(x) +

(
∂f

∂x

)
x

a +
1

2!

(
∂2f

∂x2

)
x

a2 + · · ·+ 1

n!

(
∂nf

∂xn

)
x

an + · · · (C.13)

The first two terms in the Taylor expansion are often used to approximate f(x + a) if a is suffi-
ciently small

f(x + a) ≈ f(x) +

(
∂f

∂x

)
x

a

Specific examples are:

exp(x) ≈ 1 + x

ln(1 + x) ≈ x

√
1 + x ≈ 1 +

1

2
x

(1 + x)n ≈ 1 + nx

sin(x) ≈ x

where, in all cases, it has been assumed that |x| � 1. For functions of more than one variable,
this can be generalized to

f(x1 + ∆x1, x2 + ∆x2, · · · , xn + ∆xn) ≈ f(x1, x2, · · · , xn) +

n∑
i=1

(
∂f

∂xi

)
∆xi (C.14)

C.5 Geometric Series

Consider the sum

S =

n∑
i=0

axi (C.15)
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Clearly,

xS =

n∑
i=0

axi+1 = S − a + axn+1 (C.16)

Hence
S(1 − x) = a(1 − xn+1) (C.17)

or

S =
a(1 − xn+1)

1 − x
(C.18)

If |x| < 1, we can take the limit n → ∞
Sn→∞ =

a

1 − x
(C.19)

so ∞∑
i=0

xi =
1

1 − x
(C.20)

for |x| < 1. Differentiating both sides of Eq. C.20 with respect to x and multiplying with x we
get another useful expression ∞∑

i=0

i× xi =
x

(1 − x)2
(C.21)

for |x| < 1.

C.6 Factorials and Permutations

The symbol N! denotes the ”factorial” of N. For positive, integer N, it is defined as

N! = N× (N − 1)× (N − 2)× · · · × 2× 1 (C.22)

In addition, 0! ≡ 1. The number of permutations of a set of N labeled objects is equal to N! . This
can be demonstrated by induction. The number of ways in which a single object can be ordered
is clearly equal to 1, which is equal to 1!. Hence, the relation holds for N = 1. The next step
is to show that if the relation holds for N objects, it also holds for N + 1 objects. This is easily
demonstrated as follows. Assuming that there are N! permutations for N objects, then for every
permutation there are N+1 positions in the sequence where we could insert object N+1. Hence
the total number of permutations for (N + 1) objects is (N + 1)×N! = (N + 1)!. This completes
the proof.

Now consider the following question: we have N labeled objects and we wish to count the
number of distinct ways that these objects can be divided into two sets, such that one set contains
M elements and the other N − M elements. For instance, 3 objects can be distributed in 3 ways
over a subset of size one and a subset of size 2:

(1, 2 3), (2, 3 1) and (3, 1 2) (C.23)

Note that we do not count different permutations within one subset as distinct. To compute
this number in general, we consider all possible permutations of N objects. There are N! such
permutations. For every permutation, we attribute the first M elements to one set, and the
remaining N−M elements to the other. In this way, we get that the total number of permutations
with M elements in one set and N − M in the other is equal to N!. However, in this counting
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procedure, we have considered different permutations of the objects in either set as distinct. To
get the total number of ways to distribute N objects over the two subsets, we should divide by
the number of permutations in the set of M objects and in the set of N − M objects. The result is
that the number of ways to divide N objects over two subsets of size M and N−M respectively,
is given by the so-called binomial coefficient(

N

M

)
≡ N!

M!(N − M)!
(C.24)

The binomial summation formula is

N∑
M=0

(
N

M

)
pMqN−M = (p + q)N (C.25)

The related expression
N∑

M=0

M

(
N

M

)
pMqN−M = Np(p + q)N−1 (C.26)

is obtained by differentiating both sides of Eq. C.25 with respect to p and multiplying by p.

C.7 Binomial and Multinomial Distributions

As explained above, the number of ways to distribute N objects over two classes, in such a way
that M objects end up in class I and N − M objects in class II is given by

N!

M!(N − M)!
≡
(

N

M

)
(C.27)

For example: the number of ways to throw N coins, such that M are head and N − M are tail, is(
N
M

)
. If we assume that the probability of head and tail are both equal to 1/2, then the probability

that I throw M heads and N − M tails is

P(M,N − M) =

(
N

M

)(
1

2

)N

(C.28)

In the more general case that the probabilities for the two events are not equal - say the prob-
ability to throw head is p, then the probability to throw head M times and tail N − M times
is

P(M,N − M) =

(
N

M

)
pM(1 − p)N−M (C.29)

Of course, the sum of the probabilities of all different outcomes should add up to one

N∑
M=0

(
N

M

)
pM(1 − p)N−M = (p + (1 − p))N = (1)N = 1 (C.30)

To give a specific example, consider two containers, one with volume V1 and the other with
volume V2. We assume that the probability that a molecule will be in volume 1 is equal to
V1/(V1 +V2). The probability to find a molecule in volume 2 is then 1−V1/(V1 +V2) = V2/(V1 +

V2). The probability to find M molecules in V1 and N − M molecules in V2 is then

P(M,N − M) =

(
N

M

)
VM

1 VN−M
2

(V1 + V2)N
. (C.31)
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The probability to find all molecules in volume 1 is

P(N, 0) =
VN

1

(V1 + V2)N
(C.32)

In case we distribute N objects over a larger number of classes - say m - the number of realiza-
tions is given by

N!∏m
i=1 Mi!

(C.33)

where Mi is the number of objects in class i and

m∑
i=1

Mi = N (C.34)

C.8 Some Integrals

Certain integrals occur time and again in statistical mechanics. First of all, there are the integrals
of the type: ∫∞

0
dx xn exp(−ax) (C.35)

All these integrals can be derived through integration by parts from the integral∫∞
0

dx exp(−ax) = 1/a (C.36)

For instance ∫∞
0

dx x exp(−ax) =
[
−

x

a
exp(−ax)

]∞
0

+

∫∞
0

dx
exp(−ax)

a

=
1

a2
(C.37)

The general result is ∫∞
0

dx xn exp(−ax) =
n!

an+1
(C.38)

This result can also be obtained by noting that

xn exp(−ax) = (−1)n

(
∂n exp(−ax)

∂an

)
(C.39)

and that therefore ∫∞
0

dx xn exp(−ax) = (−1)n

(
∂n(1/a)

∂an

)
=

n!

an+1
(C.40)

A second type of integral of particular importance is the Gaussian integral

I =

∫∞
−∞ dx exp(−cx2) (C.41)

A trick to compute this integral, is to consider its square

I2 =

(∫∞
−∞ dx exp(−cx2)

)2

=

∫∞
−∞ dx exp(−cx2)

∫∞
−∞ dy exp(−cy2) (C.42)
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We can write the latter product of integrals as∫∞
−∞ dx exp(−cx2)

∫∞
−∞ dy exp(−cy2) =

∫∞
−∞

∫∞
−∞ dy dx exp(−cx2) exp(−cy2) (C.43)

The latter integral is a two-dimensional integral. It can be simplified by using the polar coordi-
nates r and φ, such that x = r cos φ and y = r sin φ. Clearly, x2 + y2 = r2. The integration range
for φ is {0, 2π} and r ranges from 0 to ∞. Finally, we replace the area element dx dy by rdφ dr.
We can then write

I2 =

∫2π

0
dφ

∫∞
0

dr r exp(−cr2)

= 2π

∫∞
0

1

2
dr2 exp(−cr2)

= π

∫∞
0

dr2 exp(−cr2)

=
π

c
(C.44)

where, in the third line, we have used dr2 = 2r dr. To arrive at the last equality, we used Eq.
C.36. Hence ∫∞

−∞ dx exp(−cx2) =

√
π

c
(C.45)

This means of course that ∫∞
0

dx exp(−cx2) =
1

2

√
π

c
(C.46)

Another useful expression is∫∞
0

dx x2n exp[−ax2] =
1× 3× 5× · · · (2n − 1)

an2n+1

√
π

a
(C.47)

C.9 Stirling’s Approximation

In statistical thermodynamics the factor N! often appears for very large values of N. Then one
can consider N as a continuous variable and N! as a continuous function of N that can be differ-
entiated with respect to N. Stirling’s approximation for ln N! is very often used. In its simplest
form it is obtained from

ln N! =

N∑
k=1

ln k ≈
∫N

1
dx ln x = [x ln x − x]N1 = N ln N − N + 1 ≈ N ln N − N (C.48)

which is equivalent to

N! =

(
N

e

)N

(C.49)

Note that differentiation of Eq. C.48 gives

d ln N!

dN
≈ ln N = ln N! − ln(N − 1)! (C.50)
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In some cases Eq. C.48 is not accurate enough. From Eqs. C.38 and C.45 above, we can derive a
better approximation for N!.

N! =

∫∞
0

dx xN exp(−x) =

∫∞
0

dx exp(−x + N ln x) (C.51)

where we have used Eq .C.38 with a = 1. The integrand is sharply peaked at x = N. The value
of the exponent at x = N is −N+N ln N. The first derivative is zero (we are at a maximum). The
second derivative is −1/N. Hence, we can approximate the integral by

N! ≈
∫∞
0

dx exp(−N + N ln N −
(x − N)2

2N
)

=

∫∞
−N

du exp(−N + N ln N −
u2

2N
) (C.52)

where we have defined u ≡ x − N. As the function is sharply peaked, we can replace the lower
limit of the integration by −∞. We then have

N! ≈ exp(−N + N ln N)

∫∞
−∞ du exp(−

u2

2N
)

= exp(−N + N ln N)
√

2πN

= NN exp(−N)
√

2πN (C.53)

where we have used Eq. C.45. This is Stirling’s approximation for N!. In fact, Stirling’s approx-
imation is the first term of a series

N! = NN exp(−N)
√

2πN

(
1 +

1

12N
+

1

288N2
−

139

51840N3
+ · · ·

)
(C.54)

C.10 Lagrange Multipliers

Lagrange Multipliers can be used to find the minimum or maximum of a function f(x1, x2, · · · xn)

subject to the constraint g(x1, x2, · · · xn) = 0. Changes in f can be written as

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn (C.55)

If all xi would be independent, then all dxi would be independent too and therefore this equa-
tion could be solved by setting each partial derivative

∂f

∂xi
(C.56)

to zero. However, as g(x1, x2, · · · xn) is kept constant, the xi are no longer independent and the
simple solution (all ∂f/∂xi = 0) is no longer valid. As g(x1, x2, · · · xn) is kept constant, also

0 = dg =
∂g

∂x1
dx1 +

∂g

∂x2
dx2 + · · ·+ ∂g

∂xn
dxn (C.57)

Multiplying this equation by an unknown parameter λ and adding the two equations leads to(
∂f

∂x1
+ λ

∂g

∂x1

)
dx1 +

(
∂f

∂x2
+ λ

∂g

∂x2

)
dx2 + · · ·+

(
∂f

∂xn
+ λ

∂g

∂xn

)
dxn = 0 (C.58)
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The value of λ is chosen in such a way that

∂f

∂xn
+ λ

∂g

∂xn
= 0 (C.59)

which means that(
∂f

∂x1
+ λ

∂g

∂x1

)
dx1 +

(
∂f

∂x2
+ λ

∂g

∂x2

)
dx2 + · · ·+

(
∂f

∂xn−1
+ λ

∂g

∂xn−1

)
dxn−1 = 0 (C.60)

Now the n − 1 variables dxi are independent, which implies that

∂f

∂xk
+ λ

∂g

∂xk
= 0 (C.61)

for any k = 1, 2, · · ·n. The parameter λ is called the Lagrange multiplier. In practice one often
first solves Eq. C.61 first for all k, while treating λ as an unknown parameter, and then deter-
mines the value of λ such that the constraint g(x1, x2, · · · xn) = 0 holds for the solution that was
found in that first step.

C.11 Dirac’s delta function

Dirac’s delta function δ(x) has the property∫∞
−∞ dxf(x)δ(x − a) = f(a) (C.62)

and
δ(x − a) = 0 (C.63)

for x 6= a. The delta function of another function g(x) is given by

δ(g(x)) =
∑

i

δ(x − xi)

|g ′(xi)|
(C.64)

in which the xi are the solutions of g(xi) = 0.



Bibliography

[1] Alder, B.J.; Wainwright, T.E. J. Chem. Phys. 1957, 27, 1208-1209.

[2] Wood, W.W.; Jacobson, J.D. J. Chem. Phys. 1957, 27, 1207–1208.

[3] Hoover, W.G.; Ree, F.H. J. Chem. Phys. 1968, 49, 3609–3617.

[4] Frenkel, D.; Ladd, A.J.C. J. Chem. Phys. 1984, 81, 3188–3194.

[5] Eppinga, R.; Frenkel, D. Mol. Phys. 1984, 52, 1303–1334.

[6] Frenkel, D.; Lekkerkerker, H.N.W.; Stroobants, A. Nature 1988, 332, 822-823.

[7] Witten, T.A.; Sander, L.M. Phys. Rev. Lett. 1981, 40, 1400–1403.

[8] Frenkel, D.; Smit, B., Understanding Molecular Simulation: from Algorithms to Applications,
2nd ed. Academic Press; San Diego, 2002.

[9] Allen, M.P.; Tildesley, D.J., Computer Simulation of Liquids Clarendon Press; Oxford, 1987.

[10] Landau, D.P.; Binder, K., A Guide to Monte Carlo Simulations in Statistical Physics Cambridge
University Press; Cambridge, 2000.

[11] Rapaport, D.C., The art of molecular dynamics simulation, 2nd ed. Cambridge University
Press; Cambridge, 2004.

[12] Creutz, M. Phys. Rev. Lett. 1983, 50, 1411–1414.

[13] Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.N.; Teller, E. J. Chem. Phys.
1953, 21, 1087–1092.

[14] Ewald, P.P. Ann. Phys. 1921, 64, 253–287.

[15] Fincham, D. Mol. Sim. 1994, 13, 1–9.

[16] Hansen, J.P.; McDonald, I.R., Theory of Simple Liquids, 2nd ed. Academic Press; London,
1986.

[17] Widom, B. J. Chem. Phys. 1963, 39, 2802–2812.

[18] Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T., Numerical Recipes: The art of
scientific computing Cambridge University Press; Cambridge, 1986.

[19] Smit, B. J. Chem. Phys. 1992, 96, 8639–8640.

[20] Vlugt, T.J.H.; Krishna, R.; Smit, B. J. Phys. Chem. B 1999, 103, 1102–1118.



132 BIBLIOGRAPHY

[21] Dubbeldam, D.; Calero, S.; Vlugt, T.J.H.; Krishna, R.; Maesen, Th.L.M.; Smit, B. J. Phys.
Chem. B 2004, 108, 12301–12313.

[22] Dubbeldam, D.; Calero, S.; Vlugt, T.J.H.; Krishna, R.; Maesen, Th.L.M.; Beerdsen, E.; Smit,
B. Phys. Rev. Lett. 2004, 93, 088302.

[23] McQuarrie, D.A.; Simon, J.D., Physical Chemistry: a molecular approach, 1st ed. University
Science Books; Sausalito, 1997.

[24] Rosenbluth, M.N.; Rosenbluth, A.W. J. Chem. Phys. 1955, 23, 356–359.

[25] Grassberger, P. Phys. Rev. E 1997, 56, 3682–3693.

[26] Siepmann, J.I.; Frenkel, D. Mol. Phys. 1992, 75, 59–70.

[27] Frenkel, D.; Mooij, G.C.A.M.; Smit, B. J. Phys.: Condens. Matter 1992, 4, 3053–3076.

[28] de Pablo, J.J.; Laso, M.; Suter, U.W. J. Chem. Phys. 1992, 96, 6157–6162.

[29] Siepmann, J.I., in Computer simulation of biomolecular systems: theoretical and experimental
applications, edited by van Gunsteren, W.F.; Weiner, P.K.; Wilkinson, A.J. Escom Science
Publisher; Leiden, 1993, pp. 249–264.

[30] Consta, S.; Wilding, N.B.; Frenkel, D.; Alexandrowicz, Z. J. Chem. Phys. 1999, 110, 3220–
3228.

[31] Consta, S.; Vlugt, T.J.H.; Wichers Hoeth, J.; Smit, B.; Frenkel, D. Mol. Phys. 1999, 97, 1243–
1254.

[32] Combe, N.; Vlugt, T.J.H.; ten Wolde, P.R.; Frenkel, D. Mol. Phys. 2003, 101, 1675–1682.

[33] Panagiotopoulos, A.Z. Mol. Phys. 1987, 61, 813–826.

[34] Panagiotopoulos, A.Z. Mol. Phys. 1987, 62, 701.

[35] Smit, B.; Frenkel, D. Mol. Phys. 1989, 68, 951–958.

[36] Shing, K.S. Chem. Phys. Lett. 1985, 119, 149–151.

[37] Sindzingre, P.; Ciccotti, G.; Massobrio, C.; Frenkel, D. Chem. Phys. Lett. 1987, 136, 35–41.

[38] Torrie, G.M.; Valleau, J.P. J. Comp. Phys. 1977, 23, 187–199.

[39] Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D. J. Chem. Phys. 2000, 112, 5339–5342.

[40] Martyna, G.J.; Tuckerman, M.; Tobias, D.J.; Klein, M.L. Mol. Phys. 1996, 87, 1117–1157.

[41] Dubbeldam, D.; Snurr, R.Q. Mol. Sim. 2007, 33, 305–325.

[42] Naghizadeh, J.; Rice, S.A. J. Chem. Phys. 1962, 36, 2710–2720.

[43] Andersen, H.C. J. Chem. Phys. 1980, 72, 2384–2393.

[44] Peterson, B.K.; Gubbins, K.E. Mol. Phys. 1987, 62, 215–226.

[45] Ryckaert, J.P.; Bellemans, A. Faraday Discuss. Chem. Soc. 1978, 66, 95–106.

[46] Martin, M.G.; Thompson, A.P.; Nenoff, T.N. J. Chem. Phys. 2001, 114, 7174–7181.



BIBLIOGRAPHY 133

[47] Smith, B.D.; Srivastava, R., Thermodynamics data for pure compounds: Part A hydrocarbons and
ketones Elsevier; Amsterdam, 1986.

[48] Bolhuis, P.; Frenkel, D.; Mau, S.-C.; Huse, D.A. Nature 1997, 388, 235–237.

[49] Potoff, J.J.; Panagiotopoulos, A.Z. J. Chem. Phys. 1998, 109, 10914–10920.


